Math 236 work for May 7, 2001

Exercise 1. Let *B* be the ordered basis $(\overrightarrow{b_1}, \overrightarrow{b_2}, \overrightarrow{b_3})$ of \mathbb{R}^2 consisting of the vectors

$$\overrightarrow{b_1} = \begin{bmatrix} 0\\2\\1 \end{bmatrix}, \qquad \overrightarrow{b_2} = \begin{bmatrix} 1\\3\\0 \end{bmatrix}, \qquad \overrightarrow{b_3} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}.$$

Suppose $T \colon \mathbb{R}^3 \to \mathbb{R}^3$ is the linear transformation such that

$$T(\overrightarrow{b_1}) = \overrightarrow{0}, \qquad T(\overrightarrow{b_2}) = \overrightarrow{b_2}, \qquad T(\overrightarrow{b_3}) = 2\overrightarrow{b_3}.$$

(a) Find the matrix $[T]_B$ of T with respect to the ordered basis B.

(b) If
$$\vec{x} = \begin{bmatrix} 5\\3\\1 \end{bmatrix}$$
, then use $[T]_B$ to calculate $T(\vec{x})$.

Exercise 2. Let B and T be as in Exercise 1.

(a) Find the standard matrix [T] of T.

(b) If again
$$\vec{x} = \begin{bmatrix} 5\\3\\1 \end{bmatrix}$$
, then use the standard matrix [T] to calculate $T(\vec{x})$.

(c) If you have both $[T]_B$ and [T], which way to calculate $T(\vec{x})$ in this situation is easier—using $[T]_B$ or [T]?