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Part 1. Representations of finite groups

Section 1 is an elementary introduction into representations of finite groups. The emphasis
is on algebraic structure of representations and less on computational aspect such as
characters. The example of symmetric groups is sketched in section 2 from algebraic point
of view, and then again in 3 from the geometric point of view (“Springer construction”).

0.0.1. Notation. k will denote a field of characteristic p and Vec(k)⊇Vecfd(k) the cate-
gories of (finite dimensional) vector spaces.
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1. Representations of finite groups

1.0. Summary. For a group G of interest our goal is to classify irreducible representa-
tions, understand them in detail and then decompose interesting representations of G into
their irreducible constituents.

1.0.1. The approach. There are many ways to introduce these ideas. We start by empha-
sizing the linear algebra ideas and from this we later derive the harmonic analysis.

We define representations in 1.1 as actions on vector spaces. Then in 1.2 we notice some
obvious properties of the Category RepG(k) of representations of a group G over a field
k (and we call those by their categorical names).

In 1.3 we define irreducible representations and we consider some characterizations of
semisimple representations (the ones that are sums of irreducibles).

In the next two sections 1.4 and we consider first examples: irreducible representations of
abelian groups and irreducible representations of products of groups.

In 1.8 we introduce the coinduction construction of representations of G from representa-
tions of subgroups. The Frobenius reciprocity provides a powerful tool for understanding
coinduced representations.

In 1.7 we consider a general tool: the relation of functions O(G), the group algebra k[G]
and of irreducible representations Irr(G).

1.1. Actions and representations of groups.

1.1.1. Structured sets. The language of structures is a simple version of the idea of the
idea of a categories.

We will only consider examples of what we mean by structures S on a set X.

Example. A structured group (G, T ) is a group G with an additional structure compatible
with operations in G. For instance if T is a topology on G, the compatibility with a group

structure means that the maps G×G ·−→G
−1

−→ G 3 e are continuous.

1.1.2. Structured actions. An action of a group G on a structured set (X,S) is an action
◦ : G×X → X on the set X that preserves structure S, i.e., for each g ∈ G the action
g◦− : X → X preserves S. representation of a group G on a vector space V over a field
k is an action of G on a the vector space V . This means an action G×V ◦−→ V of G on
the set V which preserves the structure of a vector space on V , in other words the action
for any g ∈ G its action g◦− : V → V is a linear operator.

Lemma. An action ◦ of G on a vector space V over k is the same as a homomorphism of
groups π : G→ GL(V ). The transition is by g◦v = π(g)v for v ∈ V and g ∈ G. �
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1.1.3. Linearization of actions. If G acts on a set X then

Notice the principle that

• If G acts on structured sets (Xi,Si), i ∈ I, then it acts on every structured set
(V,S) that is naturally produced from these.

In particular we have the “linearization” mechanisms that produce vector spaces from
structured sets.

Lemma. Each vector space V produced naturally from (X,S) is a representation of X,
i.e., the natural action of G on V is by linear operators. �

Example. Structure S gives a notion O = OS of a natural class of functions on X, then

G acts on functions O(X) by (g◦f)(x)
def
= f(g−1◦x). Then OS(X) is a representation of

X. If S is a structure of a smooth or holomorphic manifold then the differential forms
and vector fields on (X,S) are representations of G.

Example. Group SL(C) acts on the complex projective line P1(C). The subgroup SL2(R)
preserves the upper half plane H so the holomorphic function H(H) on H are a represen-
tation of SL2(R).

1.2. Category RepG(k) of representations of G on vector spaces over the field
k. We will see that representations form a category. Moreover, the properties of the
wonderful notion of a group will be reflected in the richness of properties of the category
of its representations.

We sometimes write just RepG if k is obvious.

Lemma. (a) RepG is naturally a category enriched over the category.

(b) Category RepG is naturally an abelian category.

(c) Category RepG is naturally a monoidal abelian category for the operation of tensoring
U⊗kV .

(d) Monoidal category (RepG,⊗) is naturally a closed monoidal abelian category where
the inner Hom functor is given by linear maps Hom(U, V ) = Homk(U, V ).

Proof. Proof. (a) For two representations U, V one defines the Hom set HomRepG(k)(U, V )
as the set of all liner maps φ : U → V that are compatible with the action of G, i.e., for
any g ∈ G

g◦φ = φ◦g.
More precisely this means that gV ◦φ = φ◦gU where gV denotes the action of g on V , i.e.,
for any u ∈ U one has g(φu) = φ(gu). The composition of Hom sets is just given by the
composition of linear operators.
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(b) A subrepresentation of a representation V of G is a vector subspace which is invariant
under G.

(c) Any vector space V can be considered as a trivial representation of G by gv = v.
What we call the trivial representation of G is the one dimensional representation on k
with trivial action. �

Remark. We will see later that there are more structures on RepG(k). For instance it
comes with the “forgetful” functor F : RepG(k) → Vec(k) which just forgets the action
of G. This is a closed monoidal functor, i.e., it preserves tensoring and the inner Hom.

1.2.1. Invariants. A vector v ∈ V is G-invariant if all elements act on it trivially, i.e.,
gv = v for g ∈ G. For any representation V we denote by V G⊆V the subspace of
G-invariants, this is a subrepresentation of V .

Lemma. (a) V G ∼= HomG(k, V ).

(b) Homk(U, V )G = HomG(U, V ).

Example. if G acts on a set X with finitely many orbits then O(X)G has a basis by
characteristic functions 1α of orbits α in G.

1.3. Irreducible representations. Any representation V of G has two obvious (trivial)
subrepresentations 0 and V . We say that V is irreducible if it has no non-trivial subrepre-
sentations. These are the smallest representations of G and they are basic building blocks
(“atoms”) for building any representation of G.

Let Irr(G) be the set of isomorphism classes of irreducible representations.

An imprecision. We will often assume that for each isomorphism class α ∈ Irr(G) we
have made a choice Uα of a representative of the class α. Then we will think of Irr(G)
as a set {Uα, α ∈ Irr(G)} of representations.

1.3.1. Schurr lemma. This is the basic property of irreducible representations.

Lemma. Let U, V be two irreducible finite dimensional representations of G.

(a) If U, V are not isomorphic then HomG(U, V ) = 0. (So, if HomG(U, V ) 6= 0 then
U ∼= V .)

(b) EndG(V ) is a field which is a division algebra finite dimensional over k.

(c) If the field k is closed then EndG(V ) is a field which is a division algebra EndG(U) =
k1U ∼= k. �
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1.3.2. 1-dimensional representations. The multiplicative group over k is Gm = k∗ def
= k−

{0}. We will call Hom(G,Gm) = Char(G) the characters of G.(1) As Gm = GL1(k), each
character χ : G→ Gm is a 1-dimensional representation of G on k.

Lemma. (a) Char(G) is the set of isomorphism classes of 1-dimensional representations
of G.

(b) Char(G) is a commutative group.

(c) Char(G) = Char(Gab) for the abelianization Gab of G (the quotient of G by the
subgroup generated by all commutators in G). �

Proof. (b) Characters are functions and the operation on Char(G) is just the multiplica-
tion of functions. �

1.4. Irreducible representations of abelian groups. Let k be closed. We will see
that all finite dimensional irreducible representations of any abelian group are characters

(1.4.1). So, Irrd(A) = Char(A) = Â is the Pontryagin dual of A. If characteristic is also
zero then we will see that the Pontryagin duality behaves like duality of vector spaces.

1.4.1. Irreducible representations are characters.

Theorem. If k is closed then any irreducible finite dimensional representation of an abelian
group A is 1-dimensional. �

Proof. Let (V, π) ∈ Irrd(A). Since k is closed for any a ∈ A, π(a) has an eigenvector
v with eigenvalue λa. Now, Ker(a − λa) is a nonzero subrepresentation (since a − λa
commutes with A), hence Ker(a− λa) = V , i.e., π(a) = λa.

Since all a ∈ A act by scalars all subspaces are A-invariant. Now, irreducibility of V
implies that dim(V ) = 1. �

Example. It is necessary that k be closed. Over R the group with generator g of order 4
has an irreducible 2-dimensional representation R = R2 where g acts by ( 0 1//−1 0 ).

1.4.2. Pontryagin duality. For an abelian group A we call Â
def
= Char(A) the Pontryagin

dual of A.

Example. (a) Ẑ is Gm.

(b) Ẑ/n is µn
def
= {ζ ∈ Gm = k∗; ζn = 1}.

(c) Ĝ×H ∼= Ĝ×Ĥ. �

1 A confusion: there are several notions that are all called “character”.
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Corollary. If k is closed and of characteristic zero then Ẑ/n = µn ∼= Z/n.

Proof. Ẑ/n = µn(k) is the set of solutions of Xn = 1 in k. If p = 0 this equation has n
different solutions on k. So, |µn(k) = n.

Actually, µn(k) is cyclic. This is obvious if k = C hence also k is the closure Q of Q.
However, any field k of characteristic zero contains Q and if it is closed it contains Q. �

Theorem. [Pontryagin duality.] If k is closed and p = 0 then the Pontryagin duality

preserves the category Abf of finite abelian groups and here it is involutive, i.e.,
̂̂
A is

canonically isomorphic to A. �

Remarks. (0) This is an analogue of involutivity of duality on the category Vecdk of finite
dimensional vector spaces.

(b) The statement extends to the case of positive characteristic. However, this requires
passing to a larger category of finite abelian group schemes.

1.5. Semisimple representations. A representation is said to be semisimple if it is a
sum of irreducible representations V ∼= ⊕i∈IVi with Vi irreducible.

1.5.1. Semisimplicity property. By a multiple of a representation V we will mean represen-
tations M⊗V for vector spaces M (This is a representation when we think of M as a trivial
representation of G.) If we choose a basis mi, i ∈ I, of M we get that M⊗V ∼= ⊕i∈I M
is a multiple in the usual sense.

Lemma. (a) Semisimple representations are closed under sums.

(b) A representation is semisimple iff it is isomorphic to a sum of multiples
⊕U∈Irr(G) MU⊗U of representations in Irr(G).

(c) Representation V is semisimple iff

• (∗) for any subrepresentation V ′⊆V there exists a complementary subrepresenta-
tion V ′′.

Proof. (a) holds by definition. In (b) if V = ⊕i∈I Vi with Vi irreducible then for U ∈
Irr(G) let IU = {i ∈ I; Vi ∼= U}. This is a partition I = tU∈Irr(G)IU of I. Therefore,

V = ⊕U∈Irr(G)⊕i∈IU Vi ∼= ⊕U∈Irr(G)⊕i∈IU U = ⊕U∈Irr(G) k[IU ]⊗ Vi.

(c’) Any non-zero finite dimensional representation V contains an irreducible subrepre-
sentation V ′⊆V . If V satisfies ∗ then V = V ′⊕V ′′ for some subrepresentation V ′′.

Then V ′′ again satisfies (∗) because for any subrepresentation W of V ′′ the sum V ′⊕W has
a complement C in V and then the image of C under the projection V = V ′⊕V ′′ → V ′′

is a complement of U in V ′′.
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By induction in dimension of V we know that V ′′ is semisimple and hence so is V .

(c”) Now let V be semisimple, i.e., V = ⊕n1 Vi with irreducible Vi. We want to show
that any subrepresentation V ′ has a complement.

(1) First we will prove this when V ′ is irreducible that it has a complement W which is
semisimple.

The point is that since the inclusion ι : V ′⊆V is a non-zero vector in HomG(V ′, V ) =
⊕ HomG(V ′, Vi) then for some k ∈ I the component ιk : V ′ → Vk of ι is not zero. Since
V ′, Vk are irreducible this implies that ιk is an isomorphism.

We will see that this actually implies a decomposition V = V ′⊕C for C = ⊕i 6=k Vi. By
dimension count it suffices to notice that V ′ ∩ C = 0. However, V ′ ∩ C is the kernel of
ιk. Since ιk 6= 0, V ′ does not lie in C, hence V ′ ∩ C⊆V ′ is a proper subrepresentation.
Because V ′ is irreducible this gives V ′∩C = 0. So, we have proved that if V ′ is irreducible
then it has a semisimple complement C.

(2) Now consider arbitrary V ′⊆V . If V ′ = 0 the V ′′ = V works. If V ′ 6= 0 then it contains
some irreducible subrepresentation U .

By (1) we know that U⊆V has a semisimple complement W . By induction in dimension
W ∩ V ′⊆W has a complement C. But then C is also a complement of V ′ in V . �

1.5.2. Multiplicity spaces for a semisimple representation.

Corollary. (a’) The multiplicity spaces MU in a decomposition V = ⊕U∈Irr(G) MU⊗U of
a semisimple representation V appear in

HomG(U, V ) = MU⊗ EndG(U).

(a’) If k is closed then the multiplicity space MY for irreducible Y in V is HomG(Y, V ).

(b’) If V is semisimple so are its subrepresentations and quotients.

(b”) Actually if V = ⊕U∈Irr(G) MU⊗U and k is closed then all subrepresentations V ′ of V
are exactly the subspaces V ′ = ⊕U∈Irr(G) M

′
U⊗U for some systems of subspaces M ′

U⊆MU ,
U ∈ Irr(G). Similarly for quotients.

Proof. (a) follows from Schurr lemma.

In (b’) consider a subrepresentation S of a semisimple V . For any subrepresentation S ′

of S we know that S ′ a complement C in V . Then C ∩ S is a complement of S ′ in S. So,
S is semisimple.

A quotient of semisimple V is of the form V/S for some subrepresentation S of V . We
know that S has a complement C in V . But then V/S is isomorphic to a subrepresentation
C, so it is semisimple.
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(b”) If V ′⊆V then V ′ is also semisimple so we have decompositions V ′ =
⊕U∈Irr(G) HomG(U, V ′)⊗U and V = ⊕U∈Irr(G) HomG(U, V )⊗U and the multiplicity
spaces have obvious inclusions HomG(U, V ′)⊆HomG(U, V ). �

1.5.3. Sums of semisimple subrepresentations.

Lemma. (a) If Wi are semisimple subrepresentations of V then the sum of subspaces∑
Wi inside V is semisimple.

(b) Let Vi be different irreducible representations of G over a closed k. Suppose we have
embeddings αi : Mi⊗Vi↪→V of multiples of different irreducible representations Vi of G
into the same representation V . Then V contains ⊕i Mi⊗Vi, i.e., the sum of vector
subspaces

∑
i αi(Mi⊗Vi) inside V is direct.

Proof. (a)
∑

Wi is a quotient of the semisimple representation ⊕i Wi hence it is semisim-
ple.

(b) If the sum were not direct then for some i C = αi(Mi⊗Vi) would meet C ′ =∑
j 6=i αi(Mj⊗Vj). We will see that C ∩ C ′ 6= 0 would produce a nonzero Hom between

Vi and some Vj with j 6= i which is impossible by Schurr lemma. The point is that

• C ∩ C ′ is a sub of C ∼= Mi⊗Vi so it is isomorphic to M ′
i⊗Vi for some subspace

M ′
i⊆Mi.

• C ′ is a quotient of the direct sum ⊕j 6=i αi(Mj⊗Vj) hence it is isomorphic to
⊕j 6=i αi(M ′′

j ⊗Vj) for some quotients M ′′
j of Mj.

Then the inclusion i : C ′ ∩ C⊆C ′ is a vector in

Hom(M ′
i⊗Vi, ⊕j 6=iM ′

j⊗Vj)) ∼= ⊕j 6=i Hom(M ′
i ,M

′
j)⊗HomG(Vi, Vj)).

The RHS is zero by Schur lemma, hence C ∩ C ′ = 0. �

Corollary. �

1.5.4. Semisimplicity over C.

Lemma. Let k = C. Then for any V ∈ Repfd
G(k):

(a) There exists a G-invariant hermitian inner product on V .

(b) For any subrepresentation V ′⊆V there exists a complementary subrepresentation V ′′.

(c) V is semisimple. �

Remark. Later we will see that all representations V of G over k are semisimple iff the
characteristic p does not divide the order |G| of the group.
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1.6. Representations of products of groups. This section is an application of
semisimple representations. It describes irreducible representations of products G×H
(lemma 1.6.1). This has a consequence for any irreducible representations V of any
group G: V ∗⊗V embeds into functions on G.

1.6.1. The outer tensor product of representations. This is the functor (i.e., a construc-
tion)

RepG(k)×RepH(k)
�−→ RepG×H(k)

where the representation U�V of G×H is U⊗V as a vector space and the product of
groups acts placewise, i.e.,

(g, h)(u⊗v)
def
= gu⊗hv.

Theorem. For any closed field k the outer tensor product gives a bijection

IrrG(k)×IrrH(k)
∼=−→ IrrG×H(k).

1.6.2. Irreducibles come from �.

1.6.3. Sublemma. For any representations W,V of G×H and H, HomG(V,W ) is naturally
a representation of G and the following evaluation map is a G×H-map:

ev : HomG(V,W )⊗V −→W, ev(φ⊗u)
def
= φu.

Proof. �

Lemma. Any irreducible representation W of a product G×H is of the form U�V for
some irreducible representations U, V of G and H.

Proof. Since W 6= 0, when we consider W as a representation of the subgroup H of G×H,
it contains an irreducible subrepresentation V of H. Let If ι : V → W be the inclusion
map. Then the evaluation map ev : HomH(V,W )⊗V is not zero since ev(ι⊗v) = ιv = v
for v ∈ V .

Since W is irreducible for G×H, the map ev must be surjective (since its image is not
zero).

Now notice that when we view the LHS HomH(V,W )⊗V just as a representation of H this
is multiple of V , so it is a semisimple representation ofH. Therefore, the subrepresentation
Ker(ev) is of the form K⊗V for some subspace K of HomG(V,W ) (see corollary 1.5.b”,
this is where we use the assumption that k is closed).

Then K consists of all k ∈ HomG(V,W ) such that ev(k⊗−) is zero on V . This description
implies that K is G-invariant.

Therefore, as a G×H-module, W ∼= U�V for the G-module U = HomH(V,W )/K.
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Finally, if U were not a irreducible then it would contain some irreducible U ′ 6= U and
then W = U�V would properly contain U ′�V 6= 0. So, U is irreducible. �

1.6.4. � preserves irreducibility.

Lemma. If U, V are irreducible representations of G and H then U�V is irreducible for
G×H.

Proof. Let W be an irreducible G×H-submodule of U�V . By lemma 1.6.2 we know
that W ∼= U ′�V ′ for some irreducible representations U ′, V ′ of G and H. Now U ′�V ′ ∼=
W⊆ U�V .

This embedding will easily identify G-representations U ′ and U . The point is that

0 6= HomG(U ′�V ′, U�V ) = HomG(U ′⊗V ′, U⊗V ) = HomG(U ′, U) ⊗ Homk(V
′, V )

implies that HomG(U ′, U) 6= 0. However, since U,U ′ are irreducible this implies that
U ′ ∼= U .

Similarly, V ′ ∼= V as H-representations. So, the inclusion U ′�V ′ = W↪→U�V is an
isomorphism since the dimensions are the same. So, U⊗V = W is irreducible. �

1.6.5. Proof of the theorem 1.6.1. Lemma 1.6.4 says that that the map
� : IrrG(k)×IrrH(k) → IrrG×H(k) is defined. Then 1.6.2 says that this map
is surjective. So, it remains to prove that U1⊗V1

∼= U2⊗V2 for irreducible Ui, Vi implies
that U1

∼= U2 and V2
∼= V2. However, this and more has already been proved at the end

of the proof of lemma 1.6.4. �

1.7. Matrix coefficients. For a group G, the set G has symmetry G2

where (g, h)u
def
= guh−1. This induces a representation of G2 on O(G) by

[(g, h)f ](u) = f(g−1uh).

Any representation V of G, produces functions on G called matrix coefficients of V . For
v ∈ V and v∗ ∈ V ∗

cVv∗,v(g)
def
= 〈v∗, gv〉.

Lemma. If k is closed and V is irreducible then the matrix coefficient map is an injective
morphism of representations of G2

c : V ∗�V ↪→ O(G), c(v∗⊗v)
def
= cv∗,v.

Proof. c is a G2-map since c(g,h)(v∗⊗v)(x) = cgv∗⊗hv(x) = 〈xgv∗, hv)〉 and this will be the
same as

[(g, h)cv∗⊗v](x) = cv∗⊗v(g
−1xh) = 〈g−1xhv∗, v〉.

Now the G2-map c is injective since V ∗�V is an irreducible G2-module and c 6= 0 (since
cv∗,v(e) = 〈v∗, v〉). �
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Corollary. If k is closed then the representation O(G) of G2 contains a subrepresentation
⊕V ∈Irr(G) V

∗�V .

Proof. The lemma gives for each V ∈ Irr(G) an embedding iV : V ∗�V ↪→O(G). Since
all these V ∗�V are different irreducible representations for G2 we know that the sum∑

V ∈IrrG iV (V ∗�V ) is direct, i.e., isomorphic to ⊕V ∈Irr(G) V
∗�V . �

Remarks. (a) If G is finite then Irr(G) is too.

(b) If G = S2 and characteristic of k is 2 then we know the only irreducible subrepre-
sentation of O(G) is the trivial representation k. This now implies that Irr(G) = {k}.
Moreover, ⊕V ∈Irr(S2) V

∗�V is then just k∗�k which the trivial representation of (S2)2.
So, in this case the inclusion ⊕V ∈Irr(G) V

∗�V⊆O(G) is proper.

1.8. Restriction and Coinduction. These are two operations that relate representa-
tions of a group and of its subgroup. This relation is a strong tool with a very nice
property.

Let H be a subgroup of G. The restriction of a representation V of G to a representation
of H will be denoted by ResGH V (the vector space does not change but now we consider
only the action of elements of H).

