Math 236 work for May 4, 2001

Exercise 1. Let $\vec{x}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
(a) For the ordered basis $B=\left(\overrightarrow{b_{1}}, \overrightarrow{b_{2}}\right)$ of \mathbb{R}^{2} given by $\overrightarrow{b_{1}}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \overrightarrow{b_{2}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, find the coordinate vector $[\vec{x}]_{B}$ of \vec{x} with respect to B.
(b) For the ordered basis $B^{\prime}=\left(\overrightarrow{b_{2}}, \overrightarrow{b_{1}}\right)$ of \mathbb{R}^{2} given by the same vectors as in (a) but in the opposite order, find the coordinate vector $[\vec{x}]_{B^{\prime}}$ of \vec{x} with respect to B^{\prime}.
(c) For the standard ordered basis $E=\left(\overrightarrow{e_{1}}, \overrightarrow{e_{2}}\right)$ of \mathbb{R}^{2}, find the coordinate vector $[\vec{x}]_{E}$ of \vec{x} with respect to E.

Exercise 2. What is the coordinate vector $[\vec{x}]_{E}$ of an arbitrary vector $\vec{x} \in$ \mathbb{R}^{n} with respect to the standard ordered basis $E=\left(\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \ldots, \overrightarrow{e_{n}}\right)$ of \mathbb{R}^{n} ?

Exercise 3. Let $B=\left(\overrightarrow{b_{1}}, \overrightarrow{b_{2}}, \ldots, \overrightarrow{b_{n}}\right)$ be an arbitrary ordered basis of \mathbb{R}^{n}.
(a) What is the coordinate vector $\left[\overrightarrow{b_{1}}\right]_{B}$?
(b) For each $j=1,2, \ldots, n$, what is the coordinate vector $\left[\overrightarrow{b_{j}}\right]_{B}$?

Exercise 4. Again let $B=\left(\overrightarrow{b_{1}}, \overrightarrow{b_{2}}\right)$ be the ordered basis of \mathbb{R}^{2} given by $\overrightarrow{b_{1}}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \overrightarrow{b_{2}}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(a) If $\vec{x} \in \mathbb{R}^{2}$ has coordinate vector $[\vec{x}]_{B}=\left[\begin{array}{r}4 \\ -5\end{array}\right]$ with respect to B, then what is \vec{x} ?
(b) What is the change-of-basis matrix S from B to the standard ordered basis $E=\left(\overrightarrow{e_{1}}, \overrightarrow{e_{2}}\right)$?
(c) Use the change-of-basis matrix S somehow to find the coordinate vector $[\vec{x}]_{B}$ of \vec{x} with respect to B for $\vec{x}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.

