Math 236 work for May 7, 2001

Exercise 1. Let B be the ordered basis $\left(\overrightarrow{b_{1}}, \overrightarrow{b_{2}}, \overrightarrow{b_{3}}\right)$ of \mathbb{R}^{2} consisting of the vectors

$$
\overrightarrow{b_{1}}=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right], \quad \overrightarrow{b_{2}}=\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right], \quad \overrightarrow{b_{3}}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
$$

Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the linear transformation such that

$$
T\left(\overrightarrow{b_{1}}\right)=\overrightarrow{0}, \quad T\left(\overrightarrow{b_{2}}\right)=\overrightarrow{b_{2}}, \quad T\left(\overrightarrow{b_{3}}\right)=2 \overrightarrow{b_{3}} .
$$

(a) Find the matrix $[T]_{B}$ of T with respect to the ordered basis B.
(b) If $\vec{x}=\left[\begin{array}{l}5 \\ 3 \\ 1\end{array}\right]$, then use $[T]_{B}$ to calculate $T(\vec{x})$.

Exercise 2. Let B and T be as in Exercise 1.
(a) Find the standard matrix $[T]$ of T.
(b) If again $\vec{x}=\left[\begin{array}{l}5 \\ 3 \\ 1\end{array}\right]$, then use the standard matrix $[T]$ to calculate $T(\vec{x})$.
(c) If you have both $[T]_{B}$ and $[T]$, which way to calculate $T(\vec{x})$ in this situation is easier-using $[T]_{B}$ or $[T]$?