In the more interesting direction we will see that a representation (σ, U) of H gives a
representation (π,CoindGH U) of G, called the coinduced representation.(2) The underlying
vector space is the space of functions on G with values in U and a certain compatibility
with the representation of H on U :

CoindGH U
def
= {φ : G−→U, φ(hx) = σ(h)·φ(x), h ∈ H, x ∈ G}.

The action of G is by the right translations of functions (π(g)φ)(x)
def
= φ(xg).

Lemma. CoindGH U is a well defined representation, i.e., the operators π(g) do act on
CoindGH U and then π is a representation of G.

1.8.1. Frobenius reciprocity. Show that one can identify vector spaces

HomH(ResGH V, U) ∼= HomG(V,CoindGH U),

using maps α and β, where for v ∈ V

(1) α : HomG(V,CoindGH U)→ HomH(ResGH V, U) by

α(A) v
def
= (Av)(1) for A ∈ HomG(V,CoindGH U),

(2) β : HomH(ResGH V, U)→ HomG(V,CoindGH U) by

(βB)v (g)
def
= B(g·v) for B ∈ HomH(ResGH V, U).

2 Actually there are two versions of this construction called induction and coinduction. For finite
groups these are the same (meaning isomorphic) operations.
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Remark. In the language of categories such identification is called an adjunction of the
pair of functors (i.e., constructions) (CoindGH , Res

G
H), or that ResGH is a left adjoint of

CoindGH , while CoindGH is a right adjoint of ResGH .

Adjunction is a strong relation between functors which generalizes inverses of functions
and adjunction of linear operators on a vector sp-ace with an inner product. In partic-
ular. each functor uniquely determines the other. This means that a trivial forgetful
construction ResGH determines an interesting construction CoindGH as its right adjoint.

1.9. The G2-decomposition of functions on G.

Lemma. O(G) as a representation of G ∼= 1×G ⊆ G2 is the coinduced representation
CoindG1 k.

Theorem. If k = C then for any finite group G there is a canonical G2-decomposition

c : ⊕V ∈Irr(G) V
∗⊗V

∼=−→ O(G)

which is on each summand V ∗⊗V given by the matrix coefficient map cV for V .

Proof. First recall that over C all representations of finite groups are semisimple (for this
we used the hermitian inner products!).

Next for any semisimple representation M over a closed field (such as C) the evaluation
map

evM : ⊕V ∈IrrG HomG(V,M)⊗V −→ M, evM(A⊗v) = Av

is an isomorphism.

Now, for M = O(G) viewed as a G-module via the right translation action (gφ)(x) =
φ(xg) we can calculate HomG(V,O(m)) via Frobenius reciprocity.

HomG(V,O(m)) = HomG(V,CoindG1 k)
Fr−→∼= Hom1(V, k) = V ∗

where for A ∈ HomG(V,O(m)), by FrA : V → k is given by (FrA)v = (Av)(e), the
evaluation of Av ∈ O(G) at e ∈ G. �

Corollary.
∑

V ∈Irr(G) dim(V )2 is the number |G| of elements in G.

1.9.1. Invariant functions. Consider the action of G2 on G so that (g, h) acts by LgRh,
i.e., (g, h)u = guh−1. Then G2 acts on O(G) so that [(g, h)φ](u) = φ(g−1uh). The
conjugation action of G on G is then the restriction of the action of G2 to the diagonal

∆G⊆G2, so the action on G is gu
def
= gug−1 and on O(G) it is gφ)(u) = φ(g−1ug).

By class functions on G one means the functions that are constant on conjugacy classes,
i.e., that are invariant under the conjugation action of G on O(G). This means that
φ(g−1ug) = φ(u) or equivalently that φ(vg) = φ(gv). These form the subspace O(G)G.
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Lemma. (a) For any representation V of G, the character function χV (g)
def
= TrV (g) is

an invariant function on G. and it lies in the image of the matrix coefficient map cV :
V ∗�V → O(G).

(b) For V ∈ Irr(G), dim[(V⊗V ∗)G] = 1.

Corollary. (a) The characters of irreducible representations form a basis of invariant func-
tions.

(b) The number of irreducible representations of G is the same as the number of conjugacy
classes in G.

1.10. Hopf algebras [to be developed].

1.11. Functions and distributions. For a finite set X the functions O(X, k) have a
k-basis of characteristic functions of points 1, a ∈ X, where 1a(x) = δa,x for a ∈ X. The

space of distributions on X is defined as the dual of functions D(X)
def
= O(X)∗. It has a

basis of “point distributions” δa, a ∈ X where 〈δa, f〉
def
= f(a).

These bases give an isomorphism of vector spaces O(X)
∼=−→D(X), f 7→f̃ by 1̃a = δa. This

can be useful but it is in some sense unnatural: functions and distributions are different
objects.

1.11.1. Distributions. For a finite set X, besides k-valued functions O(X, k) there is also

the dual vector space D(X, k)
def
= O(X, k)∗ of distributions on X (We omit k when it is

understood.). There are natural dual bases 1a, δa, a ∈ A; of functions and distributions
with 1a(x) = δa,x for x ∈ X and δa(f) = f(a) for f ∈ O(X). Since the distribution δa
comes from a point a it is natural to denote δa by a and D(X) by kX (or k[X]) with a
basis X.

Remark. When X has more structure (an algebraic variety or a manifold) this is reflected
in the natural functions O(X) on X and it makes the definition of distributions more
subtle.

1.11.2. Group algebra. Can define algebra kG.

Identify it with D(G) as a vector space in a natural and unnatural way.

Prove that over C kG is

Lemma. For a finite G, RepG(k) = Mod[kG] = Comod[O(G)].
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Remark. (Use the identification O(G)
∼=−→D(G) by 1g 7→δg to define the convolution opera-

tion on O(G) then 1g ∗ 1h = 1gh.

This gives an action of (O(G), ∗) on any V ∈ RepG(k). 1gv = δgv = gv.

kG = ⊕V�V ∗ ∼= ⊕End(V ).

(a) End(V )⊆kG acts on V as usual and on U by zero. By G2-irreducibles: End(V ) →
End(U).

Corollary. This is an algebra isomorphism. �

We know that the composition of algebra maps End(V )↪→kG→ End(V ) is identity.

1.11.3. Hopf algebras. Algebra, coalgebra, Hopf algebra Modules, comodules.

(O(G),m, u,∆, ε) is a Hopf algebra

(D(G),m, u,∆, ε is a Hopf algebra δg·∆h = δgh ...

1.12. Hopf algebra structures on O(G) and D(G) = kG. The following is the basic
principle of algebraic geometry (spaces are related to commutative rings), stated in the
case of finite sets.

Lemma. A map of finite sets π : X → Y is equivalent to a map of algebras π∗ : O(Y )→
O(X). �

Lemma. (a) For a finite set G the following are equivalent

(1) A monoid structure G×G m−→ G
1←−pt on G;

(2) a commutative bialgebra structure on O(G)

O(G)⊗O(G)
µ−→O(G)←−pt and O(G)⊗O(G)

µ←−O(G) −→pt.

(3) a cocommutative bialgebra structure on D(G)

kG⊗kG)
µ−→ kG←−pt and kG⊗kG)

µ←− kG −→pt.

(b) Similarly, for a finite monoid G the following is equivalent:

(1) G is a group;
(2) bialgebra O(G) is a Hopf algebra;
(3) bialgebra kG is a Hopf algebra;

�
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Lemma. For a finite group G and a finite dimensional vector space V the following data
are equivalent

(1) A representation π : G→ Endk(V ) of G on V ;
(2) An action Π : kG→ End(V ) of the Hopf algebra kG on V ;
(3) A matrix coefficient map c : V ∗⊗V → O(G);
(4) A coaction V −→O(G)⊗V of the Hopf algebra O(G) on V ;
(5) An action kG⊗V −→V of the Hopf algebra kG on V ;

Proof. (1)⇔ (2) because G is a basis of kG: one extends π to Π by linearity and one
restricts Π to π.

The rest of the equivalences come from passing form a map to its dual or via the identity
Hom(A⊗B,C) ∼= Hom[A,Hom(B,C)]. �

1.13. Orthogonality relation. Tr(χV ,O(G)) = Tr[dim(V )e,O(G)] = dim(V )|G|.

In kG χ̃V = |G|
dim(V )

1V IV
def
= dim(V )

|G| χV is a basis of kG by orthogonal idempotents.

Lemma. (a) For U, V ∈ Irr(G)

cVv∗,v ∗ cUu∗,u = δU,V cv∗,u〈u∗, v〉.

(b) eV = dim(V )χV , V ∈ IrrG, is a basis of invariant functions with the property that

eU ∗ eV = δU,V eU .

In particular this is an orthonormal basis of invariant functions for (−,−) or 〈−,−〉.
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2. Representations of symmetric groups Sn

2.1. Combinatorics.

2.1.1. Partitions Πn. The set of partitions Πn of n consists of all sequences integers λ =

(λ1 ≥ · · · ≥ λq > 0). such that |λ| def
=
∑
λi equals n.

2.1.2. Young diagrams Yn. Consider the part R2
≥0 of the x, y-plane as divided into squares

(we will call them“boxes”) of unit size and with corners at N2. We can reparametrize
these boxes by the additive semigroup N2

>0 using the upper right corners of boxes. Let
I be the set of all cofinite ideals in this semigroup, i.e., all I⊆N2

>0 such that the set
theoretic difference N2

>0 − I is finite and I + N2
>0⊆I (if we think of I as a collection of

boxes then the second condition says that if Y contains a box b then it also contains the
boxes to the right of b and the boxes above b).

The set Y of (2-dimensional) Young diagrams consists of all complements N2
>0 − I of

elements I in I. Let Yn be all diagrams in Y of size n.

Proposition. The following sets are in canonical bijections

(1) Partitions Πn;
(2) Young diagrams Yn;
(3) Conjugacy classes Sn

Sn
in the symmetric group Sn;

(4) Nilpotent conjugacy classes N/GLn in matrices Mn;
(5) (Gm)2-fixed points in the Hilbert scheme Hn

A2 of points in the plane A2. (The
Hilbert scheme Hn

X is the moduli of all subschemes D of X of length n. It is often
denoted X [n].)

Proof. A partition λ ∈ Πn gives the Young diagram Yλ ∈ Yn whose kth row has length

k. This is a bijection Πn

∼=−→Yn. (We will pretty much think of Yλ and λ as being the
same.) �

2.1.3. Tableaux Tλ. For λ ∈ Πn, a tableau T of shape λ is a bijective coloring of boxes in
Yλ by {1, ..., n}. These form the set Tλ on which Sn acts simply transitively.

A tableau T ∈ Tλ defines two ordered partitions CT = (C1, ..., Cp) and RT = (R1, ..., Rq)
of {1, ..., n} where Ri and Cj are the sets of colors in the ith row and jθ column of Yλ.

The a tableau T defines two subgroups PT⊆Sn⊇QT , the stabilizers of the row and column
partitions RT and CT of T . Say, RT consists of all σ ∈ Sn such that RσT = RT , i.e., σ
permutes elements of each row of the tableaux T .
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2.1.4. Duality λ7→λ̌ on partitions. The dual Y̌ of a diagram Y Y is obtained by flipping
Y across the line x = y. The same for tableaux. On partitions we define λ̌ so that
Yλ̌ = (Yλ)

v
.

Notice that the row partition RŤ of T is the column partition CT of T . So,

Pλ ∼=
∏
i

Sλi and Qλ
∼=
∏
j

Sλ̌j .

We will be interested in two 1-dimensional representations, the trivial representation
τλ = � τλi of Pλ, and the sign representation σλ = � σλi of Qλ,

2.1.5. The standard representations Mλ and Nλ of Sn. These are the names for the coin-
duced representations

MT def
= CoindSnPλτλ and NT def

= CoindSnQλσλ.

We will only consider representations over k = C.

Lemma. For any two tableaux T ′, T ′′ ∈ Yλ, representations MT ′ and MT ′′ are canonically
isomorphic. The same for NT ′ and NT ′′ .

Remark. For any Young diagram Yλ there is a canonical choice Tλ of a tableaux in Tλ:
one colors the first row by 1, ..., λ1, the second by λ1 + 1, ..., λ1 + λ2 etc. So we can define
Mλ, Nλ using this tableau Tλ. However, the choice of tableaux is not important since for
each T ∈ Tλ we have MT ∼= Mλ canonically.

2.2. Classification of Irr(Sn). We will eventually prove that

Theorem. (a) For each partition λ, there exists a unique irreducible representation πλ ∈
Irr(Sn) that appears in both Mλ and Nλ. Moreover, its multiplicity is one in both
representations.

(b) Πn 3 7→ πλ ∈ Irr(Sn) is a bijection.

Lemma. Part (a) of the theorem is equivalent to the claim

(A) dim HomSn(Mλ, Nλ) = 1.

2.2.1. The dominance order λ ≥ µ on partitions. One says that λ ≥ µ if one has

λ1 ≥ µ1, λ1 + λ2 ≥ µ1 + µ2 etc.
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Lemma. (a) Under the standard bijection of Πn to nilpotent conjugacy classes Oλ ∈
Nn/GLn, the dominance order on partitions is the same as the closure order on nilpotent
conjugacy classes.

(b) The orbit O(n) corresponding to the one row partition (n) consists of all nilpotents
with one Jordan block. It is open and dense in Nn.

The orbit O(1n) corresponding to the one column partition (1n) is the point {0}. consists
of all nilpotents with one Jordan block. It is open and dense in Nn.

Lemma. The part (b) of the theorem 2.2 follows from the following theorem.

Theorem. If the irreducible representation πµ appears in Mλ then µ ≤ λ.

Proof. �

3. Springer construction of irreducible representations of Sn from nilpotent
orbits

Since Springer construction is one of origins of the Geometric Representation Theory
(GRT), the part A of this section consists of general remarks on goals and methods of
Geometric Representation Theory. The the part B (3.1- ) explains how evidence points
out to a possible shape of a geometric construction of Irr(Sn). Finally, part C explains the
Springer construction using algebraic topology in the formalism of constructible sheaves.
(Among all proofs this one is the most powerful, i.e., it leads to many consequences.)

3.A Geometric Representation Theory

(A) The Geometric Representation Theory (GRT) started as the following strategy. For
a given representation theory R find an algebro geometric object X that in some way
encodes R. Then, from X one extracts information about R using powerful methods of
algebraic geometry.

(B) With the growing experience of GRT a point of view arose where the geometric
objects X were sometimes seen as “more real” (meaning more fundamental) than the
related representation theories R.

3.0.1. Example: GRT and Langlands program. The Langlands program arose (in 1968)
as a conjectural representation theoretic encoding of (large parts of) Number Theory.
Since the corresponding representation theoretic problems were hard, Drinfeld applied
the above idea (A) and constructed an upgrade, the geometric Langlands program (GLP).
This indeed led to dramatic successes in the Langlands program.

The phase (B) started with the Beilinson-Drinfeld understanding that GLP has deep
content not only in the case studied by Number Theory (the curves over finite fields) but
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also in the case studied by Algebraic Geometry (curve over closed fields, in particular over
C). Moreover, they noticed that when working over C it is useful to use ideas from physics
(vertex algebras and collisions). Phase (B) came into full bloom with Witten’s discovery
that the geometric Langlands program over C is a part of the Quantum Field Theory.
This established a previously unknown bridge between Number Theory and physics which
can (so far) only be seen on the geometric level.

3.0.2. Example: Category O. This is category of representations of semisimple Lie alge-
bras which is of a very wide importance. While irreducible objects in O were found by
“elementary” algebra, the question of computing their characters has been out of reach
for a long time. The Kazhdan-Lusztig breakthrough was a conjectural topological in-
terpretation in terms of intersection cohomology sheaves of Schubert varieties. This was
then proved by Beilinson-Bernstein and by Kashiwara-Brylinski. These ideas were im-
itated and developed further in a large number of representation theoretic settings. In
particular a very fruitful intuitive principle was formulated: the character formulas in
“non-trivial” settings can only be proved by geometric methods.

3.0.3. Example: singularities. The following principle has been found in both GRT and
in QFT:

Information is hidden in singularities, i.e., the non-smooth points of algebraic varieties.

Two (related) ways to extract information from singularities of a space X is by studying

• (i) by fibers of resolutions X̃ → X of X;
• (ii) stalks of the intersection cohomology sheaf IC(X)of the space X and

We will consider both in the example of singularities of nilpotent cones Nn. Here, Nn is
the moduli of nilpotent operators in the vector space Mn of n×n matrices. The resolution
will come from the flag variety Fn.

3.B The idea

3.1. Why this should be possible.

3.1.1. Combinatorics and irreducible representations. The theorem 2.2 gives a bijection
Πn 3 λ πλ ∈ Irr(Sn). The construction is nontrivial: to each λ ∈ Πn we associate
two subgroups Pλ, Qλ of Sn and then two coinduced representations Mλ, Nλ. Then πλ is
defined as the unique irreducible representation that lies in both Mλ and Nλ.

3.1.2. From partitions to nilpotent orbits. Now, recall the bijection Πn 3 λ 7→ Oλ ∈
GLn(Nn) of partitions and nilpotent orbits. We construct a vector space Vλ with the
basis given by all boxes in the Young diagram Yλ of λ. So, any ordering of boxes (this is
just a choice of tableau in Yλ), gives an identification Vλ ∼= kn.



22

Then we define a nilpotent operator eλ on Vλ which is given on boxes by the translation
to the left (the boxes in the first column fall out of Yλ which we take to mean that they
are killed by eλ). Then Oλ is defined as the conjugacy class of eλ in Mn = EndK(kn) (this
is independent of the choice of the above ordering of boxes).

3.1.3. Geometry and irreducible representations. The question that arises is whether the
composition of bijections

GLn\Nn
∼=−→ Πn

∼=−→ Irr(Sn)

has a natural interpretation, i.e., whether one can construct the irreducible representation
πλ from the nilpotent orbit Oλ?
This has been achieved by Springer and this idea is among the origins of the Geometric
Representation Theory.

3.1.4. Appendix. Sn and GLn. Here is how one usually views the relation of a finite group
Sn and the algebraic group GLn.

Any permutation σ ∈ Sn acts on the standard basis e1, ..., en of kn and this gives an

embedding of groups i : Sn↪→GLn by i(σ)ek
def
= eσk.

The standard Cartan subgroup of G = GLn is the group T = {diag(z1, ..., zn); zi ∈ k∗} ∼=
(Gm)n. This very simple subgroup controls the whole group GLn in terms of certain
discrete objects: the system of roots ∆ and the Weyl group W defined as NG(T )/T , the
normalizer of T in G divided by T itself.

Lemma. NG(T ) = T n Sn, hence the Weyl group W of GLn is Sn. �

3.2. Geometry associated to groups GLn. To G = GLn we will associate geometric
objects: the nilpotent cone N in its Lie algebra g, its flag variety F = B, Grothendieck

resolution g̃, Springer resolution Ñ and Springer fibers Bx.

3.2.1. By G = GLn we mean certain algebraic group, i.e., a factory that produces
groups GLn(k), one for each commutative ring k.

However, here we will use k = C and often think of GLn as just denoting the single group
GLn(k). Since our G is obtained from the vector space V = kn, as the group of GL(V ) of
its automorphisms, it may be more natural to construct geometric objects from V , i.e.,
in linear algebra, but it will turn out that they can all be reconstructed from the group
G itself. (This opens the construction of the “same” geometry for all reductive groups.)

3.2.2. Lie algebra g and nilpotent orbits. The Lie algebra of G is the tangent space

g
def
= TeG of G at the origin. In our case this is the space of n×n matrices g = Mn.

Group G acts on its Lie algebra by conjugation.

g has interesting subspaces
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(1) regular semisimple part grs (n distinct eigenvalues)
(2) regular part gr (centralizer of dimension n)
(3) Nilpotent part N (all eigenvalues are zero).

Lemma. (a) N is singular.

(b) The orbits of G in N are classified by partitions λ7→ Oλ = Geλ. So, we get a
stratification N = tλ∈Πn Oλ.
(c) O(1n) = {0}.
(d) O(n) consists of nilpotent matrices which have one Jordan block. This is exactly the
set of all smooth points in N , so it is called the regular part Nr of N .

Example. For λ = (n−1, 1) we call Oλ the subregular nilpotent orbit and for λ = (2, 1n−1)
we call Oλ the minimal nilpotent orbit.

3.2.3. Flag variety F ∼= B. A flag in V is a sequence of subspaces F =
(F0⊆F1⊆· · ·⊆Fn⊆V ) such that dim(Fi) = i. (Then F0 = 0 and Fn = V so we
can forget about these two.) Let F be the moduli of all flags in V . The standard basis
e1, ..., en of V gives the standard flag F 0 with F 0

i = 〈e1, ..., ei〉.
Let U = Un be unitary matrices in G = GLn(C).

Lemma. (a) G acts transitively on F and so does U .

(b) The stabilizer B0 of F 0 in G consists of all g ∈ GLn whose sub-diagonal elements are
0.

(c) The stabilizer of F 0 in U consists of all diagonal matrices u = diag(α1, ..., αn) with
|αi| = 1 for all i. �

Corollary. (a) F ∼= G/B0 (so F is smooth).

(b) F is compact. �

Remark. Actually, F is the largest compact homogeneous space of G.

3.2.4. Borel subgroups. Let the Borel space B consist of all subgroups B of G which
are conjugate to the upper-triangular subgroup B0. These subgroups are called Borel
subgroups.

