## Math 236 work for May 1, 2001

Exercise 1. Again let $A=\left[\begin{array}{rrr}2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$. You found that the eigenvalues of $A$ are

$$
\lambda_{1}=2, \quad \lambda_{2}=3 .
$$

Also, for arbitrary $\lambda$, you calculated:

$$
A-\lambda I=\left[\begin{array}{ccc}
2-\lambda & 0 & -2 \\
0 & 3-\lambda & 0 \\
0 & 0 & 3-\lambda
\end{array}\right]
$$

(a) Find bases of the eigenspaces $E_{\lambda_{1}}$ and $E_{\lambda_{2}}$ of $A$ associated with these eigenvalues. Then tell the dimension of each eigenspace.
(b) Use your answer to (a) to describe all eigenvectors of $A$ associated with each eigenvalue.

Exercise 2. Let $A$ be the same matrix as in Exercise 1.
(a) Explain how you can tell now that $A$ is diagonalizable.
(b) Find an invertible matrix $S$ and a diagonal matrix $S$ with $S^{-1} A S=D$.
(c) Use your answer to (b) to calculate $A^{3}$ (without actually multiplying $A$ by itself three times).

