Math 236 work for April 27, 2001

Exercise 1. Let $A=\left[\begin{array}{ll}2 & 0 \\ 3 & 5\end{array}\right]$.
(a) Directly use the definitions involved to verify that $\lambda_{1}=2$ is an eigenvalue of A and that $\overrightarrow{v_{1}}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ is an eigenvector associated with λ_{1}.
(b) Verify that $\overrightarrow{w_{1}}=\left[\begin{array}{r}-9 \\ 9\end{array}\right]$ is another eigenvector associated with that same eigenvalue λ_{1}.
(c) Verify that $\lambda_{2}=5$ is another eigenvalue of A and that $\overrightarrow{v_{2}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is an eigenvector associated with A.

Exercise 2. If $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$, verify that $\vec{v}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ is an eigenvector of A and find the associated eigenvalue λ.

Exercise 3. Why did we explicitly exclude $\overrightarrow{0}$ from being considered an eigenvector of a matrix A ? (Hint: If it were considered an eigenvector, with what eigenvalue would it be associated?)

Exercise 4. If $A=I_{n}$, what are the eigenvalues of A and for each eigenvalue what are the associated eigenvectors?

Exercise 5. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be orthogonal projection onto a plane V that passes through the origin. Thinking geometrically:
(a) Show that each $\vec{v} \in V$ is an eigenvector of T and determine with what eigenvalue it is associated.
(b) Show that each $\vec{v} \in V^{\perp}$ is an eigenvector of T and determine with what eigenvalue it is associated.

Exercise 6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be rotation of the plane around the origin counterclockwise through an angle α with $0<\alpha<\pi$. Explain geometrically why T has no eigenvectors (and hence no eigenvalues).

Theorem 1. Scalar λ is an eigenvalue of square matrix A if and only if $\operatorname{det}(\lambda I-A)=0$.

Exercise 7. Let $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$. Use the preceding theorem to find all eigenvalues of A.

Exercise 8. Let $A=\left[\begin{array}{rrr}2 & 0 & -2 \\ 0 & 3 & 0 \\ 0 & 0 & 3\end{array}\right]$. Use the preceding theorem to find all eigenvalues of A.

Exercise 9. Again let $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$. We found that the eigenvalues of A are

$$
\lambda_{1}=2, \quad \lambda_{2}=3 .
$$

Also, for arbitrary λ, we calculated:

$$
\lambda I-A=\left[\begin{array}{ccc}
\lambda-2 & 0 & 2 \\
0 & \lambda-3 & 0 \\
0 & 0 & \lambda-3
\end{array}\right]
$$

(a) Find bases of the eigenspaces $E_{\lambda_{1}}$ and $E_{\lambda_{2}}$ of A associated with these eigenvalues. Then tell the dimension of each eigenspace.
(b) Use your answer to (a) to describe all eigenvectors of A associated with each eigenvalue.