An element u of G is said to be unipotent if all of its eigenvalues are 1. The unipotent
cone U in G consists of all unipotent elements. A subgroup U of G is said to be unipotent
if all of its elements are.
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The unipotent radical N of a Borel subgroup B is defined as the largest unipotent subgroup
of B. It exists and it equals B ∩U . For instance, for the standard Borel B0 its unipotent
radical N0 consists of all g ∈ G which are zero beneath the diagonal and 1 on the diagonal.

Lemma. (a) The normalizer NG(B) of any Borel subgroup B is B itself.

(b) There are canonical identifications of F
∼=←−G/B0

∼=−→B. The resulting identifications
F ∼= B sends a flag F ∈ F to its stabilizer B = GF in G and in the opposite direction a
Borel B is sent to the unique flag F that B stabilizes. �

Remark. We will often identify F and B and G/B0. One can think of this as a group
theoretical presentation of the flag variety F .

3.2.5. Borel subalgebras. We will also consider the Lie algebra b0 = Te(B
0) of the group

B0. We have b0⊆g, i.e., Lie(B0)⊆Lie(G) = Mn, it consists of all x ∈ Mn whose
sub-diagonal elements are 0.

All G-conjugates b = g(b0), g ∈ G, of b0 are called Borel subalgebras of g. (Here
“subalgebra” is short for a “Lie subalgebra”.)

Lemma. Passing from Borel subgroups B to its Lie algebra b = Lie(B) gives a bijection
of all Borel subgroups and all Borel subalgebras. �

Remark. We can now identify F and B and the space of Borel subalgebras which is
G(b0) ∼= G/B0.

3.2.6. Springer resolution. Let g̃⊆g×F consists of all pairs of a matrix x ∈ g and a flag
F = (F0⊆· · ·⊆Fn) such that x preserves the flag, i.e., xFi⊆Fi.
The Grothendieck map π : g̃ → g is the composition g̃⊆g×F −→ g. The Springer fibers
are fibers π−1(x) of π at elements x ∈ g. We see that π−1x lies inside F and consists of
all flags F that x preserves. We denote a Springer fiber π−1

x by Fx or Bx.

Let Ñ be the restriction of g̃ to N⊆g, i.e.,

Ñ = {(x, F ) ∈ N×F ; xFi⊆Fi} = {(x, F ) ∈ g×F ; xFi⊆Fi−1}.

Lemma. (a) If s ∈ End(V ) be regular semisimple, i.e., it has n distinct eigenvalues
λ1, ..., λn then Fx is naturally an Sn-torsor, i.e., it has a natural action of Sn and this
action is simply-transitive.

(b) F0 = F .

(c) If e ∈ N is regular nilpotent then Fe is just a point {F} for Fi = Ker(ei).
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(d) If e ∈ N is subregular then the Springer fiber Fe is a union of spaces C1, ..., Cn−1,
all of which are copies of P1. For i 6= j the intersection Ci ∩ Cj is empty unless i, j are
neighbors, then the intersection is a point.

3.3. Guessing the relation of Irr(Sn) and Springer fibers. In the subregular case
e ∈ Osr = Oλ for λ = (n − 1, 1) the irreducible representation πn−1,1 is the reflection
representation R (the quotient of Cn by the diagonal C). So, it has dimension n− 1.

On the other hand, the Springer fiber Be has n−1 “pieces” which are all P1. To make this
phrase precise we define the set Irr(X) of irreducible components of a space X as closures
of connected components of the open part Xsm⊆X consisting of all smooth points of X.
For our Be the singular points are just the intersection points of different copies Ci of P1.
So, the connected components of (Be)sm are A1, Gm, ..., Gm,A1. Then Irr(Be) is just the
set {C1, ..., Cn−1} of all copies of P1 in Be. Now we can state a guess

Conjecture. For any λ and e ∈ Oλ, dim(πλ) = |Irr(Be)| or (more ambitiously) πλ has a
basis Irr(Be), i.e.,

πλ = C[Irr(Be)].

3.3.1. Continuity idea I. The first thing we need for this conjecture is that Sn acts on the
nilpotent Springer fibers C[Irr(Be)], e ∈ N . However, we already know that Sn does act
on the Springer fiber Bs when s is regular semisimple, hence also on C[Irr(Be)].

Remark. Since Bs is an Sn-torsor we have an Sn-isomorphism Bs ∼= Sn. Therefore
C[Irr(Bs)] ∼= C[Sn] ∼= O(Sn). For any finite group G the representation of G on O(G)
is called the regular representation of G. It contains all information about G built it is
large – not irreducible. �

Now we know that Sn acts on generic Springer fibers (grs⊆g is open and dense). One can
hope that this will by “some kind of continuity” make it act on all fibers, in particular
the nilpotent ones.

3.3.2. Topological interpretation. Since the “continuity” hope require topology we try to
do everything in topological terms.

Lemma. C[Irr(Be)] is the top homology Htop(Be).
Proof. This uses a general property of Springer fibers that they are equidimensional,
meaning that all irreducible components have the same dimension. For a general algebraic
variety X one has

Htop(X,C) = C[Irrtop(X)]

where Irrtop(X)⊆Irr(X) consists of all irreducible components of maximal dimension. �
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Remark. The Springer fibers Bx are paved, i.e., can be written as tN1 Xi where each
Xi is some affine space Ad(i). If one uses this linear algebra fact, the proof of the lemma
simplifies as one needs to know very little about homology. �

3.3.3. Enter sheaves. Now C[Irr(Bx)] has a topological interpretation as
Htop(Bx,C)⊆ H∗(Bx). The next step in our continuity argument is that we need
to organize all graded groups H∗(Bx) for x ∈ g into a single “continuous” object that lies
aboveg. This object will be a sheaf or more precisely a complex of sheaves, for simplicity
one calls it the Grothendieck sheaf G on the space g.

We know that Sn acts on Bx for x ∈ grs. This will translate into: Sn acts on the restriction
G|grs. Our goal is to get Sn act on the whole sheaf G and this will then imply that Sn
acts on H∗(Bx) for all x ∈ g.

What we will need for this is that the restriction G|grs in some sense controls the whole
sheaf G. It will actually turn out that all of G can be reconstructed from the restriction
G|grs in an explicit way. This miracle will complete our continuity argument. However,
in order to access this miracle by following one of major successes of mathematics in the
last quarter of the last century, we will have to become perverse.

3.C Springer construction via constructible sheaves

3.4. The Grothendieck sheaf G on g. We define the Grothendieck sheaf G on the Lie
algebra g as the direct image for π : g̃→ g of the constant sheaf kg̃

G def
= π∗kg̃ ∈ Dc(g,k).

Here, Dc(g,k) is the derived category of constructible sheaves on X with coefficients in
k (see fro this category and its functoriality properties). In particular, π∗ : Dc(g,k) →
Dc(g, k) denotes the derived direct image, so though we start with just a sheaf kg̃, the
result G is really a constructible complex of of sheaves. (Though we just call a “sheaf”.)

Lemma. For any x ∈ g, the stalk of the Grothendieck sheaf G at x is the cohomology of
the Springer fiber Bx at x

Gx = H∗(Bx, k).

Remark. A priori, Gx is a complex in Dc(pt, k) = D(k) while H∗(Bx,k) is only a graded
group. We will kill the difference by taking the cohomology groups of Gx. Then the precise
form of “equality” in the lemma is an isomorphism of graded groups

H∗(Gx) ∼= H∗(Bx,k).
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Proof. The fiber Bx of the map π : g̃→ g at x appears in a Cartesian square (see example
A.1.3).a)

Bx = π−1x
i−−−→ g̃

p

y π

y
x

k−−−→ X

.

Now, since π is proper we have π! = π∗ and p! = p∗. Therefore we can use Base Change
to calculate the stalk G∗xG

k∗G = k∗π∗kg̃ = k∗π!kg̃

Base Change∼= p!i
∗kg̃.

Also, notice that i∗kg̃
∼= kBx . (For any map f : Y → X we have f ∗kX = kY because

f ∗kX = f ∗a∗Xk = (aX◦f)∗k = a∗Y k = kY .) So,

H∗(Gx) ∼= H∗(p∗kBx) ∼= H∗(Bx,k). �

Remarks. (0) So, the Grothendieck sheaf G is a single “continuous” object that puts
together all cohomologies of Springer fibers. Since homologies are dual to cohomologies
G stores the information of homology groups of all Springer fibers.

(1) The precise statement for homologies is proved as above, it contains a shift in degrees
of complexes:

H∗(Bx,k) ∼= H∗(G !
x)[2 dimC(g)]

where the shriek stalk G !
x of G at x

k
∈ G is defined as the !-restriction k!G to a point. �

3.5. Restriction of G to grs⊆g controls the whole G in the setting of perverse
sheaves. Now, we would line to use the Grothendieck sheaf G Let j : grs⊆g be the
inclusion of the open dense locus of regular semisimple operators. Let us also consider the

open subspaces g̃rs
def
= π−1grs of g̃, i.e., the restriction of g̃ to grs. Denote the inclusion

j̃ : g̃rs⊆g̃.

Recall that Sn-acts on Springer fibers Bs for s ∈ grs, so it acts on the open subspace g̃rs
of g̃. Moreover, the restriction πrs : g̃rs → grs of π : g̃→→ g is an Sn-equivariant map for
the trivial action of Sn on grs.

This ensures that Sn acts on the restriction j∗G of G to grs. Indeed, Sn acts on kg̃rs , map
πrs is Sn equivariant and by Base Change

G|grs = j∗G = j∗π!kg̃
∼= (πrs)!j̃

∗kg̃ = (πrs)!kg̃rs .

What we really want is that Sn should act on the sheaf G itself Then at any x ∈ g
group Sn will act on the stalk Gx, x ∈ g, i.e., hence also on the cohomology groups
H∗(Bx,k) = H∗(Gx) of the Springer fiber at x. Equivalently, Sn will act on the dual
H∗(Bx,k) of cohomology. So, in particular it will act on Htop(Be,k) for e ∈ N .
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Action on G is not obvious since Sn does not act on the space g̃ that produces G. This
action will be a consequence of a very strong relation between G and its restriction G|grs
in the next theorem which uses certain procedure j!∗ (a functor) that extends sheaves
from grs to g. Functor j!∗ has been constructed and studied for the framework of perverse
sheaves by Beilinson-Bernstein-Deligne. The perverse sheaves on a space X and with
coefficients in k-modules form an abelian category P(X, k).(3) The perverse sheaves are a
class of complexes of sheaves which have particularly good properties so they appear to
be more fundamental than the sheaves themselves. The term “perverse” seems to mean
that these objects are different from the accustomed norms of our knowledge (but are
even more beautiful that the world we traditionally see).(4)

j!∗ is called the intersection cohomology extension(or IC-extension). The intersection
cohomology is a version of homology and cohomology combined which has good properties
for singular spaces: it satisfies Poincare duality. The discovery of intersection cohomology
by Goresky-McPherson is also the origin of the idea of perverse sheaves.

(1) For an open U
j

⊆X one has j!∗ : P(U,k)→ P(X, k) so this is a new functoriality which
applies to perverse sheaves. A famous example is the Grothendieck sheaf G (or more
precisely, its shift G[dim(g)]).

(1) j!∗ is “in between j! and j!. More precisely, for any perverse sheaf F ∈ P(U,k) there
are canonical morphisms j!F → j!∗F → j∗F .

Theorem. G can be reconstructed from its restriction G|grs by the !∗ extension:

j!∗(G|grs) ∼= G.

Proof. Without defining j!∗ we will just say that this property of G = π∗kg̃ is a consequence
of the property of the map π : g̃→ g that it is small, meaning that “fibers grow slowly”

Precisely, for a map π : Y → X denoted by X≥k⊆X the subspace of all x ∈ X such that
dim(Yx) ≥ k, the dimension of the fiber Yx at x is at least k. Then we say that π is
semismall if for each k ∈ N, the codimension of X≥k⊆X is at least 2k

dim(X)− dim(X≥k) ≥ 2k.

For instance the codimension of points x with fibers of positive dimension is at least 2.
In particular the generic fibers are of dimension zero.

We say that π is small if it is semismall and the codimension of points with fibers of
positive dimension is at least 3. �

3 The terminology has been defined by Gabber and the the defining properties were first formulated
much earlier by Kashiwara as properties of solutions of holonomic systems of linear PDEs.

4 Though widely useful, perverse sheaves are still mysterious. Beilinson’s choice of a question for this
century is What are perverse sheaves?
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Example. For g = sl2 the Springer fibers are finite over all points except for 0. Here,
Be = P1 has dimension one. SO we see that this Grothendieck map is indeed small.

Remarks. (0) In the end the continuity mechanism that extends the Sn-action on generic
Springer fibers Bs for s ∈ grs to an action on homology of all Springer fibers is given by
the construction j!∗ in perverse sheaves.

(1) The proof uses no results on perverse sheaves, only the definitions.

Corollary. (a) Sn acts on the Grothendieck sheaf.

(b) For any nilpotent e, Htop(Be,Z) = Z[Irr(Be)] is a representation of Sn.

Proof. (a) follows from the theorem – as Sn acts on the restriction G|grs = j∗G, the
functoriality of j!∗ makes it act on j!∗(G|grs) ∼= G.

(b) follows as indicated in the discussion before the theorem. �

3.5.1. Perverse sheaves. Functor j!∗ has been constructed for the framework of perverse
sheaves by Beilinson-Bernstein-Deligne. The perverse sheaves are a class of complexes of
sheaves which have particularly good properties so they appear to be more fundamental
than the sheaves themselves.(5) The term “perverse” seems to mean that these objects
are different from the accustomed norms of our knowledge (but are even more beautiful
that the world we traditionally see).(6)

The perverse sheaves on a space X and with coefficients in k-modules form an abelian
category P(X, k) constructed by Beilinson-Bernstein-Deligne. However, the definition
has originally been made by Mekhbout in the framework of the Riemann-Hilbert cor-
respondence. Moreover, the defining properties were first formulated (much earlier) by
Kashiwara as properties of solutions of holonomic systems of linear PDEs.

The development of the theory of perverse sheaves by Beilinson–Bernstein-Deligne origi-
nates in the discovery of intersection cohomology by Goresky-McPherson. The intersection
cohomology is a combination of homology and cohomology which has good properties for
singular spaces: it satisfies Poincare duality which was previously only known for smooth
manifolds. The functor j!∗ is also called the intersection cohomology extension(or IC-
extension).

The popularity of perverse sheaves is largely due to spectacular applications in represen-
tation theory starting with the proof of the Kazhdan-Lusztig conjecture.

5 A famous example of a perverse sheaf is the Grothendieck sheaf G (or more precisely, its shift
G[dim(g)]).

6 Though widely useful, perverse sheaves are still mysterious. Beilinson’s choice of a question for this
century is What are perverse sheaves?
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Remarks. (0) For an open U
j

⊆X one has a functor j!∗ : P(U,k) → P(X, k). So, j!∗ is a
new functoriality which applies to perverse sheaves.

(1) j!∗ is “in between j! and j!. More precisely, for any perverse sheaf F ∈ P(U,k) there
are canonical morphisms j!F → j!∗F → j∗F .

3.6. Irreducible representations of Sn from the Grothendieck sheaf. Any map
π : X → Y defines the Cartesian square Σ = X×YX⊆X2.

3.6.1. Ginzburg algebra Aπ of a map π : X → Y . Any map π : X → Y defines the
Cartesian square Σ = X×YX⊆X2. (We can think of it as the square (X → Y )×Y (X →
Y ) of X viewed as a space X → Y over Y .)

A correspondence between spaces A and B is a space C with maps A
p←−C q−→B. We will

see that the Cartesian squares are a particular kind of self-correspondences that produce
algebras.

For a finite set Z we denote by k[Z] the free k-module with basis Z. We can think of it

as k-valued functions O(Z) = Map(Z, k) or distributions D(Z)
def
= O(Z)∗ on X.

Lemma. (a) For any equivalence relation Σ⊆X2 on a finite set X, k[Σ] is an algebra for
(x, y) ∗ (u, v) = δy,u(x, v).

(b) X×YX⊆X2 is an equivalence relation on X. So, it defines an algebra Aπ = k[X×YX]
associated to the map π.

Proof. (a) A pair (x, y) ∈ X2 lie inX×YX iff π(x) = π(y) and this is clearly an equivalence
relation on X.

(b) When Σ = X2, i.e., x ∼ y for any two elements of X, then ∗ is the matrix algebra
MX(k). So, it suffices to see that if the relation σ is transitive then k[S]⊆k[X2 is closed
under the multiplication ∗, if Σ is reflexive then k[Σ] contains the unity in the matrix
algebra. (When Σ is symmetric then the subalgebra k[Σ]⊆MX(k) is closed under the
transpose of matrices.) �

Proposition. For any map π : X → Y of finite sets:

(1) For any S⊆Y the part XY
def
= π−1(Y ) of X that lies over Y gives an Aπ-module

k[XY ].

(2) For any point y ∈ Im(π)⊆Y , the Aπ-module Ly
def
= k[Xy] given by the fiber Xy =

π−1y⊆X is irreducible.
(3) The map Im(f) 3 y 7→ Ly ∈ Irr(Aπ) is a bijection from f(X) to the set of

isomorphism classes of irreducible modules for the algebra Aπ.
(4) Algebra Aπ is a sum of matrix algebras ⊕y∈f(X) Endk(Ly). �
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Corollary. The constant sheaf kX on X gives a sheaf π∗kX of k-modules on Y .

(a) Its stalk at y ∈ Y is k[Xy].

(b) The algebra Aπ associated to the map π is the endmorphism algebra of this sheaf

End(π∗kX) ∼= Aπ.

3.6.2. Beyond finite sets. This machinery becomes particularly powerful when one con-
siders maps π : X → Y of algebraic varieties. Then kX ∈ Dc(X, k) gives π∗kX ∈ Dc(Y, k)
and we define a k-algebra associated to π as

Aπ
def
= EndDc(Y,k)(π∗kX).

One can enlarge this algebra using the fact that we are working in a triangulated category
Dc(Y, k), Then Aπ = A0

π is a part of of the algebra

A• = ⊕n∈Z Anπ with Anπ
def
= Extn(π∗kX , π∗kX) for Extn(F ,G)

def
= HomDc(Y,k)(F ,G[n]).

Its properties are then the We X is smooth and π is proper.

Lemma. The Grothendieck sheaf G

(a) k[W ]
∼=−→ End(G).

(b) The group algebra of Sn is the top Borel-Moore homology of the Steinberg space

k[Sn] ∼= Hc
top(Stg).

(c) When k⊇C then
G ∼= ⊕π∈Irr(W )π⊗Gπ∗ .

(d)

3.7. Conclusion. Interesting objects usually have geometric realizations. (For instance
Sn is the symmetry group of the Grothendieck sheaf and its group algebra Z[Sn] is the
Borel-Moore homology of the Steinberg space.)

Geometric techniques are the most powerful techniques of study of finer aspects of repre-
sentation theory such as characters of irreducible representations.

3.8. Appendix. The total homology of fibers gives induced representations.
The precise relation is that there is a geometric construction of the action of Sn on the
(co)homology of Springer fibers and there is an isomorphism of representations H∗(Fyλ) ∼=
GrF (IndSnSλ τλ) for a certain filtration F on the induced representation.
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Part 2. Semisimple Lie groups and Lie algebras

Section 4 sketches the notion of Lie groups and the relation to their infinitesimal incar-
nations, the Lie algebras.

The next section 5 encodes the structure of the group SLn(C) and its Lie algebra sln(C)
into the set of roots which one views as objects of “linear combinatorics”. Based on this
example in section 6 we consider the class of semisimple Lie groups and Lie algebras, their
encoding into systems of roots and how this leads to the classification of semisimple Lie
algebras.

4. Lie groups and algebras

4.1. Lie groups.

4.1.1. Manifolds. We considers classes of manifolds over a field k which for us will be
R or C (but could also be Qp etc). A class of manifolds over a field k is described by
the corresponding class O of functions on such manifolds. We will let O be one of the
following Cn for n = 0, 1, 2, ...,∞, analytic functions or holomorphic functions.

An O-manifold is a topological space which is locally isomorphic to kn and the transition
functions are in the class O.

For such manifold M we define vector fields V (M) on M as the derivations Derk[O(M)]
of functions, i.e., linear operators ∂ : O(M)→ O(M) such that ∂(fg) = ∂f ·g + f∂g.

A point a ∈ M is algebraically encoded as a homomorphism of rings eva : O(M) → k
given by the evaluation eva(f) = f(a). This defines the class Derak[O(M),k] derivations
of O(M) with values in k and with respect to homomorphism eva, these of linear op-
erators ξ : O(M) → k such that ξ(fg) = ξf ·g(a) + f(a)ξg. The tangent space at a is

TaM
def
= Derak[O(M),k].

Clearly, any vector field ∂ on M defines tangent vectors ∂a ∈ TaM at points a ∈ M by

∂af
def
= (∂f)(a).

The cotangent space at a is T ∗aM
def
= Ia/I2

a for the ideal Ia = {f ∈ O(M); f(a) =
0} of the point a. The differential at a is the linear operator da : O(M) → T ∗aM by

daf
def
= [f − f(a)] + I2

a .

Example. If M = kn then V (M) =
∑n

1 O(M) ∂
∂xi

while TaM = ⊕n1 ( ∂−
∂xi

)a and T ∗aM =
⊕n1 daxi.

Lemma. (a) Vector spaces TaM form a vector bundle TM over M . We call it the tangent
vector bundle.
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(b) Vector fields V (M) are exactly the sections Γ(M,TM) of the tangent vector bundle
TM .

(c) T ∗aM is dual of the vector space TaM .

