A computer programmer (P), a mathematician (M), and an electrical engineer (E) are partners in a consulting firm. Each subcontracts a portion of his or her own work to the other two.

For each $\$ 1.00$ of consulting work that P produces, he consumes as inputs $\$ 0.40$ of his own work, $\$ 0.10$ of M's work, and $\$ 0.30$ of E's work.

For each $\$ 1.00$ of work that M produces, she consumes as inputs $\$ 0.20$ of P's work, $\$ 0.30$ of her own work, and $\$ 0.40$ of E's work.

For each $\$ 1.00$ of work that E produces, she consumes as inputs $\$ 0.30$ of P's work, $\$ 0.40$ of M's work, and $\$ 0.20$ of her own work.
(a) How much work input from each of the partners will be consumed if P produces $\$ 1,000$ of consulting? In technical terms, what are the "intermediate demands" upon the three in order for P to produce this much output?
(b) If P, M, and E produce x_{1}, x_{2}, and x_{3} dollars output, respectively, then what are the total intermediate demands from each of the three?
(c) In a certain week, the firm's customers contract for $\$ 2,000$ output from $\mathrm{P}, \$ 3,500$ from M , and $\$ 2,500$ from E. How much must work must each of the partners produce in order to satisfy these "final demands"?