Proof. It suffices to check all these claims for M = kn. Then (a) and (b) are clear and
(c) comes from the pairing TaM×T ∗aM → k defined for ξ ∈ TaM and f ∈ Ia by by

〈ξ, f + I2〉 def
= ξ(f). This is well defined (since ξ = 0 on I2

a) and 〈( ∂−
∂xi

)a, daxj〉 = δij.. �

4.1.2. Examples. (0) The notion of manifolds is local, i.e., the O(O)-manifold structures
on a topological space M form a sheaf.

(1) If M⊆kn is given by f1 = · · · = fc = 0 then M is a manifold provided that that the
differentials daf1, ..., dafc are independent vectors in T ∗akn for any a ∈M .

(2) A particular case is when fi’s a re polynomials, then M is said to be a (smooth)
algebraic variety.

Remark. O-manifolds form a category, the homomorphisms are mappings f : M → Y
which are locally, i.e., in when viewed in terms of charts on M and N , functions in class
O.

4.1.3. Lie groups. An O-Lie group is a group (G, ·) with an O0manifold structure such
that the multiplication · : M×M →M is a map of O-manifolds.

4.1.4. Examples. Our examples will all be algebraic varieties.

(0) A vector space V over k is a Lie group.

(1) Group GLn(k) is a Lie group. The manifold structure comes from GLn(k) being open

in Mn(k) ∼= kn2
. One can also view GLn(k) as a closed subset of kn2+1 ∼= Mn(K)×k,

consisting of all (g, z) such that det(g)·z = 1.

This makes each GL(V ) into a Lie group. The simplest example is the multiplicative

group Gm
def
= GL1.

(2) The special linear group SL(V ) is given by det(g) = 1 in End(V ).

(3) Symplectic groups. A symplectic form on a vector space V is a bilinear form ω :
V×V → k which is non-degenerate and skew, i.e., ω(u, v) = −ω(v, u). GL(V ) acts

on symplectic forms by (gω)(u, v)
def
= ω(g−1u, g−1v). The symplectic group Sp(ω) is the

stabilizer (GL(V )ω of ω in GL(V ). So, it consists of all linear operators g ∈ GL(V ) such
that ω(gu, gv) = ω(u, v) for u, v ∈ V .

The standard symplectic form on k2n is ω(u, v) =
∑n

1 uivi+n − ui+nvi, Then Sp(ω) is
denoted Sp2n.
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(3) Orthogonal groups. An inner product on a vector space V is a bilinear form h :
V×V → k which is non-degenerate and symmetric, i.e., ω(u, v) = ω(v, u). GL(V ) acts

on symplectic forms by (gω)(u, v)
def
= ω(g−1u, g−1v). The orthogonal group O(h) is the

stabilizer (GL(V )h of h in GL(V ).

The standard inner product on kn is h(u, v) =
∑n

1 uivi, then O(h) is denoted On.

Remarks. (a) While Sp(ω)⊆SL(V ), this is not true for orthogonal groups so we get special

orthogonal groups SO(h)
def
= O(})SL(V) and in particular SOn

def
= On ∩ SLn.

(b) All symplectic structures over R and C are isomorphic to the standard one. Over
C all inner products are isomorphic to the standard one. Over R all inner products are
isomorphic to one of the form

∑p
1 xiyi −

∑n
p+1 xjyj.

4.2. Lie algebras. 8 A Lie algebra over a k is a vector space g together with a bilinear
operation [−,−] which is antisymmetric, i.e., [y, x] = −[x, y] and satisfies the Jacobi
identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Remark. This is just the infinitesimal form of the associativity property.

4.2.1. Examples. (0) Any associative algebras (A, ·) gives a Lie algebra (A, [−,−]) for the
commutator operation. The basic example is that for a vector space V , End(V ) with the
commutator bracket is the Lie algebra called gl(V ).

(1) A subspace h of a Lie subalgebra g is (said to be) a Lie subalgebra if it is closed under
the bracket in g. Such h is naturally a Lie algebra.

(2) For any associative k-algebra A the set of derivations of A

Derk(A)
def
= {α ∈ Endk(A); α(ab) = α(a)b+ aα(b)}

is a Lie subalgebra of the associative algebra Endk(A).

The basic example is for any manifold M , the vector space V (M)
def
= Derk[O(M)] is a

Lie algebra called vector fields on M .

(3) If a Group G acts on a manifold M then it acts on vector fields V (M) and the
G-invariant vector fields V (M)G⊆V (M) form a Lie subalgebra.

4.2.2. Relation of Lie groups and Lie algebras.
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Proposition. (a) For any Lie group G its tangent space TeG (at the neutral element) is
canonically a Lie algebra.

(b) Any map of Lie groups π : G→ G′ differentiates to a map of Lie algebras deπ : TeG→
TeG

′ (denoted deπ : g→ g′).

Proof. (a) Group G2 acts on the set G by (u, v)x
def
= uxv−1, we say that G×1 acts by

left translations Lu(x) = ux and 1×G by right translations Rv(x) = xv−1. These actions
commute so we get an action of G×G on G by (g, h)u = guh−1.(7) Therefore G acts on
the Lie algebra V (G) of vector fields on G in three ways L,R,C.

We define the left invariant vector fields on G as the invariants V (G)G×1 of the left
multiplication action. One has V (G)G×1 ∼= TeG as one can evaluate any vector field
∂ ∈ V (G) at e ∈ G to get ∂e ∈ TeG, and in the opposite direction any tangent vector

ξ ∈ TeG extends uniquely to a left invariant vector field ξ̃ such that at any g ∈ G one has

x̃g = (g, 1)ξ, i.e., ξ̃(f) (g)
def
= ξ((g, 1)−1f).

Now, TeG becomes a Lie algebra via the isomorphism V (G)G×1 ∼= Te(G). For x, y ∈ TeG
the bracket is the evaluation at e ∈ G of the bracket of left invariant vector fields x̃, ỹ
(calculated in the Lie algebra of vector fields):

[x, y]
def
=
(
[x̃, ỹ]V (G)

)
e
.

(b) is found by from the fact that for x ∈ TG the invariant vector fields x̃ on G and (̃deπ)x
on G′ are related by the differential dπ of the map π. �

We define the Lie algebra of a Lie group G (usually denoted g) to be TeG with the bracket
coming from left invariant vector fields.

Example. Since GL(V ) is open in End(V ) we have an isomorphism TeGL(V ) ∼= End(V ).
Now one checks that the Lie algebra structure on End(V ) that comes from End(V ) ∼=
TeGL(V ) is just the commutator bracket on End(V ).

Remark. One can also use the right multiplication action of G on G to get another Lie
algebra structure on TeG (which is now identified with V (G)1×G).

4.2.3. The exponential map expG : g→ G. The key observation is the following.

Proposition. For each x ∈ TeG there exists a unique homomorphism of Lie groups θx :
R→ G such that the differential deθx is x. �

7 The third action ofG onG is by conjugation Cg(u) = gug−1, this corresponds the diagonal embedding
G↪→G×G.
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Theorem. (a) There is a unique map of manifolds expG : g→ G such that

(1) For any x ∈ g the map R → G by s 7→ def
= expG(sx) is a map of groups. (In

particular, exp(0) = e.)
(2) The differential d0(expG) : T0(g)→ Te(G) is the identity on g. (In particular π is

an isomorphism on some neighborhoods of 0 in g and of e in G.)

(b) The exponential map is functorial, i.e., for any map π : G → G′ of Lie groups one
has a commutative diagram

g
deπ−−−→ g′

expG

y yexpG′
G

π−−−→ G′.

�

Proof. (a) The proposition shows that the only possibility for such expG : TeG → G

is expG(x)
def
= θx(1). Now, one needs to check that the dependence on x is a map of

manifolds.

(b) The uniqueness of θy implies that π(θx) = θdeπx and then (b) follows. �

Example. For G = GL(V ) the exponential expGL(V ) : gl(V ) → GL(V ) is the usual
exponential exp : End(V ) → End(V )∗ = GL(V ) in the algebra End(V ). (because exp
satisfies the characterizations of expGL(V ) in the theorem).

Corollary. (a) If G is connected, for any map of Lie groups π : G → G′, the map of Lie
algebras deπ : g→ g′ determines the homomorphism π.

(b) If G′ is a Lie subgroup of G then the inclusion i : G′ → G differentiates to an
embedding dei : g′ → g hence g′ is a Lie subalgebra of g. Moreover, then expG′ : g′ → G′

is the restriction of expG : g→ G to g′⊆g.

Proof. (a) deπ : g→ g′ determines π on some neighborhood V of e in G, hence also on the
subgroup of G generated by V . However, this subgroup is easily seen to be the connected
component of G. �

Example. Now we understand the exponential map for all Lie subgroups of groups GL(V ).

4.2.4. Commutators in G and g. Let us denote by O(tn) any function of t with values in
a vector space such that for some ε > 0, function t−nO(tn) is is bounded and in class O
for 0 < t > ε.
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Proposition. For x, y ∈ g

(1)

expG(tx)expG(ty) = expG[t(x+ y) +
t2

2
[x, y] + O(t3)].

(2)

expG(−tx) expG(−ty) expG(−tx) expG(−ty) = expG[t2[x, y] + O(t3)].

(3)

expG(tx)expG(ty)expG(−tx) = expG[ty + t2[x, y] + O(t3)].

Corollary. (a) [x, y] is the tangent vector at s = 0 of the commutator function from R to
G

expG(−
√
sx)expG(−

√
sy)expG(

√
sx)expG(

√
sy).

(b) Two Lie groups are locally isomorphic iff their Lie algebras are isomorphic. �

Remark. If k⊇R the expression in the corollary is defined for s ≥ 0. A general formulation
is the [art (2) of the theorem.

Example. (i) If G is abelian then the bracket [−,−] on g is zero. (Any vector space V
becomes a Lie algebra with the zero bracket. Such Lie algebras are called abelian.)

(ii) g knows nothing about G outside the connected component of G. For instance if G is
discrete than g = 0.

4.2.5. Adjoint actions. The conjugation action of a Lie group G on itself is called the ad-
joint action and denoted (Adg)(u) = gu = gug−1. Since it fixes e ∈ G, the differentiation
in the u-direction at e gives a representation of G on the vector space g. It is called the
adjoint representation and still denoted (Adg)x = gx for x ∈ g. As conjugation on G
preserves the group structure on G, each Adg preserves the Lie algebra structure on g,
i.e., g[x, y] = [gx,g y].

Finally, we know that the differentiation of the adjoint representation gx of G on g yields
a representation of the Lie algebra g on g. We will call it the adjoint representation of g
on itself and denote it (ad x)y for x, y ∈ g.

Lemma. The adjoint representation of g on g is given by the bracket in g:

(ad y)x = [y, x].

Proof. The claim is that d
dss=0

expG(sy)x equals [y, x]. This follows from the lemma 4.2.4.
�



38

4.2.6. Relation of g and G when G is simply connected, i.e., π0(G) = 0 = π1(G). Here,
π0(G) = 0 means that G is connected and π1(G) = 0 means that there are non nontrivial
loops in G, i.e., that any loop can be squeezed into a point.

Lemma. If G is simply connected then for any Lie group G′, any map of Lie algebras
τ : g→ g′ defines a unique map of Lie groups π : G→ G′ with deπ = τ .

Proof. Let U , U be open neighborhoods of 0 ∈ g and e ∈ G such that expG gives an

isomorphism U
∼=−→U .

We define π : U → G′ so that for g ∈ U and x ∈ U with expG(x) = g we have
π(g) = expG′(τx). The subgroup generated by U is the connected component of G,
i.e., all of G in our case. It remains to prove the absence of contradictions, i.e., that
if expG(x1)· · ·expG(xn) equals expG(y1)· · ·expG(ym) then expG′(τx1)· · ·expG′(τxn) equals
expG′(τy1)· · ·expG′(τym). This is where we use π1(G) = 0. �

4.2.7. Representations of Lie groups. A representation of an O-Lie group G on a finite
dimensional vector space V over k is a homomorphism of O-Lie groups π : G→ GL(V ).

A representation of a Lie algebra g over k on a finite dimensional vector space V over k
is a homomorphism of Lie algebras π : g→ gl(V ).

Lemma. (a) A representation π of a Lie group G on V differentiates to a representation
deπ of the Lie algebra g on V . This is a functor Rep(G)→ Rep(g)

(b) If G is simply connected this is an isomorphism of categories. (This means that any
representation of g lifts uniquely to a representation of G and for U, V ∈ Rep(G) the
canonical inclusion HomG(U, V )⊆Homg(U, V ) is an equality.)

Proof. This is a special case of the above statements. �

Remark. Any complex manifold (meaning for O = holomorphic functions) is in particular
a real manifold (forO = CY-functions). So, any complex Lie group G is in particular a real
Lie group. In particular, for a real Lie group G there is a notion of a representation of G
on a complex vector space V – these are homomorphisms of real Lie groups G→ GLC(V ).

4.3. Complexification.

4.3.1. Complexification: There are more things over R than over C. The comparison is
clear on the level of algebraic varieties.

Let M be a real algebraic variety defined by polynomial equations M
def
= {x ∈ Rn; f1(x) =

· · · = fc(x) = 0} (so fi ∈ R[x1, ..., xn]), Then its complexification is the set of solutions
over C

MC
def
= {z ∈ Cn; f1(z) = · · · = fc(z) = 0}.
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Then we say that M is a real form of a complex variety MC. The same for groups (i.e.,
MC is then a group).

Example. (1) GL1(R) = R∗ is clearly a real form of GL1(C). However S1 is another real
form since it is given inside C ∼= R2 by x2+2

y = 1, so its complexification (S1)C is given

inside C2 by the same equations. However, one can change the coordinates on C2 to
u = x+ iy and v = x− iy so that the equation becomes uv = 1 which is GL1(C).

Here, GL1(R) is said to be a split real form of GL1(C) (meaning that it behaves very
much like its complexification) while S1 is quite different because it is compact.

(2) More generally, GLn(C) has a split real form GLn(R) and a compact real form Un.
(This is the stabilizer in GLn(C) of the hermitian form

∑
|zi|2 which is the same as the

matrices u ∈ GLn(C) such that uu∗ = 1 for u∗ = (u)tr.)

(3) On Cn there is a single non-degenerate quadratic form
∑

z2
i (up to isomorphism,

i.e., a change of coordinates). However, on Rn there are n + 1 such forms
∑p

i=1 x2
i =∑n

j=p+1 x2
j , distinguished by their signature invariants p− q.

Remarks. (0) In each of these cases things that are different over R may become isomor-
phic over C.

(1) For a real group G we would first consider its complex representations and then we
could try to refine this understanding by considering the real representations of G (as real
forms of known complex representations).

(2) The same for the semisimple Lie algebras. Their classification over C is going to be
the first step towards classification over R.

4.3.2. Complexification: Invariant subspaces.

Lemma. Let (π, U) be a real form of a connected complex algebraic group G. For a
complex vector subspace V ′ of a representation V of G the following is equivalent

(1) V ′ is G-invariant,
(2) V ′ is g-invariant,
(3) V ′ is u-invariant,
(4) V ′ is U -invariant.

Proof. (1)⇒ (2) is clear since for any x ∈ g the linear operator deπx is a derivative of the
family of linear operators π(expG(sx)). The same argument works for (4)⇒ (3).

(2)⇒ (1) follows since G is connected. Recall that expG : N
∼=−→N for some neighborhoods

N and N of 0 and e in g and G. For x ∈ N we have π(expGx) = expGL(V )(deπ)x)
which is the usual exponential exp[deπ)x] in linear operators. So, g invariance implies N
-invariance and then also G-invariance.
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Also, (2)⇔(3) is obvious since g is the complexification uC = u⊕iu of u and deπ is C-linear.

Finally (1)⇒(4) since G = UC contains U . �

Corollary. A representation V of G is irreducible iff it is irreducible for g.

4.4. Semisimple and reductive Lie groups and algebras. Now we define semisimple
and reductive Lie algebras.

4.4.1. Semisimple Lie algebras over k. A subspace a of a Lie algebra g is an ideal if
[a, g]⊆a.

A (finite dimensional) Lie algebra g is said to be simple if its only ideals are the trivial
ones: 0 and g itself.

A Lie algebra g is said to be simple if its only ideals are the trivial ones: 0 and g itself.

It is said to be semisimple if it is a sum of simple Lie algebras.

Remarks. (0) One can think of “semisimple“ as maximally non-abelian.

(1) The classification of semisimple Lie algebras over complex numbers is entertaining. It
is outlined later in 6.

4.4.2. Semisimple Lie groups. We will say that a Lie group G is semisimple if it is con-
nected and its Lie algebra is semisimple.

To any Lie group G one can associate its Lie algebra g as the tangent space TeG at
unity. The reverse direction from g to G is in general more complicated. However, for a
semisimple Lie algebra g it is easy to find a group corresponding to g.

Theorem. The group Aut(g) ⊆ GL(g) of automorphisms of the Lie algebra has Lie algebra
g. �

Remarks. (0) The point of the theorem is that the semisimple Lie algebras are “maximally
non-commutative”, so the Lie algebra g itself is recorded in its adjoint action on the vector
space g. For this reason we can expect that a group associated to g will be recorded in
its action on the vector space g.

One can actually understand of all connected groups with a given semisimple Lie algebra
g.
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Proposition. (a) The smallest connected Lie group with the Lie algebra g is the connected
component AutLieAlg(g)0 of AutLieAlg(g). It is called the adjoint group associated to G
and sometimes it is denoted Gad.

(b) The largest connected group G with the Lie algebra g is the universal cover of Gad =
AutLieAlg(g)0. It is called the simply connected group associated to G and sometimes
denoted Gsc.

(c) The center Z(Gsc) of Gsc is finite (and it coincides with the fundamental group π1(Gad)
of the adjoint version). All connected groups G with the Lie algebra g correspond to all
subgroups Z of Z(Gsc), a subgroup Z gives the group Gsc/Z.

Remark. Each of connected groups G with Lie algebra g has Gad = AutLieAlg(g)0 as a
quotient, so G acts on g via this quotient map G→ Gad.

Example. For g = sln the simply connected group Gsc associated to g is SLn. The adjoint
group Gad is SLn/Z(SLn), it is isomorphic to GLn/Z(GLn) which is called the projective
general linear group and denoted PGLn.

4.4.3. Reductive semisimple Lie algebras over k. Here, “reductive” is a small generaliza-
tion of “semisimple”.

A Lie algebra g is reductive if it is a direct sum of a semisimple Lie algebra s and an
abelian Lie algebra a.

Remark. Another characterization is: g is reductive if its adjoint representation is com-
pletely reducible (this is where the name comes from).

We will say that a Lie group G is reductive if it is connected, the connected component
of its center is a torus and its Lie algebra is semisimple.

Example. GLn and gln are reductive. Group Gm is reductive but the additive group Ga

is not (though their Lie algebras are isomorphic). Semisimple implies reductive.

Remarks. (0) Reductive complex groups have the nice property that their finite dimen-
sional representations are semisimple (see 4.5.3 below).

(1) Semisimple group SLn is closely related to the reductive group GLn.

(2) Reductive groups are necessary for study of semisimple groups because important
subgroups of a semisimple group are often reductive but not semisimple (the main example
are the Levi subgroups, for instance the Cartan subgroups).
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4.5. Semisimplicity properties of complex representations. Here we first notice
that a complex representation of a compact Lie group is semisimple. Then it will imply
the same property for semisimple complex Lie groups. (Of course for the additive group
the 2-dimensional representation Ga 3 x 7→ ( 1 x

0 1 ) is not semisimple.)

4.5.1. Haar measures on locally compact groups. A left Haar measure on a locally compact
topological group A is a measure µ which is

• left invariant, i.e., for g ∈ G we have Lgµ = µ, i.e., one has
∫
A
f(ga) dµ(a) =∫

A
f(a) dµ(a) for compactly supported continuous functions f on G; and

• µ is positive in the sense that for any open non-empty U one has µ(U) > 0.

Theorem. On any locally compact topological group A there exists a left Haar measure
and it is unique up to a positive multiple.

Proof. We will only consider the case when A is a Lie group (this is all we need). Let
us consider it as a real Lie group. We know that any differential form of top degree
ω ∈ Ωtop(A) defines a measure µω on A. So, it suffices to find an invariant ω ∈ Ωtop(A) =
Γ[A,∧topT ∗A], however these are in bijection with vectors in ∧topT ∗eA]. �

4.5.2. Invariant inner products.

Lemma. Let (π, V ) be a representation of a compact Lie group U over k ∈ {R,C}. If
k = R then there exists a U -invariant inner product h on V . If k = C then there exists a
U -invariant hermitian inner product h on V .

Proof. We start with any (hermitian) inner product h0 on V and for x, y ∈ V we define

h(x, y)
def
=
∫
U
h0(ux, uy) dµ(u) for a left Haar measure µ on U . Then h(vx, vy) = h(x, y)

for v ∈ U . �

Corollary. (a) For a compact Lie group U any representation V is semisimple.

(b) If a connected complex algebraic group G has an inner form U which is compact then
any representation V of G is semisimple.

Proof. (a) If h is a U -invariant (hermitian) inner product on V then for any subrepresenta-
tion V ′⊆V its orthogonal complement (V ′)⊥ is U -invariant. So, V ′ has a complementary
subrepresentation (V ′)⊥.

(b) Again, let h be a U -invariant hermitian inner product on V . Then for any G-
subrepresentation V ′⊆V we know that its orthogonal complement V ′′ = (V ′)⊥ is a U -
invariant complex vector subspace. By lemma 4.3.2 it is also G-invariant. �

4.5.3. Compact real forms.
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Lemma. (a) Group SLn(C) has a compact R-form SU(n).

(b) Finite dimensional representations of G are semisimple.

Proof. (a) implies (b) by corollary 4.5.2 �

Remark. Actually any semisimple complex group G has a maximal compact subgroup U
and U is a real form of G. (Moreover, this is true for a larger class of reductive complex
groups.)

4.6. Tori. A torus over C is a Lie group isomorphic to (Gm)n, i.e., to (C∗)n. We will
also consider the corresponding notion of toral Lie algebras For any torus T its Lie algebra
t will be toral.

Here “toral” means something like: “works like a torus”. The meaning of that will be
that all representations of a torus are semisimple and so are the “relevant” representation
a toral Lie algebra.

So, the main observation is that any representation of a torus T is semisimple. In fact it
is a sum of eigenspaces V = ⊕χ∈X∗(T )V

T
χ corresponding to characters χ of T .

We will now translate this property of T into that of its Lie algebra t because it is easier
to work with Lie algebras. Aa consequence we see that any representation V of T is
also semisimple as a representation of its Lie algebra t, i.e., it is a sum of eigenspaces
V = ⊕λ∈X∗(T )V

t
λ corresponding to linear functionals λ on t. Moreover, these are the same

decompositions as V T
χ = V t

λ when λ is the differential deχ of the character χ.

This involves the embedding X∗(T )↪→t∗ by taking the differential at e ∈ T . Moreover, t∗

will be just the C-vector space generated by the lattice X∗(T ), i.e., t∗ = X∗(T )⊗RC.
So, with a little caution (i.e., by concentrating on the subgroup X∗(T ) of t∗, T and t will
work the “same” for us).

4.6.1. The (co)character lattices X∗(T ) and X∗(T ). We define the abelian groups of char-

acters of T as X∗(T )
def
= HomLie(T,Gm) and cocharacters of T as X∗(T ) = HomLie(T,Gm).

Lemma. (a) An isomorphism ι : Gm
I ∼=−→T gives X∗(T ) ∼= Z[I] ∼= X∗(T ).

(b) X∗(T ) and X∗(T ) are naturally dual lattices by the composition pairing
X∗(T )× X∗(T ) −→Hom(Gm, Gm) ∼= Z.

(c) X∗(T ) = Irr(T ) and any representation V of a torus T is semisimple hence it is
canonically of the form(8)

V ∼= ⊕χ∈X∗(T ) [V : χ]⊗χ.

8 Here one thinks of χ ∈ X∗(T ) as a 1-dimensional representation (χ,C) of T . Also, [V : χ] denotes
HomT (χ, V ).
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Proof. In (a) and (b) it suffices to consider the case T = Gm and then X∗(Gm) and
X∗(Gm) are both HomLie(Gm, Gm). So it suffices to show that this is Z.

Certainly n ∈ Z gives χn(z) = zn. The differential is d0χn = n.

On the other hand, we know that for any χHomLie(Gm, Gm) the differential deχ is a linear
operator on Lie(Gm) = C, i.e., multiplication by some s ∈ C. Since expGm is the usual
exponential in C, for α ∈ Lie(Gm) = C we have π(exp(α)) = exp(deχα) = exp(sα).
When α = 2πi this gives 1 = exp(sα) hence sα ∈ Ker(exp) = 2πiZ and s ∈ Z.

(c) Semisimplicity follows from the fact that T ∼= (C∗)n has a compact real form Tc ∼=
(S1)n. This gives the decomposition with χ ∈ Irr(T ). However, since T is abelian,
Irr(T )is the 1-dimensional representations, i.e., X∗(T ). �

4.6.2. Toral subalgebras. This part can be skipped as it explains how the parallel defini-
tions in the world of Lie algebras are little bit more involved. The difference is that one
is forced to use the adjoint representation.

A subalgebra h of a Lie algebra g is said to be toral if for each s ∈ t the operator adgs on
g is semisimple. A Lie algebra h is said to be toral if it is toral as a subalgebra of itself,
i.e., if for all its elements are adh-semisimple. (Clearly if h is a toral subalgebra of some
g then it is a toral Lie algebra.)

Lemma. Toral Lie algebras are the same as abelian Lie algebras.

Proof. If h is abelian then for any x ∈ h operator adtx is zero, hence it is semisimple.

Now let h be toral. For x ∈ h, adg-semisimplicity says that g is the sum of α-eigenspaces
gxα. So we need to see that for α 6= 0 the α-eigenspace gxα of any x ∈ g is 0.

If y 6= 0 is an eigenvector [x, y] = αy then ad(y)x = −αy, hence ad(y2)x = 0. The
semisimplicity of ad(y) then guarantees that ad(y)x = 0 hence α = 0. �

4.6.3. Comparison. For any torus T we will see that its Lie algebra t is controlled by the
lattice X∗(T ) of cocharacters of T .

Lemma. (a) X∗(T ) lies inside t and t ∼= X∗(T )⊗Z C. Also, X∗(T ) lies inside t∗ and
t∗ ∼= X∗(T )⊗Z C.

(b) In any representation V of T , its Lie algebra t acts by semisimple operators.

Proof. (a) Any cocharacter η : Gm → T differentiates to d1η : Lie(Gm) = C → t so it
gives d1η(1C) ∈ t. Clearly, d1η(1C) determines d1η hence also η.

Also, any character χ : T → Gm differentiates to deχ : t→ Lie(Gm) = C which is a linear
functional on T . Checking the two isomorphisms reduces to the case T = Gm.

(b) The decomposition V = ⊕χ∈X∗T [V : χ]⊗χ into a sum of 1-dimensional representations
of T is also valid for t. �
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Example. If T is a torus subgroup of a complex Lie group G then its Lie algebra t is a
toral subalgebra of g. (We use claim (b) where V is the restriction of AdG to T .)

Remark. For a representation V of a torus T any χ ∈ X∗(T ) defines the T -eigenspace
V T
χ consisting of all v ∈ V such that tv = χ(t)·v for t ∈ T . (This is the subspace we

have denoted above by [V : χ]⊗χ.) The set WT (V ) of weights of T in V consist of all
χ ∈ X∗(T ) that appear in V , i.e., V T

χ 6= 0.

For a representation V of a Lie algebra h any λ ∈ h∗ defines the fh-eigenspace V h
λ

consisting of all v ∈ V such that sv = 〈λ, v〉·v for s ∈ h. Again, the weights Wh(V )⊆h∗
consist of all λ with V h

λ 6= 0.

Now, notice that for a representation V of T we have V T
χ = V t

deχ
hence in particular,

T -weights and t-weights are identified by sending χ to deχ.

Remark. We will usually denote for any map of lie groups π : G → G′ its differential dπ
simply by π.

4.7. Cartan subgroups. A Cartan subgroup of a complex Lie group G is any maximal
torus T⊆G.

A torus over R is any algebraic group T over R whose complexification is a torus over C.
Now we can also define Cartan subgroups of real Lie groups G as maximal tori T⊆G.

Similarly, a Cartan subalgebra of a Lie algebra g is defined as any maximal toral subalgebra
of g.

Proposition. If T⊆G is a Cartan subgroup then t⊆g is a Cartan subalgebra. �

A proof is elementary but we will be content to confirm this in examples of interest.

4.7.1. Roots of a Cartan subgroup (subalgebra). The roots ∆T (g) of a Cartan subgroup
T of G are the weights of T in g that are nontrivial, i.e., χ 6= 1. So, WT (g) = ∆T (g)t0.

The roots ∆t(g) of the Cartan subalgebra t are the nonzero weights of t in g. We know
that ∆T (g)⊆X∗(T ) is identified with ∆t(g)⊆t∗ (by taking the differential at e).

We will usually think of roots on the level of Lie algebras: ∆ = ∆t(g)⊆ X∗(T ) ⊆t∗.
Moreover, we will consider X∗(T ) inside a real vector space

V = X∗(T )R
def
= X∗(T )⊗ZR.

This is an R-form of its complexification

t∗ = X∗(T )⊗ZC = (X∗(T )⊗ZR)⊗RC = V⊗RC.

It will turn out that this is naturally an Eucledean vector space and that roots have nice
properties with respect to this Eucledean geometry.
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Remark. We will get familiar with properties of roots in SLn, or equivalently in the Lie
algebra sln. The upshot is that “any computation in g can be reduced to calculating
with roots”. It will turn out that the “same” mechanism generalizes to all semisimple Lie
group over C.(9)

4.7.2. Borel subgroups and subalgebras. A lie algebra a is said to be solvable if it has a
finite filtration by ideals 0 = a0⊆a1⊆· · ·⊆aN = a, such that the graded pieces ap/ap−1 are
abelian Lie algebras.

The Borel subalgebras of a Lie algebra g are defined as maximal solvable subalgebras. We
also define Borel subgroups as a subgroups whose Lie algebras are Borel subalgebras.

5. The structure of SLn(C) and sln(C)

5.0.1. The structure of a semisimple Lie algebras g. It can be encoded combinatorially
on several levels.

First a choice of a Cartan subalgebra h defines a system of roots ∆ = ∆h(h) (these are the
nonzero eigenvalues of g

2
in g). This is a finite subset of an Euclidean vector space which

remembers g. So, this can be thought of as incarnation of g in linear combinatorics.

Next, for any choice of a base Π⊆∆ of a root system ∆ its Cartan matrix (the normalized
inner products in Π) remembers ∆. Finally, the corresponding Dynkin graph D is just a
graphical representation of the Cartan matrix. So, D can be viewed as an incarnation of
g in ordinary combinatorics.

5.0.2. Usefulness of combinatorial encodings. A. Classification of semisimple Lie algebras.
It reduces to classification of Dynkin graphs, i.e., to combinatorics.

B. Calculation. Knowing how to calculate in the Lie algebra g is mostly the same as
knowing how to calculate in the root system ∆.

C. Classification of irreducible representations and calculations with these. We think of
these in terms of the linear combinatorics of root systems.

5.0.3. The parallel existence of semisimple Lie algebras on several levels. The following
are equivalent manifestations of one idea

(1) A semisimple complex Lie algebra g.
(2) A simply connected complex semisimple Lie group G.
(3) A simply connected compact real Lie group U .
(4) A root system (∆, V ).
(5) A Dynkin graph Γ.

A small mystery: while we have good understanding of

9 Actually, once we go beyond the simply laced types the mechanism will become slightly more subtle.
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• 1 and 2: this is just the relation of a Lie algebra and its simply connected group;
• 2 and 3: U is a maximal compact subgroup of G and G is a complexification of U ;
• 1 and 4, as well as 4and 5, were described above.

we do no really understand other relations directly. For instance, I like to think of vertices
of a Dynkin graph as particles and the bonds in the graph as interactions between particles.
Then the question is how to find g directly from this particle picture?

The following are equivalent manifestations of one idea

(1) A semisimple complex Lie algebra g.
(2) A simply connected complex semisimple Lie group G.
(3) A simply connected compact real Lie group U .
(4) A root system (∆, V ).
(5) A Dynkin graph Γ.

A small mystery. We have good understanding of some of these relations:

• 1 and 2: this is just the relation of a Lie algebra and its simply connected group;
• 2 and 3: U is a maximal compact subgroup of G and G is a complexification of U ;
• 1 and 4, as well as 4 and 5: were described above.

However, we do not really understand other relations directly. For instance, I like to
think of vertices of a Dynkin graph as particles and the bonds in the graph as interactions
between particles. Then the question is how to find g directly from this particle picture?

5.0.4. The case g = sln. The corresponding group is G = SLn(C). We will see that for
sln the roots are just a name for off diagonal positions in an n×n matrix. However, it
turns out that they satisfy a useful formalism called system of roots.

5.1. Summary: sln is controlled by roots. sln is the standard example of the class
of semisimple Lie algebras (which we will define later). A key feature of Lie algebras g
in this class is that “everything” is captured by combinatorial data called the system of
roots of g.

The combinatorial data come from consider certain maximal abelian Lie subalgebra h
of g called Cartan subalgebra. By considering g as a representation over h we find the
finite set ∆⊆h∗ of roots of the Lie algebra g. It is defined as the nonzero weights (i.e.,
eigen-functionals) of the action of h on g. The structure of the root system on the set
∆ essentially refers to angles between the roots and to lengths of roots. Here roots are
considered as vectors in the vector space h∗ endowed with a certain inner product.

Each root α gives a copy sα of sl2 that lies inside g. The subalgebras sα generate g, so
the Lie algebra structure of g is captured by the relation of Lie subalgebras sα. These are
in turn determined by angles and lengths for the corresponding roots.
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5.2. Group SLn(C) and its Lie algebra sln. We consider the complex Lie group G =
SLn(C) and its Lie algebra g = sln(C). (We often omit C from notations.)

Lemma. For n > 1, SLn(C) is simply connected.

Proof. A. Reduction to SU(n). On matrices define the operation x∗ = (x)tr (complex
conjugation and transpose). This is an anti-involution, i.e., (xy)∗ = y∗x∗. On the
group G = SLn(C) we have an involution θ(x) = x−∗ (meaning (x∗)−1). This is an
anti-holomorphic map and one can view it as a nonstandard action of the Galois group
Γ(C/R) on SLn(C). Its fixed points are the unitary matrices, they form a compact real
form U = SU(n) of G = SLn(C).

The corresponding involution on g = sln(C) is θ(x) = −x∗. Its fixed points are the anti-
hermitian matrices, they form the Lie algebra u = su(n) of U . We have g = u⊕p for the
space p of hermitian matrices in sln(C). The first fact we will need is that the following
map is a homeomorphism:

(Cartan decomposition) U× ip
ι−→ ι(u, x)

def
= u expG(x).

This does reduce the problem to the smaller subgroup SU(n).

B. The case of SU(2). This will follow when we identify this group with the 3-sphere S3.
Each U(n) acts simply transitively on the space of all orthonormal bases u1, ..., un in Cn.
From here one finds that SU(2) acts simply transitively on the set of all unit vectors in
C2 and this is S3.

C. The general case of SU(n). By using the same fact as in B one finds that SU(n) is
iterated bundle of spheres Sp with p > 2. This suffices. �

Now we know that the finite dimensional representations are the same for G and g. The
Lie algebra is a much simpler object so we will learn its structure theory and use it to
find the irreducible representations.

Lie algebra g = sln lies inside a larger Lie algebra g0 = gln and this will occasionally be
convenient.

5.2.1. Lie algebra sl2. In this fundamental special case everything will be very explicit.
Lie algebra sl2 has a standard basis e, h, f below. This is a pattern that in some sense
persists for all semisimple Lie algebras g, however h becomes a Cartan subalgebra h of g,
and the pair e, h becomes a Borel subalgebra b.

On the other hands copies of sl2 will turn out to be the basic building block for all
semisimple Lie algebras g, i.e., g is in some sense glued from subalgebras isomorphic to
sl2.

Lemma. (a) The following elements of sl2 form a basis (called the standard basis)

e = ( 0 1
0 0 ) , f = ( 0 0

1 0 ) , h = ( 1 0
0 −1 ) .



49

(b) This basis satisfies

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h. �

(c) sl2 is the free Lie algebra on three generators e, h, f and the relations from (b).

Corollary. e and f have “symmetric” roles in sl2. (There is a unique automorphism of
the Lie algebra sl2 that takes e, h, f to f,−h, e.) �

5.2.2. Cartan and Borel subalgebras of sln. The following subspaces of g0 = gln have
special names.

• Diagonal matrices h0
def
=

 ∗ ∗ ...
∗
∗

 (“Cartan subalgebra”);

• Upper triangular matrices b0
def
=

 ∗ ∗ ··· ∗
∗

...
...
∗ ∗
∗

 (“Borel subalgebra”);

• Strictly upper triangular matrices n0
def
=

 0 ∗ ··· ∗
0

...
...

0 ∗
0


(“the nilpotent radical of the Borel subalgebra b0”).

Notice that b0 = h0⊕n0.

The same terminology is used for intersections with g = sln: h = h0 ∩ g is a Cartan
subalgebra of g, b = b0 ∩ g is a Borel subalgebra of g, n = n0 ∩ g = n0 is the nilpotent
radical of b, and we have b = h⊕n.

Lemma. (a) g0, b0, h0, n0 are associative algebras.

(b) g, b, h, n are Lie algebras.

(c) b is really a Borel subalgebra of g, i.e., a maximal solvable subalgebra (the definition
is in 4.7.2).

Proof. (a) Consider the lines Li = kei and subspaces Fi = L1⊕· · ·⊕Li of V = kn. Then

• h0 consists of all A ∈Mn(k) such that ALi⊆Li;
• b0 consists of all A ∈Mn(k) such that AFi⊆Fi;
• h0 consists of all A ∈Mn(k) such that AFi⊆Fi−1.

(b) Now g, b0, h0, n0 are all known to be Lie subalgebras of g0. So the intersections b, h, n
are also Lie subalgebras. �
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Remarks. (0) Symmetrically, one has subalgebras b−0 , b
− of lower triangular matrices and

n−0 = n− of strictly lower triangular matrices

(1) In groups we also have analogous objects G0⊆B0 = N nH0 and G⊆B = N nH.

Example. In sl2 we have g = {( a b
c −a )} with h = kh, n = ke, h− = kf . So, the Lie

subalgebras h, n, n− of g will play the role analogous to that of the basis h, e, f of sl2.

Lemma. H is a Cartan subgroup of G and h is a Cartan subalgebra of g (and the same
for G0).

5.2.3. Roots of sln. Recall that for a representation V of g and λ ∈ h∗, the λ-weight space
in V is

Vλ
def
= {v ∈ V : hv = 〈λ, h〉·v for all h ∈ h}.

We say that λ is a weight of V if Vλ 6= 0. Let W(V ) be the set of weights in V .

Remark. A basis of h∗0 is given by linear functionals εoi such that 〈εoi , diag(a1, ..., an)〉 = ai.
We denote by εi the restriction of εoi to h⊆h0, so

∑
εi = 0 (since

∑
εoi is the trace on

h0) and ε1, ..., εn−1 is a basis of h∗.

5.3. Roots of sln. Here we use the above Cartan subgroup H of G = SLn and the
corresponding Cartan Lie subalgebra h⊆g. These produce the set of roots ∆ = ∆h(g)
(the non-zero weights of h in g).

We will see how ∆ controls the Lie algebra structure of g, its action on representations.
Also, any root α ∈ ∆ defines an element α̌ of the Lie algebra h and subalgebra sα ∼= sl2.

Lemma. (a) The roots of sln are all linear functionals αij
def
= εi−εj ∈ h∗ for 1 ≤ i 6= j ≤ n.

The corresponding weight spaces (now called root spaces) are (for the standard basis of
matrices Eij)

gεi−εj = kEij.

(b) W(sln) = ∆(sln)t{0} and g0 = h.

(c) We have g = h ⊕ ⊕α∈∆ gα.

(d) The roots in n (i.e. the roots α such that gα⊆n) are all εi− εj with i < j. We denote
these by ∆+ and call them the positive roots. Then n = ⊕α∈∆+ gα.

5.3.1. Roots and representations. Here we notice how roots control the action of g on
representations.
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Lemma. (a) For a representation V of g and λ ∈ W(V ), α ∈ W(g) = ∆t0 we have

gα Vλ ⊆ Vλ+α.

(a’) In particular for α, β ∈ ∆t0

[gα, gβ]⊆ gα+β.

(b) For α ∈ ∆, any x ∈ gα acts on any finite dimensional representation of g as a nilpotent
operator. In particular x itself is a nilpotent matrix. �

5.3.2. Roots and commutators. Here we will refine the lemma 5.3.1.b on how roots control
the Lie algebra structure of g.

Lemma. (a) If α, β, α + β are roots then [gα, gβ] = gα+β.

(b) If α, β ∈ ∆ but α + β /∈∆ and β 6= −α then [gα, gβ] = 0.

(c) For α ∈ ∆, [gα, g−α] is a one dimensional subspace of h.

Proof. It is easy to see that EijEpq = δj,pEiq, hence [Eij, Epq] = δj,pEiq − δi,qEpj,
(a) We know that α = εi − εj and β = εp − εq with i 6= j and p 6= q. Then α + β is a
root (i.e., of the form εr − εs with r 6= s), iff j = p and i 6= q or (symmetrically) q = i
and j 6= p. In the first case α+ β = αij + αiq = εi− εq = αiq and [Eij, Ejq] = Eiq. In the
second case α + β = αij + αpi = εp − εj = αpj and [Eij, Epi] = −Epj. So, in both cases
[gα, gβ] = gα+β.

(b) [gα, gβ]⊆gα+β but the conditions are that α + β /∈ ∆t0 =W(g) hence gα+β = 0

(c) [Eij, Eji] = Eii − Ejj. �

5.3.3. sl2 subalgebra sα⊆g and α̌ ∈ h associated to a root α. For a root α ∈ ∆ let

sα
def
= gα ⊕ [gα, g−α] ⊕ g−α.

Lemma. (a) sα is a Lie subalgebra.

(b) There is a Lie algebra map ψ : sl2 → g such that 0 6= ψ(e) ∈ gα, ψ(f) ∈ g−α. Any
such ψ gives an isomorphism ψ : sl2 → sα.

(c) The image ψ(h) is independent of the choice of ψ. We denote it α̌.

(d) Then [gα, g−α] = sα ∩ h has basis α̌.

Proof. (a) [gα, g−α]⊆gα+−α = h and h preserves each gφ. Anyway, (a) follows from (b).

(b) A root α = αij, i.e., a choice of indices i 6= j, gives an embedding of of Lie algebras
φ : sl2↪→sln by φ(e) = Eij, φ(f) = Eji, φ(h) = Eii − Ejj.
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For another choice ψ, ψe ∈ gα = kφe we have ψ(e) = aφe, ψ(f) = bψf for some scalars
a, b. Then ψh = abφ(h) as

ψh = ψ[e, f ] = [ψe, ψf ] = [aφe, bφf ] = abφ[e, f ]h = abφ(h).

So it remains to notice that ab = 1 since

2ψe = ψ[h, e] = [ψh, ψe] = [ab φh, aφe] = a2b[φh, φe] = a2b φ[h, e] = a2b 2φe = ab 2ψe.

Finally, sα ∩ h = (gα ⊕ [gα, g−α] ⊕ g−α)h = [gα, g−α] = k[φe, φf ] = kφh = kα̌ for
α = αij. �

Remark. α̌ij = Eii − Ejj was noticed in the proof of the lemma.

5.3.4. Real form h∗R of h∗, root lattice Q and the positive cone Q+. Recall that h∗0 has
a basis εi dual to the basis Eii of h0 (1 ≤ i ≤ n). Their restrictions to h are linear
functionals εi = εoi |h on h with

∑n
1 εi = 0. While εi for 1 ≤ i < n is a basis of h∗, we will

actually use another basis of h∗ given by the simple roots

Π
def
= {αi

def
= αi,i+1 = εi − εi+1; i = 1, ...n− 1}.

Lemma. Π is a basis of h∗.

Proof. We use the relation −εn =
∑

i<n εi =
∑

i<n αin + εn. Solving for εn we get that
εn lies in spanQ∆.

However, spanQ∆ = spanQΠ since ∆+⊆ spanNΠ (for i < j one has αij = αi + αi+1 +
· · · + αj−1), hence ∆⊆ spanZΠ. Now spanQ + Π = spanQ∆ contains εn, hence also all
εi = εn + αni. �

Now, inside h∗ we define

• the real vector subspace h∗R
def
= ⊕n−1

1 Rαi generated by simple roots,

• the subgroup Q
def
= ⊕n−1

1 Zαi generated by simple roots,

• the semigroup Q+
def
= ⊕n−1

1 Nαi generated by simple roots.

We have h∗⊇h∗R⊇Q⊇Q+. By the preceding proof we know that Q = spanZ∆ so we call
it the root lattice and Q+ = spanN∆+ so we call it the positive cone.

Lemma. For λ, µ ∈ h∗ let λ ≤ µ mean that µ−λ ∈ Q+. This is a partial order on h∗. �

5.3.5. The inner product on h∗R. We will first define it by a formula and then we will
deduce it from an obvious inner product on h∗0,R.
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Lemma. (a) On h∗R there is a unique inner product such that (αi, αj) is

• 2 if i = j,
• −1 if i, j are neighbors, i.e., |j − i| = 1,
• 0 otherwise.

(b) The inner products of roots are (αij, αpq) = δi,p − δi,q − δj,p + δj,q. In more details

• (αij, αpq) = 0 when {i.j} and {p, q} are disjoint.
• (αij, αiq) = 1 when q /∈{i, j};
• (αij, αij) = 2.

Proof. (a) We can embed the vector space h∗R into h∗0,R
def
= ⊕n1 Rεoi so that αi goes to

εoi − εoi+1. Then point is that on h∗0,R we have an obvious inner product (−,−) with
orthonormal basis εoi . It restricts to an inner product on h∗R such that

(αij, αpq) = δi,p − δi,q − δj,p + δj,q.

Now all formulas in (b) are clear. �

5.3.6. Lie algebra structure in therms of angles between roots.

Corollary. (a) All roots α ∈ ∆(sln) have the same length (=
√

2).

(b) All possibilities for the angle θ between two roots α, β in ∆(sln) are

(1) θ = 2π/3 iff α + β is a root;
(2) θ = π/3 iff α− β is a root;
(3) θ = π/2 iff neither of α± β is a root and β 6= ±α.
(4) θ = 0 iff β = α;
(5) θ = π iff β = −α.

(c) For β 6= ±α the following are equivalent (i) θ = 2π/3; (ii) (α, β) = −1; (iii) α + β is
a root; (iv) [gα, gβ] 6= 0; (v) [gα, gβ] = gα+β.

Proof. The cosine of the angle between α, β is (α,β)√
(α,α)
√

(β,β)
= 1

2
(α, β).

(1) If α + β is a root then the pair α, β (or β, α) equals αij, αjk for some distinct i, j, k.
Then (α, β) = −1 and the cosine is −1

2
.

(2) If α − β is a root then α, β (or −α,−β) are of the form αij, αkj for distinct i, j, k.
Then (α, β) = 1 and the cosine is 1

2
.

(3) If neither of α ± β is a root and β 6= ±α then our roots are of the form αij, αpq for
disjoint i, j and p, q. Then (α, β) = 0.

(4-5) Clearly if β = α then θ = 0 and β = −α gives θ = π.
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By now we have proved implications in (1-5) (from RHS to LHS). This implies equiva-
lences. �

6. Classification of semisimple Lie algebras

6.1. Intro.

6.1.1. The structure of a semisimple Lie algebras g. It can be encoded combinatorially
on several levels.

First a choice of a Cartan subalgebra h defines a system of roots ∆ = ∆h(h) (these are the
nonzero eigenvalues of g

2
in g). This is a finite subset of an Euclidean vector space which

remembers g. So, this can be thought of as incarnation of g in linear combinatorics.

Next, for any choice of a base Π⊆∆ of a root system ∆ its Cartan matrix (the normalized
inner products in Π) remembers ∆. Finally, the corresponding Dynkin graph D is just a
graphical representation of the Cartan matrix. So, D can be viewed as an incarnation of
g in ordinary combinatorics.

6.1.2. Usefulness of combinatorial encodings. A. Classification of semisimple Lie algebras.
It reduces to classification of Dynkin graphs, i.e., to combinatorics.

B. Calculation. Knowing how to calculate in the Lie algebra g is mostly the same as
knowing how to calculate in the root system ∆.

C. Classification of irreducible representations and calculations with these. We think of
these in terms of the linear combinatorics of root systems.

6.1.3. The parallel existence of semisimple Lie algebras on several levels. The following
are equivalent manifestations of one idea

(1) A semisimple complex Lie algebra g.
(2) A simply connected complex semisimple Lie group G.
(3) A simply connected compact real Lie group U .
(4) A root system (∆, V ).
(5) A Dynkin graph Γ.

A small mystery: while we have good understanding of

• 1 and 2: this is just the relation of a Lie algebra and its simply connected group;
• 2 and 3: U is a maximal compact subgroup of G and G is a complexification of U ;
• 1 and 4, as well as 4and 5, were described above.

we do no really understand other relations directly. For instance, I like to think of vertices
of a Dynkin graph as particles and the bonds in the graph as interactions between particles.
Then the question is how to find g directly from this particle picture?
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The following are equivalent manifestations of one idea

(1) A semisimple complex Lie algebra g.
(2) A simply connected complex semisimple Lie group G.
(3) A simply connected compact real Lie group U .
(4) A root system (∆, V ).
(5) A Dynkin graph Γ.

A small mystery. We have good understanding of some of these relations:

• 1 and 2: this is just the relation of a Lie algebra and its simply connected group;
• 2 and 3: U is a maximal compact subgroup of G and G is a complexification of U ;
• 1 and 4, as well as 4 and 5: were described above.

However, we do not really understand other relations directly. For instance, I like to
think of vertices of a Dynkin graph as particles and the bonds in the graph as interactions
between particles. Then the question is how to find g directly from this particle picture?

6.1.4. The case g = sln. The corresponding group is G = SLn(C). We will see that for
sln the roots are just a name for off diagonal positions in an n×n matrix. However, it
turns out that they satisfy a useful formalism called system of roots.

6.2. Root systems. Here we consider the abstract notion of root systems. This is a
combinatorial equivalent of the notion of semisimple Le algebras over C. However, we
will only consider this relation in the case of sln (lemma 6.2.2). The general statement
is:

Theorem. For a Cartan subalgebra h of a semisimple Lie algebra g, the set of roots ∆⊆h∗R
is a root system.

6.2.1. Reflections. A reflection in vector space V requires a pair v ∈ V , v∗ ∈ V ∗, however
if V is an Euclidean real vector space than a single vector ∈ V will suffice. We present
both points of view since both will appear in applications to Lie algebras and root systems.

For a vector space V a pair of a vector v ∈ V and a “covector” v∗ ∈ V ∗ such that

〈v∗, v〉 = 2 defines a liner map sv,v∗ : V → V by sv,v∗x
def
= x− 〈v∗, x〉v.

Lemma. (a) sv∗,v is identity on the hyperplane (v∗)⊥⊆V and sv,v∗ = −1 on kv.

(b) s2
v,v∗ = idV . Proof. In (a), for x = v we have sv∗,vv = v − 〈v∗, v〉v = v − 2v = −v.

(b) follows. �

We say that sv,v∗ is a reflection in the hyperplane (v∗)⊥.
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Remarks. (0) We say that sv,v∗ is a reflection in the hyperplane (v∗)⊥.

(1) [Orthogonal reflections in Euclidean vector spaces.] If V is a real vector space with an
inner product then a non-zero vector α ∈ V defines a vector and an operator sα on V by

α̌
def
=

2

(α, α)
α ∈ V sαx = x− (α̌, x)α = x− 2

(α, x)

(α, α)
α.

For the linear functional α̌∗
def
= (α̌,−) ∈ V ∗ we have 〈α̌∗, α〉 = (α̌, α) = 2.(10)

(2) Notice that the sα is orthogonal, i.e., it preserves the inner product on V . (Because
V = Rα⊕Hα is an orthogonal decomposition and sα is ±1 on summands.) Actually, sα
is the unique orthogonal reflection in Hα.

6.2.2. Root systems. A root system in a real vector space V with an inner product is a
finite subset Σ⊆V − 0 such that

• For each α ∈ Σ, reflection sα preserves Σ.

• For α, β ∈ Σ, 〈α, β̌〉 = 2(α,β)
(α,α)

is an integer.

• Σ spans V .

We say that a root system is reduced if α ∈ Σ implies that 2α/∈Σ. The non-reduced root
systems appear in more complicated representation theories. When we say root system
we will mean a reduced root system.(11)

The rank r of the root system ∆ is defined as dim(V ).

The sum of two root systems (Vi,∆i) is (V1⊕V2,∆1t∆2). We say that a root system
(V,∆) is irreducible if it is not a sum.

Lemma. (a) Roots ∆ of sln form an irreducible reduced root system in the Euclidean
space h∗R.

(b) α̌ = α for each root.

Proof. Most of the properties are clear form the list αij of roots. For instance there are
finitely many roots and none is zero. Already the roots αi span h∗R.

For each α ∈ ∆, we have α̌ = 2
(α,α)

α = α. Therefore, for α, β ∈ ∆ we have (α, β̌) = (α, β)

which is one of 0,±1 so it is an integer.

Finally, to see that reflections sα preserve ∆ we consider sαβ = β− (α̌, β)α = β− (α, β)α.
If β ⊥ α this is β ∈ ∆. If α±β is a root then (α, β) = ∓, hence sαβ = β−∓α = β±α ∈
∆. �

10 The inner product identifies V and V ∗ by v 7→ (v,−). This identifies α̌ ∈ V with α̌∗ ∈ V ∗.
11 Non-reduced root systems appear in more complicated representation theories. For instance for the

non-split real groups.
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6.2.3. Positive roots and bases. In the study of representations of a semisimple Lie algebra
g it is essential to choose a “direction” in g. The precise meaning of that is a choice of
a Borel subalgebra b⊆g.(12) On the level of roots this is described as a system of positive
roots or a base of a root system. We recall these definitions, the meaning in sln and the
equivalence of these two notions.

For a root system Σ a subset Σ+⊆Σ is called a system of positive rots if Σ = Σ+ t −Σ+

and Σ+ is closed under addition within Σ, i.e.,

• If α, β ∈ Σ+ and α + β ∈ Σ then α + β ∈ Σ+.

Then ∆± = ∆ ∩ ±spanN(Π) are called the positive and negative roots. We often write
“α > 0” for “α ∈ ∆+”.

The existence and construction of systems of positive roots is given by

6.2.4. Sublemma. (a) We say that γ ∈ V is regular if (γ, α) 6= 0 for α ∈ ∆ (i.e., if it lies
in one of the chambers in V ). For any regular γ

∆+
γ

def
= {α ∈ ∆; (γ, α) > 0}

is a system of positive roots.

(b) In particular, any root system has a base.

A base of a root system ∆ is a subset Π⊆∆ such that Π is an R-basis of V and

∆ ⊆ spanN(Π) t − spanN(Π).

Once a basis Π is chosen its elements are called simple roots .

Lemma. (a) For the sln root system (V,∆), the roots ∆h(n) in the Lie subalgebra n (the
strictly upper triangular matrices) are

∆+ def
= ∆h(n) = {αij; i < j}.

This is a system of positive roots.

(b) For αi = αi,i+1, the subset Π = {α1, ..., αn−1 is the set of simple roots for ∆+.

Proof. The roots in either n or b are all αij with i < j. Since −αij = αji, −∆(n) is given
by the condition j < i, This makes Σ = Σ+ t −Σ+ clear. If α, β, α+ β ∈ ∆ then (after
possibly exchanging the order of α and β), we have α = αij, β = αjk. If α, β ∈ Σ+ then
i < j and j < k, hence α + β = αik with i < k. �

Corollary. gα with α ∈ Π generate the Lie subalgebra n.

The above lemma is an example of the following.

12 In general, Borel subalgebras are defined as maximal solvable subalgebras: 4.7.2.
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Proposition. (a) A system of positive roots ∆+ in ∆, defines a partial order x ≤ y in V
by y− x ∈ spanN(∆+). The the subset Π⊆∆+ consisting of all minimal elements of ∆+ is
a basis of the root system ∆.

(b) If Π is a basis of the root system ∆ then the ∆+ def
= spanN(Π) ∩ ∆ is a system of

positive roots.

(c) The two procedures in (a) and (b) give inverse bijections between all systems of positive
roots and all bases of ∆. �

6.2.5. Systems of positive roots and Borel subalgebras. The following explains the meaning
of systems of positive roots.

Lemma. Let (∆, h∗R) be the root system of a semisimple Lie algebra g with a Cartan h.
Then the Borel subalgebras b of g that contain h are in bijection with the systems of
positive roots ∆+⊆∆.

Proof. The basic observation is that the Lie subalgebras c of g that contain h correspond
to subsets C of ∆that are closed for addition in the sense that α, β ∈ C and α + β ∈ ∆
implies that α + β ∈ C. The relation is by c = g

2
⊕ ⊕α∈ C gα.

Now the claim of the lemma follows easily. �

Corollary. In this case the Weyl group also acts simply transitively on all Borel subalge-
bras of g that contain h. �

6.2.6. Chambers in V . For a root system ∆ in V , a chamber in V is a connected component
of V − ∪α∈∆ Hα where Hα = α⊥ is the hyperplane orthogonal to vector α.

Lemma. For a root system (V,∆) the systems of positive roots and chambers are “dual”
notions in the sense that.

(a) A choice of system of positive roots ∆+ defines a chamber by

C def
= {v ∈ V ; (α, v) > 0 for α ∈ ∆+}.

(b) Any chamber C defines a system of positive roots by

∆+ def
= {α ∈ ∆; (α, v) > 0 for v ∈ C}..

(c) These are inverse bijections. �

6.2.7. The Weyl group W of the root system ∆. This is the subgroup of GL(V ) generated
by the reflections sα for α ∈ ∆.

Lemma. (a) W preserves ∆.

(b) W is finite. �
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Corollary. For G = SLn the Weyl group is Sn.

Proof. For α = αij the reflection sα acts on the generators εi of h∗ as the transposition
sij. So, W is the group generated by transpositions, i.e., Sn. �

Theorem. The Weyl group W acts simply transitively on each of these three sets of
objects.

• (i) systems of positive roots ∆+ in ∆;
• (ii) bases Π of ∆;
• (iii) chambers in V .

These actions are compatible with the bijections between (i) and (ii) given in proposition
6.2.3 and between (i) and (iii) given in lemma 6.2.6. �

Remarks. (0)

Remark. One consequence is that all bases of ∆ behave the same so it suffices to consider
one.

(1) It is quite helpful to draw all chambers in sl2 and sl3 and see how S2 and S3 act simply
transitively on chambers.

(2) In sln the standard chamber is given by all
∑

ciε
i such that c1 < · · · < cn. By

reordering the set 1, ..., n we get all chambers.

Proposition. Consider a root system (∆,V) that comes from a semisimple complex group
G and its Cartan subgroup H. Then the Weyl group W (∆,V) coincides with the Weyl
group W (G,H) defined as NG(H)/H (the quotient of the normalizer of the Cartan by
the Cartan itself).

Here, the group NG(H)/H acts on H by conjugation since H is commutative. Then it also
acts on X∗(H) and it preserves ∆⊆X∗(H). The claim is that inside GL(h∗) it coincides
with the Weyl group of the root system.

Example. In the case of G = GLn we observed that W (G,H) is Sn since NG(H) is the
semidirect product H nSn. defined as NG(H)/H (3.1.4). For G = SLn the normalizer of

H does not contain Sn however, for any root α ∈ ∆ there is an element
•
sα in SLn such

that it normalizes H and acts on h∗ as the reflection sα. In this way we still get that
NG(H)/H realizes all reflections sα, α ∈ ∆; hence the whole Weyl group W (∆,V) = Sn.

Proof. If we are in SL2 then such element is given by
•
sα = ( 0 1

−1 0 ). Notice that it has
order 4 and its square is the element

( −1 0
0 −1

)
that generates the center of SL2. The claim

follows for any root α in SLn since the root defines an embedding of SL2 in Sn. �
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6.2.8. Bases and Dynkin diagrams. To a base Π of a root system (V,∆) we associate its
Cartan matrix C : π2 → Z defined by

Cαβ
def
= (α, β̌).

We also encode it as the Dynkin diagram of Π. It is a graph whose vertices are given by
the set Π of simple roots. If |α| ≥ |β| we connect α to β with |(α, β̌)| bonds. If |λ| > |be|
we also put an arrow from α to β over these bonds.

Lemma. Draw the Dynkin diagram for sln is 1−−2−−· · ·−n− 1. (It is called An−1.)

6.2.9. Duality operation for root systems and Langlands duality.

Lemma. For a root system ∆ in V the subset

∆̌
def
= {α̌; α ∈ ∆}

is also a root system in V . It is called the dual root system. �

Remark. We have seen that for sln we have ∆̌ = ∆. This is true for all simply laced Lie
algebras.

Remark. (a) If (∆, V ) corresponds to a semisimple Lie algebra g then (∆̌, V ) corresponds
to a semisimple Lie algebra called the Langlands dual ǧ of g.

(b) One of the key efforts in mathematics is to understand the Langlands conjectures these
conjectures in Number Theory have representation theoretic formulation. In the simplest
case when the groups involved are abelian the Langlands conjectures restate the Class
Field Theory a key part of Number Theory.

They predict – in a very precise and often involved way – how representation theory of a
group G with Lie algebra g is easily understood from the Langlands dual group Ǧ with
the Lie algebra ǧ.

(c) In this sense the simplicity of identification ∆̌ = ∆ for simply laced Lie algebras is

misleading. IfG = SLn then Ǧ is different, it is actually isomorphic to PGLn
def
= GLn/Gm.

Moreover, there is no way to construct Ǧ from G without Geometric Representation
Theory.

(d) Related conjectures in physics are called dualities (S-duality, mirror symmetry, sym-
plectic duality(13)... Each of these says that two seemingly unrelated objects contain the
same information. We do not understand a single one of these dualities.

A huge amount of details are known.

13 This one was proposed by Braden and his coauthors.
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6.3. Appendix, Classification of root systems. We are not particularly interested in
the complete list of root systems but in special examples. From this point of view the
following facts are not of our central interest.

6.3.1. Bases and Dynkin diagrams.

Lemma. For α 6= β in a base Π we have

(a) (α, β) ≤ 0, i.e., the angle is ≥ π/2;

(b) α− β is not a root. �

To base Π we associate its Cartan matrix C : π2 → Z defined by

Cαβ
def
= (α, β̌).

We also encode it as the Dynkin diagram of Π. It is a graph whose vertices are given by
the set Π of simple roots. If |λ| ≥ |be| we connect α to β with |(α, β̌)| bonds. If |λ| > |be|
we also put an arrow from α to β over these bonds.

Notice that if α and β are not connected in the Dynkin diagram iff α ⊥ β. For the reason
the Dynkin diagram of a sum of root systems ∆i is a disjoint union of Dynkin diagrams
of ∆i’s,

Theorem. (a) A root system ∆ is completely determined by its Dynkin diagram.

(b) A root system ∆ is irreducible iff its Dynkin diagram is connected.

(c) The irreducible root systems fall into 4 infinite series called An, Bn, Cn, Dn for n =
1, 2.... and 5 more (“exceptional”) root systems called E6, E7, E8, F4, G2.

6.3.2. Classical series of root systems. The following are all infinite series of irreducible
root systems.

Let Here E = ⊕n1 Rεi for orthonormal εi. Type A. Here, V =
∑

ciεi with
∑

ci = 0.
The roots are all ±εi ± εj where 1 ≤ i < j ≤ n. The rank is n − 1 and root system is
called An−1. We have see that these are roots of the Lie algebra sln with respect to the
diagonal Cartan h.

Notice that ∆̌ = ∆ as α̌ = α for each root α.

Type B. Here V = E and ∆ consists of all ±εi and ±εi ± εj for i < j.

Type C. Here V = E and ∆ consists of all ±2εi and ±εi ± εj for i < j.

Type D. ...

6.4. Classification of semisimple Lie algebras.
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Theorem. (a) For a Cartan subalgebra h of a semisimple Lie algebra g, the set of roots
∆⊆h∗R is a root system.

(b) The root system of g determines g up to an isomorphism.

(c) Any root system comes from a semisimple Lie algebra.

Remarks. (i) The root system of a sum ⊕ gi of semisimple Lie algebras gi is the sum of
root systems of the summands gi. In particular, the Dynkin diagram of ⊕ gi is a disjoint
union of Dynkin diagrams of gi’s.

(ii) A semisimple Lie algebra is simple iff its root system is irreducible, i.e., iff its Dynkin
diagram is connected.

Corollary. The semisimple Lie algebras over k = C are classified the same as root systems
or Dynkin diagrams.

Remarks. (0) Each root α ∈ ∆ encodes an sl2-subalgebra sα of g. The geometry of the
root system gives all information on how the sl2-subalgebras sα are related and how to
reconstruct g from these subalgebras.

6.4.1.

Theorem. Simple Lie algebras over C are classified by “Dynkin graphs” of one of the types
A,B,C,D,E,F,G. �

Remarks. (0) Dynkin graphs are actual graphs in the ADE cases, these are called simply
laced cases. The remaining cases are obtained from ADE cases by operation of folding,
i.e., taking a “quotient” by a cyclic symmetry group Γ (Z2 or Z3), these are called multiply
laced cases. Here, “multiple” means that one edge will be drawn with multiplicity (2 or
3) and an arrow which should be viewed as inequality > as it indicates which of the two
vertices it connects is considered as being “longer”.

(2) The infinite series are An, Bn, Cn, Dn (for n = 1, 2, ... and with some small overlaps),
these are called classical. These correspond to classical groups SLn+1, O2n, Sp2n, O2n+1

whose meaning is obvious. Finite series E6, E7, E8, F4, G2 are called exceptional. They are
more mysterious because they tend to appear in some subtle but attractive geometries.
For instance group E8×E8 is one of 5 equivalent ways to describe String Theory.

(3) The vertices in the Dynkin graph associated to a semisimple Lie algebra g are found
in g as simple roots. The notion of roots is an encoding of a semisimple Lie algebra g in
terms of its Cartan subalgebra t, see ...

Remark. We will not prove this theorem (the proof has a “combinatorial” part), but we
will get some understanding of how it works.
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6.5. Appendix. More on root systems. Again, this material on general root systems
is here only for encyclopedic reasons.

6.5.1. Rank ≤ 2 root systems. The rank two root systems are of interest because they
capture all possible relative positions of two roots α, β.

Lemma. (a) If rank is 1 the root system is isomorphic to A1.

(a) If rank is 2 the root system is isomorphic to A1⊕A1, B2 = C2, G2. �

Corollary. The angles between two roots can be π, π
2
, π

3
, π

4
, π

6
, 0 and also 2π

3
, 3π

4
, 5π

6
.

6.5.2. The α-string of roots through β.

Proposition. For α, β ∈ ∆ not proportional, we have

〈β, α̌〉 = r − s

where

• s is the maximum of all p ∈ N such that β + pα ∈ ∆ and
• r is the maximum of all q ∈ N such that β − qα ∈ ∆.

(b) For any p ∈ [−r, s] β + pα is a root.

Remark. Root strings are of length ≤ 4. Length 4 is found in G2 only.

Part 3. Representations of semisimple Lie groups and Lie algebras

The key results of the course are the classification of finite dimensional representations of
semisimple Lie groups and Lie algebras in section 7.2.

The category of finite dimensional g modules lies in a larger category of representations
of a semisimple Lie algebra g called category O. These are all g modules generated by
finitely many primitive vectors. (ere O stands for “ordinary” meaning the “most obvious”
representations). The basic results on category O are recalled in section 8. However, the
classification of finite dimensional representations in section 7.2 has already introduced
the Verma modules which are standard objects of category O. Moreover, in that section
we have also proved a classification of all irreducible objects in category O.

Category O is more subtle than the finite dimensional representations – it is not semisim-
ple and the understanding of characters of irreducibles is not possible without some use
of Hodge theory.
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7. Finite dimensional representations of semisimple Lie algebras [NOT YET
in the FINAL FORM]

We start in 7.1 with the complete description of the category of finite dimensional repre-
sentation theory of sl2.

sln

7.1. Finite dimensional representation theory of sl2. We have considered the Lie
algebra sl2 in 5.2.1.

7.1.1. Weights and primitive vectors. These are basic organizational concepts in repre-
sentation theory of sl2. A weight λ in a representation V of g = sl2 means an eigenvalue

λ of h in V . Then Vλ
def
= {v ∈ V ; hv = λv} is the weight λ subspace of V and dim(Vλ)

is called the multiplicity of the weight λ in V .

Lemma. (a) eVλ⊆ Vλ+2, fVλ⊆ Vλ−2, hVλ⊆ Vλ.

(b) V =
∑

λ∈C Vλ = V .

(c) All weights are integers.

Proof. (a) is easy to check. (b) and (c) follow from the fact that finite dimensional
representations are the same for the group SL2(C) and the Lie algebra sl2. �

7.1.2. Primitive vectors. The primitive vectors of weight λ in V are the non-zero vectors
in

V o
λ

def
= {v ∈ Vλ; ev = 0}

(also called the highest weight vectors of weight λ). For a primitive vector v we define the
vectors

vn
def
=

fn

n!
v ∈ V, .

So, v0 = v, v1 = fv etc.

Lemma. (a)

fvk = (k+1)vk+1, hvk = (λ−2k)vk k ∈ N and evk = (λ+1−k)vk−1, (k > 0).

(b) The nonzero vectors vn are independent.

(c) The sum
∑

Cvn ⊆ V is a g-submodule.

(d) If vn 6= 0 but vn+1 = 0 then λ = n.

Proof. (a) is a direct computation by induction. The formulas in (a) imply (b-d). �
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Corollary. (a) If V 6= 0 then V has a primitive vector.

(b) The weights of all primitive vectors are natural numbers.

(c) If v is a primitive vector of weight n ∈ N then v0, ..., vn are independent and vi = 0
for i > n.

Proof. (a) Since V is finite dimensional there are finitely many weights and they are inte-
gers, so some weight λ is the largest. Now any 0 6= v ∈ Vλ is primitive since eVλ⊆Vλ+2 = 0.

(b) follows from the part (d) of the lemma.

(c) Since the nonzero vectors vp are independent and V is finite dimensional, there is some
m ∈ N such that vm 6= 0 and vm+1 = 0. Then vi = 0 for i > m and v6 = 0 for i ≤ m. By
(d) we have m = n. �

7.1.3. Classification of irreducible finite dimensional modules for g = sl2. We will con-
struct irreducible representations L(n), n ∈ N, by formulas. (These formulas will turn
out to be from lemma 7.1.2.a.) Then we will prove that these are the only irreducible
representations.

Lemma. (a) For any n ∈ N there is a representation L(n) of sl2 of dimension n+ 1 given
by matrices

E =


0 n

0 n−1

... ...
0 2

0 1
0

 , H =


n
n−2

n−4

...
2−n

−n

 , F =


0
1 0

2 0
... ...

n−1 0
n 0

 .

(b) L(n) is irreducible and has a primitive vector of weight n.

(c) The standard basis e0, ..., en of kn+1 is of the form v0, ..., vn for the primitive vector e0

of weight n.

Proof. (a) One just checks that the operators E,H, F satisfy the commutator relations of
e, h, f ∈ g.

(b) On any g-invariant subspace U⊆L(n) operator H is semisimple, so U 6= 0 implies
that U contains one of standard basis vectors e0, ..., en of L(n+ 1) = kn+1. But then the
formulas for the action of e, f imply that U contains all ei. Also, the formulas show that
e0 is a primitive vector of weight n.

The final claim (c) just says that formulas in (a) are the same as in lemma 7.1.2.a. �

Theorem. L(n), n ∈ N, is a classification of irreducible finite dimensional representations
of sl2.

Proof. All L(n) are irreducible by the lemma. They are non-isomorphic since the dimen-
sion of L(n) is n + 1. So, it remains to check that each finite dimensional irreducible
representation V of sl2 is isomorphic to precisely one of L(n).
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However, such V contains a primitive vector v by lemma 7.1.2. Actually, the weight of v
is some n ∈ N by corollary . Then again, by lemma V contains a submodule spanned by
vectors v0, ...vn so by irreducibility this is all of V . Finally, V is isomorphic to L(n) by
the observation in 7.1.3. �

Corollary. (a) Any irreducible finite dimensional sl2-module V has a unique primitive
vector (up to an invertible scalar). Its weight n is the highest weight of V . All weight
multiplicities in V are ≤ 1.

(b) The dual V ∗ of any irreducible finite dimensional representation V of sl2 is isomorphic
to V .(14) �

Remark. So, the irreducible modules are classified by their highest weights by N 3
n 7→ L(n).

7.2. Finite dimensional representations of semisimple Lie algebras: Announce-
ment.

7.2.1. Generalizing the sl2 situation: Cartans, Borels and dominant weights. The key
observation in the classification of sl2 representations is that finite dimensionality of a
representation implies that it has finitely many weights; so if you walk in any direction
(e or f) you will eventually fall off a cliff – and the last thing you will see is a primitive
vector (for e or for f respectively).

This generalizes for finite dimensional representations of any semisimple complex Lie
group G or its Lie algebra g.

(0) We start by replacing the element h of sl2 with a Cartan subalgebra h of g (corre-
sponding to H⊆G). In the new context, a weight of a representation V of g is an element
λ ∈ h∗ such that the corresponding h-eigenspace Vλ = {v ∈ V ; hv = 〈λ, h〉·v (h ∈ h)}
is non-zero. If V is a representation of G then its weights lie in the lattice of H-integral
weights X∗(H)⊆h∗.
(1) Then one replaces e ∈ sl2 and its relation to h, with a Borel subalgebra b of g that
contains h. This provides a choice of a direction in g.

On the level of roots, the set of roots ∆ of h in g generates the root sublattice Q⊆X∗(H).
The “direction” b is seen here as the positive cone Q+⊆Q which is the semigroup generated
by the roots ∆+ = ∆h(b) of h in b.

Moreover, this direction has another incarnation on the level of H-weights which is the
dominant cone X+(T )+ consisting of all λ ∈ X∗(H) that are “positive with Q+” in the
sense that for any α ∈ ∆+ one has 〈λ, α̌〉 ∈ N. (I use the pairing of λ ∈ h∗ and α̌ ∈ h.)

14 This is a special property of sl2, it is not true for sln.
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Remark. In the case of sl2 and G = SL2(C) we have h = Ch and b = Ch⊕Ce. Then
X∗(H) = Zρ where ρ

(
a 0
0 a−1

)
= a. α = 2ρ. Notice that h = α̌ and 〈ρ, α̌〉 = 1. In

particular, the set N of primitive weights of h (i.e., the set of weights of primitive vectors
of h in finite dimensional representations) are now interpreted as Nρ⊆X∗(H) = Zρ. We
think of Nρ as the set of primitive weights of h in finite dimensional representations, they

parameterize the irreducible representations of sl2 which we now denote L(nρ)
def
= L(n).

Also, ∆ = {±α}⊇∆+ = {α} for the root α = α12 = ε1 − ε2 such that α = 2ρ. So,
Q⊆X∗(H) is 2Zρ⊆Zρ. Now we see that the dominant weights Nρ parameterize irreducible
finite dimensional representations. �

We will now say this in more details, in particular for sln.

7.2.2. The coroot lattice Q̌⊆h. Recall that to any root α ∈ ∆ we have associated an
element α̌ of h. We call such elements of h the coroots. Inside of the set of coroots

∆̌
def
= {α̌; α ∈ ∆} we have the subset ∆̌+ def

= {α̌; α ∈ ∆+} of positive coroots and the

subset Π̌
def
= {α̌; α ∈ Π} of simple coroots.

We define the coroot lattice Q̌⊆h to be the subgroup generated by all coroots α̌, α ∈ ∆.
Its positive cone is the subsemigroup Q̌ generated by all positive coroots α̌, α ∈ ∆+.

Lemma. Q̌ = ⊕α∈Π Zα̌ and Q̌+ = ⊕α∈Π Nα̌.

Proof. �

7.2.3. The weight lattice P⊆h∗. We define the subgroup P⊆h∗ of integral weights to con-
sist of all λ ∈ h∗ that are integral with coroots, i.e.,

P
def
= {λ ∈ h∗; 〈λ, α̌〉 ∈ Z for α ∈ ∆.

We will often omit the word “integral”, so we will call P the weight lattice.

We will also use the sub semigroup P+ of dominant weights, these are required to be
non-negative on each positive coroot.

P+ def
= {λ ∈ h∗; 〈λ, α̌〉 ∈ N for α ∈ ∆+}.

An example will be the fundamental weights ω1, ..., ωn−1 defined as the basis of h∗ dual to
the simple coroots basis α̌1, ..., α̌p of h.

Lemma. (a) ωi = ε1 + · · ·+ εp.

(b) P = ⊕n−1
1 Zωi and P+ = ⊕n−1

1 Nωi.
Proof. �

7.2.4. Primitive vectors. For a representation V of g a vector v 6= 0 is primitive if it lies
in Vλ for some λ ∈ h∗ and nv = 0.
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Lemma. (a) A vector v is killed by n iff it is killed by all simple root spaces gα, α ∈ Π.

(b) For a primitive vector v ∈ Vλ the g-submodule generated by v is the subspace
∑

(n−)nv
of V .

Proof. (a) is clear since we know that the simple root spaces generate the Lie algebra n.

(b) We start by listing all weights of g as a sequence β1, ..., βM , 0, γ1, ..γM so that βi’s are
negative roots and γi’s are positive roots.

By the next proposition the g-submodule generated by v is the sum of subspaces

gp1β1· · ·g
pM
βM

gr0 gq1γ1· · ·g
pM
γM
v

over all choices of of powers pi, r, qi ∈ N. Now, if one of qi is > 0 then the whole
expression is zero since positive roots kill a primitive vector. So, we only need to consider
gp1β1· · ·g

pM
βM

gr0v. Since g0 preserves the line through v we can assume that r = 0. �

Remark. The weight of a primitive vector v ∈ Vλ is said to be a highest weight. Here,
“highest” refers to the partial order on h∗ defined by positive roots. Then the precise
meaning is that λ is the highest weight in the submodule generated by v. (This follows
from the part (b) of the lemma.

7.2.5. Finite dimensional representations of sln. The following theorem describes the ba-
sic structure of finite dimensional representations. Because sln is the sum

∑
α∈∆ sα of

subalgebras isomorphic to sl2, the theorem will follow from results for sl2.

Theorem. V be a finite dimensional representation of g = sln.

(a) Any h ∈ h acts semisimply on V , equivalently ⊕λ∈h∗ Vλ is all of V . More precisely, all
weights in V are integral, hence

V = ⊕λ∈P Vλ.

(b) Any x ∈ n acts nilpotently on V . Moreover, for p >> 0 we have npV = 0.

(c) If V 6= 0 then V has a primitive vector.

(d) The weight of any primitive vector is dominant.

Proof. (a) We can restrict the action of g on V to any root subalgebras sα, α ∈ ∆. Then,

via sl2
∼=−→sα our V becomes a representation of sl2. However, we know that h ∈ sl2 acts

semisimply in any finite dimensional representation of sl2. Now, because the standard

isomorphisms sl2
∼=−→sα takes h to α̌, we know that α̌ acts semisimply on V .

Finally, h has a basis α̌i = Eii−Ei+1,i+1 of simple coroots. The actions of these on V form
a family of commuting semisimple operators, so they have a simultaneous diagonalization.
This proves that V = ⊕λ∈h∗ Vλ.
To see that any weight λ in V is integral notice that for any root α ∈ ∆, the number
〈λ, α̌〉 is an eigenvalue of the action of α̌ on V . These are integers because all eigenvalues
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of the action of h ∈ sl2 in any finite dimensional representation of sl2 are known to be
integers.

(b) By npV we mean the subspace of V spanned by all x1· · ·xpv for xi ∈ n and v ∈ V .
So, the subspace npV⊆V is a sum of subspaces gφ1 · · ·gφpVλ over all choices of φi ∈ ∆+

and all weights λ in V .

The set W(V ) of weights in V is finite because the dim(V ) <∞.

Recall that gαVλ⊆ Vλ+α, hence gφ1 · · ·gφpVλ⊆ Vλ+
∑p

1 φi . However, the setW(V ) of weights
in V is finite because the dim(V ) <∞. So, for p >> 0, and any λ ∈ W(V ) we have that
λ+

∑p
1 φi is not in W(V ), hence Vλ+

∑p
1 φi = 0.

For such p we have npV = 0, hence in particular for x ∈∈ n we have xpV = 0.

(c) Again, we use the fact that the set W(V ) of weights in V is finite. Therefore, it
contains a maximal element λ for the partial order on h∗ defined by λ ≤ µ if µ − λ ∈
Q+ = spanN(∆+) = ⊕n−1

1 Nαi. For such λ we have λ + α/∈W(V ) for any α > 0, hence
gαVλ⊆Vλ+α = 0. So, nVλ = 0 and therefore any vector in Vλ is primitive.

(d) Let λ be the weight of some primitive vector v in V . Then for any positive root α we

have gαv⊆nv = 0. Since the standard isomorphisms sl2
∼=−→sα take e to gα, we see that for

the action of sl2 on V via sl2
∼=−→sα⊆g we have ev = 0 and hv = 〈λ, α̌〉·v. So, v is also a

primitive vector for the action of sl2 on V , so its sl2-weight 〈λ, α̌〉 must be in N. �

Remark. If u and v are primitive vectors of weights λ and µ in representations U and V
then u⊗v is a primitive vector of weight λ+ µ in U⊗V . �

7.3. Classification of irreducible finite dimensional representations of g = sln.
We know that any irreducible finite dimensional representation V of g has a primitive
vector with a dominant weight.

Theorem. (a) For each dominant weight λ ∈ P+ there is exactly one (up to isomorphism)
irreducible finite dimensional representation with a primitive vector of weight λ. We
denote it L(λ).

(b) L(λ), λ ∈ P+ is the complete list of irreducible finite dimensional representations of
g.

Proof. (b) follows from (a) since we know that any irreducible finite dimensional repre-
sentation V of g has a primitive vector with a dominant weight.

Claim (a) consists of two parts

• Existence: for λ ∈ P+ there exists an irreducible finite dimensional representation
with a primitive vector of weight λ.
• Uniqueness: If L,L′ are two irreducible finite dimensional representation with a

primitive vector of weight λ then L′ ∼= L.
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We will next prove existence and postpone the proof of uniqueness until the general setting
of semisimple Lie algebras.

7.3.1. Questions. For the sl-module V = kn what are the highest weights of irreducible
modules (i) V , (ii) ∧p V , (iii) the adjoint representations g, (iv) Sp V ?

7.4. The g-submodule generated by a vector. The proof of the following proposition
will later be a motivation for introducing the enveloping algebras of Lie algebras.

Lemma. Let v be a primitive vector of weight λ in ag-module V . Denote by S the g-
submodule generated by v.

(a) S = Un−·v.

(b) The weights of S lie in λ − Q+, i.e., for any µ ∈ W(S) one has µ ≤ λ. Moreover,
Vλ = kv. (So, λ is the highest weight of S.)

(c) S has a unique irreducible quotient L. One has dim(Lλ) = 1.

Proof. (a) The first proof. The g-submodule generated by any vector v is the the subspace
of V spanned by all x1· · ·xpv for xi ∈ g. This is the same as Ug·v.

We know that the multiplication Un−⊗Ub −→ Ug is surjective, so S = Ug·v =
Un−·(Ub·v) = Un−·kv = Un−·v.

(b) follows from (a). For this we choose a basis x1, ..., xN of n− so that xi lies in gφi , where
φ1, ..., φN is any ordering of roots in ∆(n−) = −∆(n) = −∆+. Then the monomials
xe11 · · ·x

eN
N span Un− and xe11 · · ·x

eN
N lies in (Un−)∑ eiφi . Moreover,

∑
eiφi is 0 iff all ei

are 0.

(c) Quotients Q of S correspond to submodules S ′ of S. A quotient Q is irreducible iff
the submodule S ′ is a maximal proper submodule. Therefore, an equivalent formulation
is that

• (i) S has exactly one maximal proper submodule S and that
• (ii) S does not have weight λ (so that for L = S/S we have Lλ = Sλ/Sλ is the line
Sλ.

For this we notice that

(∗) For any proper submodule S ′⊆S, S ′ does not contain weight λ.

Clearly, if S ′λ⊆Sλ = kv would be nonzero then S ′ would contain v and then S ′ would
contain all of S.

Now it is clear that there exists the largest proper submodule S of S – this is just the
sum of all proper submodules S ′. This S is proper since Sλ =

∑
S ′λ = 0. �
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We say that λ is the highest weight of S in the sense that it is the largest weight in S for
the partial order defined by Q+. (For this reason we also call primitive vectors the highest
weight vectors.)

Corollary. (a) An irreducible finite dimensional g-module L has precisely one primitive
vector. Its weight λ is the highest weights of L.

(b) If for a given λ ∈ P+ there exists a finite dimensional representation with a primitive
vector of weight λ, then there exists an irreducible finite dimensional representation with
the highest weight λ.

If for a given λ ∈ P+ there exists a finite dimensional representation U with a primitive
vector of weight λ, then there exists an irreducible finite dimensional representation V
with a primitive vector of weight λ.

Proof. (a) Since L is irreducible it has a primitive vector v. The submodule S generated
by v is not zero so it is all of L. Therefore λ is the highest weight in S = L. So, any
primitive vector lies in Lλ for the highest weight λ in L. However, Lλ is one dimensional
by the lemma.

(b) If v is a primitive vector of weight λ in a finite dimensional representation V then
we get an irreducible representation of highest weight λ by taking the unique irreducible
quotient of the submodule generated by v. �

7.4.1. The second proof of the part (a) of the theorem. This can be skipped – we write the same proof but without introducing
the enveloping algebra. So, this version can be viewed as a motivation for introducing the enveloping algebras in the first place.

Proposition. Let us write all weights of g as a sequence β1, ..., βN . Then for any representation V the g-submodule generated by
a given vector v is the sum of subspaces g

p1
β1
· · ·gpNβN v over all choices of of powers pi ∈ N.

Proof. The g-submodule generated by v is the the subspace of V spanned by all x1· · ·xpv for xi ∈ g. We can think of it as the
sum of subspaces gφ1 · · ·gφpv over all choices of φi ∈ W(g) = ∆t0. Let Vq be the sum of all such subspaces gφ1 · · ·gφpv with

p ≤ q. It contains Uq which is the sum of subspaces g
p1
β1
· · ·gpNβN v for all choices of of powers pi such that

∑
pi ≤ q. We will prove

by induction in q that Uq⊆Vp is equality.

If the sequence φ1, ..., φp is compatible with the chosen order on W(g) then gφ1 · · ·gφpv is of the above form g
p1
β1
· · ·gpNβN v. If not

then there are some neighbors φi−1, φi which are in the wrong order. However, for x and y in gφi−1
and gφi ,

π(x)π(y) = π(y)π(x) + [π(x), π(y)] = π(y)π(x) + π[x, y].

So, we can replace the product of length two gφi−1
gφi with the product in the opposite order gφigφi−1

(again of length 2), at the

price of adding a term which is a product of length 1. �

7.5. Existence of irreducible representations. Here we prove the first part of the
theorem 7.3.

Lemma. For each dominant weight λ ∈ P+ there exists an irreducible finite dimensional
representation L with a primitive vector of weight λ. (Then λ is the highest weight in L.)

Proof. From homeworks we know that when λ is one of the fundamental ωi then such
representation is given by ∧ikn. Denote by vωi its primitive vector.
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Now for any dominant weight λ ∈ P+ we have λ =
∑n−1

1 λiωi with λi ∈ N. Then in

⊗n−1
1 (∧ikn)⊗λi the vector ⊗n−1

1 v⊗λii is primitive of weight λ (see the remark in 7.2.5). �

7.6. Uniqueness of irreducible representation with a given highest weight.

7.6.1. Irreducible finite dimensional representations of b.

Lemma. (a) n is an ideal in b.

(b) [b, b] = n and bab ∼= h.

Proof. h is commutative, i.e., [h, h] = 0. Also for a root α we have [h, gα] = gα since
h acts on gα by α ∈ h∗ which is not zero. This implies that [h, b] = n. Together with
[n, n]⊆n (n is a subalgebra) this implies that [b, b] = n.

Now bab = b/[b, b] = b/n ∼= h. �

Remark. Using b�b/n ∼= h we get h∗↪→b∗. The meaning is that a linear functional λ onh
extends to b by zero on n.

Proposition. (a) Any λ ∈ h∗ gives a 1-dimensional representation kb
λ of b. The vector

space is k and b acts on it by λ viewed as a functional on b , i.e., x·1k = 〈λ, x〉 1k.

(b) This is the complete classification of 1 dimensional representations of b.

Proof. (b) is a case of lemma ?? since bab = h. �

7.6.2. Verma modules for g = sln. The Verma module with the highest weight λ is defined
as the induced module(15)

M(λ)
def
= Indgbk

b
λ

def
= Ug⊗Ub kb

λ.

The most obvious vector in M(λ) is vλ = 1Ug⊗ 1k.

Lemma. (a) vλ is a primitive vector with weight λ.

(b) vλ generates Mλ.

7.6.3. Corollary. (1) h acts semisimply on M(λ) and the weights W(M(λ)) lie in λ−Q+

(i.e., weights are ≤ λ). Moreover the λ weight space M(λ)λ is kvλ.
(2) M(λ) has the largest proper submodule M(λ)+. Equivalently, it has a unique irre-
ducible quotient, we denote it L(λ). L(λ) is also generated by a primitive vector of weight
λ (the image of vλ which we again denote vλ) and L(λ)λ = kvλ.

15 The notation we initially used used in class was Mλ.
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7.6.4. The universal property of Verma modules. The categorical formulation of the fol-
lowing lemma is that the object M(λ) ∈ m(g) represents the functor −oλ : m(fg) −→V eck
of taking the primitive vectors.

Lemma. For any g-module V there is a canonical isomorphism

Homg[M(λ), V ]
ι−→∼= V o

λ .

Here, ι(φ) = φ(vλ) ∈ V o
λ .

Proof. We use the Frobenius reciprocity, i.e., the fact that the induction Ug⊗b− is the
left adjoint of the forgetful functor Fb

g ) :

Homg[M(λ), V ] = HomUg[Ug⊗Ubkb
λ), V ] ∼= HomUb(kb

λ, V ).

A linear map ψ : kb
λ → V is the same as a choice of a vector v = ψ(1k) in V . Now, ψ is an

h-map iff h acts on v by λ, and ψ is an n-map iff n kills v. So, ψ is an b-map iff v ∈ V o
λ ,

Now one checks that the isomorphism ι : Homg[M(λ), V ]
∼=−→ V o

λ that we have constructed
acts by the formula in the lemma. �

Corollary. For any λ ∈ h∗ there is a unique irreducible g-module L which has a primitive
vector of weight λ. This L is the unique irreducible quotient L(λ) of the Verma M(λ).

Proof. For existence of L we note that the above L(λ) satisfies the properties. We will
also see that any irreducible g-module L which has a primitive vector v of weight λ is
isomorphic to L(λ).

First, to a primitive vector v in L there corresponds some homomorphism φ : M(λ)→ L.
Since v 6= 0 we have φ 6= 0. Then 0 6= Im(φ) is a submodule of L, since L is irreducible
we have Im(φ) = L, i.e., L is an irreducible quotient of M(λ). But there is only on
irreducible quotient of M(λ) and it is L(λ). �

7.7. Proof of the classification of irreducible finite dimensional representations
of sln (theorem 7.3). A. The first claim in this theorem is that for each dominant
weight λ ∈ P+ there is exactly one irreducible finite dimensional representationL with a
primitive vector of weight λ.

The existence of L was proved in 7.5. The uniqueness is a special case of the corollary
7.6.4. This corollary also says that such L is the representation L(λ) constructed as the
unique irreducible quotient of M(λ).

B. The second claim in the theorem is that L(λ) for λ ∈ P+ is the classification of
irreducible finite dimensional representations of g, i.e., that

• (i) any irreducible finite dimensional representation L is isomorphic to one of
L(λ)’s and
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• (ii) there are no repetitions in the list, i.e., the only way that L(λ) ∼= L(µ) is
when λ = µ.

For (i) notice that since L is irreducible we have L 6= 0. Then we know that since L is
finite dimensional and 6= 0 it has a primitive vector of some weight λ ∈ P+. Then the
corollary 7.6.4 guarantees that L is L(λ).

For (ii), recall that λ is the highest weight in L(λ), so if L(λ) ∼= L(µ) then they have the
same highest weight hence λ = µ. �
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7.8. Classification of finite dimensional representations of a semisimple Lie
algebra. A Cartan subalgebra h of a semisimple Lie algebra g gives the corresponding
root system ∆. Any root α ∈ ∆ gives a vector α̌ ∈ h.

We define the integral weights P⊆h∗ to consist of all λ ∈ h∗ such that 〈λ, ∆̌〉⊆ Z.

A choice of base Π of ∆ gives the dominant integral weights cone P+⊆P consisting of all
λ ∈ h∗ such that 〈λ, Π̌〉⊆ N.

7.8.1. Borel subalgebras and Verma modules. A choice of a system of positive roots ∆+⊆∆
give a Borel subalgebra

b = h⊕n for n = ⊕α∈∆+ fgα.

Then any α ∈ h∗ defines an g-module, the Verma module

M(λ)
def
= Ug⊗Ub kλ.

Here kλ denotes the 1-dimensional b-module on which h acts by λ and n by zero.

The base Π of ∆ corresponding to ∆+ defines Let us

Theorem. (a) Any Verma module Mλ has a unique irreducible quotient Lλ.

(b) L(λ) is finite dimensional iff λ ∈ P+, i.e., iff λ is the the dominant integral cone.

(c) All irreducible finite dimensional representations are exactly all L(λ), λ ∈ P+.

Proof. We have proved this theorem for sln. In the general case most of the proof is
the same. The difference is in one direction in part (b), where we need to show that for
λ ∈ P+ the representation L(λ) is finite dimensional.

For sln we proved this by an explicit construction of L(λ) that starts with the fundamental
weights λ = ωi. This method does not extend well to the general case because we do not
understand the fundamental representations so well.

It is actually easier to construct irreducible finite dimensional representations of a semisim-
ple Lie algebra g using the associated group G (then to do it using the Lie algebra itself).
This approach is sketched in 7.9. �

7.9. The Borel-Weil-Bott construction of irreducible representations.

7.9.1. The flag variety B of a semisimple algebra. For a semisimple Lie algebra g let
G = Gsc be the simply connected group associated to G. Inside G one finds subgroups
B,H,N with Lie algebras b, h, n.(16)

The quotient B def
= G/B is called the flag variety of g.(17)

16 Say, B consists of all g ∈ G that preserve the subspace b of g and H consists of all g ∈ G that fix
each element of h. Then N is the unique subgroup of B complementary to H.

17 The letter B stands for “Borel”. The reason is that the flag variety B can be identified with the set
of all conjugates gb⊆g of the above Borel subalgebra b under elements g in G. All these conjugates are



76

7.9.2. A character of the Cartan group H is a homomorphism χ : H → Gm = GL1. The
characters of H form a group denoted X∗(H).

The differential of a character χ at e ∈ H is a linear map deχ : TeH = h → TeGm = k,
so it is a linear functional deχ ∈ h∗ on h.

Lemma. Taking the differential gives an isomorphism of the character group X∗(H) and
the group of integral weights P⊆h∗. �

From now on we will identify any integral weight λ ∈ P with the corresponding character
of H which we will also denote λ.

The canonical map of Lie algebras b→ h (zero on n) gives a canonical map of Lie groups
B → H (with kernel N). So for any λ ∈ P we get a 1-dimensional representation kλ of

B via B�H
λ−→Gm = Gl(k).

As in a construction of Verma modules we now induce this to a representation of G. The
“induction” is in this case slightly different and it is called coinduction. To a representation
kλ of the group B we associate G-equivariant line bundle Lλ over the flag variety G/B.
This is called the associated bundle

Lλ
def
= (G×Lλ)/B −→ (G×pt)/B = B.

Because G acts on the line bundle Lλ, it also acts on the space of global section of the
line bundle Lλ

CoindGB(Lλ)
def
= Γ(B,Lλ).

Theorem. (a) [Borel-Weil] When λ ∈ P+ then Γ(B,Lλ) is an irreducible finite dimensional
representation of G and therefore also of the Lie algebra g.

(b) As a representation of g the space Γ(B,Lλ) has highest weight λ.

Remarks. (0) This implies that Γ(B,Lλ) is the irreducible representation L(λ) which was
defined as the unique irreducible quotient of the Verma module M(λ).

(1) If λ is not dominant then Γ(B,Lλ) = 0.

(2) Bott’s contribution is the calculation of all cohomology groups of line bundles L(λ).

7.10. Classification of finite dimensional representations of g = sln.

Theorem. Finite dimensional representations of g = sln are semisimple. So, each one is
isomorphic to a sum ⊕λ∈P+ L(λ)mλ for some multiplicities mλ ∈ N. �

Again, we will postpone the proof for the general setting of semisimple Lie algebras.

called Borel subalgebras of g and the particular one b that we started with can be called the “standard”
Borel subalgebra.
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Remark. As in sl2, effectively such decomposition comes from choosing a basis vλ1 , ..., v
λ
mλ

of the spaces V 0
λ of primitive vectors for each dominant weight λ.
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8. Category O

Classification of all irreducible modules for sln is a wild problem, i.e., one can prove
that we do not have a way to list all irreducibles. (This is an observation in mathemat-
ical logic.) Instead, what is interesting is to classify irreducible representations lying in
certain interesting subcategories. One subcategory is the category Repfd(g) of all finite
dimensional representations.

The next most basic and most influential one is the category O introduced by Joseph
Bernstein, Israel Gelfand and Sergei Gelfand.(18) here “O” stands for ordinary (in Rus-
sian).

For us the category O is the home for objects that we have already encountered in our
study of finite dimensional representations – Vermas M(λ) and irreducibles L(λ). It also
gives us an opportunity to notice how the behavior of infinite dimensional g-modules is
more subtle than that of finite dimensional ones.

8.1. Category O for g = sln. This is the subcategory of the category Rep(g) = m(Ug))
of g-representations (i.e., Ug-modules) that consists of all g-modules V such that

(1) V is finitely generated;
(2) h acts semisimply on V , i.e., V = ⊕λ∈h∗ Vλ;
(3) V is locally finite for the subalgebra n. The meaning is that for any vector v in V ,

the n-submodule U(n)v that it generates is finite dimensional.

Lemma. (a) The category Repfd(g) of finite dimensional representations lies in O.

(b) If V is in O then any submodule or quotient of V is also in O.

Theorem. (a) Verma modules M(λ) lie in O.

(b) The irreducible representations in O are precisely all L(λ), λ ∈ h∗.

8.2. The Kazhdan-Lusztig theory. It deals with the structure of Verma modules. The
basic fact is the following.

Lemma. Any V ∈ O has a finite length, i.e., it has a finite filtration
V = V0⊇V1⊇· · ·⊇Vn = 0 with all graded pieces Gri(V ) = Vi−1/Vi irreducible. �

Such filtration is called a Jordan-Hoelder series of V . It is a general fact in algebra that
though such filtration need not be unique, the number of times a given irreducible module
L appears in the list of Gri(V )’s for i = 1, .., n is independent of the choice of the filtration.
This number is called the multiplicity of L in V and it is denoted [V : L]. When V is in
O then all subquotients Gri(V ) are again in O, hence each is of the form L(µ) for some
µ ∈ h∗.

18 Israel was one of the most important mathematicians in 20th century. Sergei is his son.
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Problem. For any λ, µ ∈ h∗ find the multiplicity [M(λ) : L(µ)] of irreducibles L(µ) in
Verma modules M(λ).

A conjectural answer to this question was provided by a joint work of Kazhdan and Lusztig
(the “Kazhdan-Lusztig” conjecture). The proof was obtained by Beilinson-Bernstein and
independently by Brylinski-Kashiwara. It was based on

• the theory of D-modules which is the algebraization of the theory of linear partial
differential equations;
• the intersection homology and perverse sheaves in algebraic topology of complex

algebraic varieties;
• Deligne’s proof of Weil conjectures on the use of positive characteristic geometry

for algebraic topology of complex algebraic varieties.

The Beilinson-Bernstein version was very strong and elegant, so it has a become one of
basic modes of thinking in representation theory and one of a few origins of the so called
Geometric Representation Theory (The other two are Drinfeld’s Geometric Langlands pro-
gram and Springer’s construction of representations of Weyl groups such as the symmetric
groups Sn).

Now we define the primitive vectors of weight λ ∈ h∗ as non-zero vectors in

V o
λ

def
= {v ∈ Vλ : n v = 0}.

We will see that these control the structure of the representation.
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Part 4. Appendices

Appendix A. Algebraic groups

A.1. Algebraic geometry. A priori, it studies solutions of systems of polynomial equa-
tions. Since the polynomials are very simple (in comparison with smooth and analytic
functions) this is in a sense the simplest type of geometry. Consequently this is in many
ways the best understood type of geometry and this makes it widely influential.

History of algebraic geometry follows a pattern that when calculations about one class
of spaces hit a difficulty, we invent a more general class of spaces which makes these
calculations easier:

• Numbers
• Affine spaces
• Affine algebraic varieties
• Projective algebraic varieties
• Algebraic varieties
• Schemes
• Stacks
• Derived stacks

So, one of successes of algebraic geometry is that it keeps advancing the notion of space.

A.1.1. Algebraic varieties. Each class of spaces X has its own class of functions O(X).
On affine spaces An

k for a field k, these are the polynomials O(An
k) = k[x1, ..., xn].

Affine algebraic varieties X defined over k lie in affine spaces An
k and are described by a

system of polynomial equations P1 = · · · = Pk = 0.

One can alternatively think of affine algebraic varieties X over a field k as factories that
produce sets X(k′) from rings k′ that contain k: X(k′) is the set of solutions of of the
system P1 = · · · = Pk = 0 in (k′)n. (Actually, it is sufficient to have a homomorphism of
rings k→ k′.)
Algebraic varietyX is characterized by the ringO(X) of natural functions that we consider
on X. These are restrictions of polynomials O(X) = {f |X ; f ∈ k[x1, ..., xn]}. So, if we
know the ring O(X) we know X even if we do not specify an embedding of X into some
An

k . So, functions provide a more invariant way of thinking about affine algebraic varieties.

All algebraic varieties X are glued from finitely many open pieces Ui which are affine
algebraic varieties. Then O(X) consists of all functions f such that the restrictions f |Ui
are in O(Ui). So, the condition is that f is locally a restriction of a polynomial.

A.1.2. Schemes. Schemes were invented by Grothendieck. The idea was that for each
commutative ring A there is a geometric object X (called the spectrum Spec(X) of X),
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such that the ring of functions O(X) on X is A. Such X is said to be an affine scheme
and all schemes are obtained by gluing open pieces which are affine schemes. This allowed
a geometric point of view on commutative rings such integers Z etc.

A.1.3. Fibered products, Cartesian squares and Base Change. When X, Y map to the

same space Z by X
f−→ Z

g←−Y , we define the fibered product X×ZY of X and Y over Z
as a subspace of X×Y coexisting all pairs (x, y) ∈ X×Y such that f(x) = g(y). Then

the projections give maps X
F←− Z

G−→ Y and therefore a commutative square

X×ZY
F−−−→ Y

G

y g

y
X

f−−−→ Z

.

Such commutative squares are said to be Cartesian. Geometrically we indicate it by
drawing a small square inside this diagram.

One also says that a Cartesian square represents a Base Change of the space Y over Z,
i.e., that the passage from Y to X×ZY is the produced by changing the base Z of Y to
base X of the new space.

Example. (a) For a map π : Y → X and X ′⊆X, the fibered product Y×X X ′ is the

inverse π−1X ′⊆Y of X ′ under the map π. fiber Yx
def
= π−1x of the map at x. For instance,

a point k : x ∈ X, the fibered product Y×X x is the fiber Yx
def
= π−1x of the map at x.

(b) If X, Y⊆Z then X×ZY is the intersection X ∩ Y .

Appendix B. Sheaves

This is a quick summary of theory of constructible sheaves. A nice resource for this is the
book Cohomology of sheaves by Iverson.

We use constructible sheaves in the Springer construction of irreducible representations
of Sn in section 3.

B.1. (Constructible) sheaves. The constructible sheaves behave well Here we restrict
to locally compact topological spaces. This allows us to double our direct/inverse image
functoriality f∗, f

∗ by adding functors f!, f
! of direct/inverse image with compact support.

The combination of these functors makes a powerful machinery, i.e., allows analyzing
and calculating many things.

B.1.1. Category Sh(X, C) of sheaves on X with values in C. For any topological space X
and “any” category C one can consider the category Sh(X, C) of sheaves on X with values
in C. For us C will be usually be an abelian category and then the category Sh(X, C) will
again be be abelian.
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Example. (i) When C is the category of modules fm(R) over some ring R we denote
Sh(X,m(R)) simply by Sh(X,R). �

(ii) Sh(pt, C) = C. �

For a sheaf F and any open U⊆X we call the elements of the R-module F(U) the sections
of F on U .

B.1.2. Functoriality for sheaves. Any map of topological spaces X
f−→ Y produces two

functors Sh(X,R)
f∗−→ Sh(Y,R)

f∗−→ D[Sh(X,R) called the direct and inverse image
(push-forward and pull back).

Example. For a subspace i : Y ↪→X, i∗F is called the restriction F|Y of the sheaf from
X to Y . For a point i : a ∈ X the restriction i∗F = F|a is called the stalk Fa of F at a.

Example. Notice that Sh(pt, R) is just the category m(R) of R-modules. For any space

X a module M ∈ m(R) = Sh(pt, R) gives the sheaf MX
def
= (X → pt)∗M which is said to

be the constant sheaf on X given by M .

B.1.3. Constructible sheaves. A sheaf F on X is constructible if there is a stratification
X = tN1 Si such that all restrictions F|Si are local systems, i.e., these sheaves are locally
isomorphic to constant sheaves.

B.1.4. Triangulated categories. For an abelian category A let C(A) be the category of
complexes of objects in C. It is again abelian but “too large”, we want to “identify”
complexes which “carry the same information”. The basic information that a complex

A = (· · ·A−1
d−→A0

d−→A1
d−→· · ·) carries are thecohomology groups

Hn(A)
def
= Ker(An

d−→An+1)/Im(A−1 d−→An) ∈ A.

A map of complexes f : A→ B is a quasi-isomorphism if it an isomorphism on cohomology

group, i.e., Hn(f) : Hn(A)
∼=−→ Hn(B).

The derived category D(A) is obtained from C(A) by inverting all quasi-isomorphisms
(objects are the same but there are more morphisms). This D(A) belongs to the class of
triangulated categories which approximately means: alike abelian categories but in the
world of homological algebra.

In triangulated categories one has no kernels and images any more. Important feature
of such categories T start with the shift functors A7→A[n], say for a complex A we get
a complex A[n], n ∈ Z; with (A[n])p = Ap+n. Then a triangle is a diagram where all
compositions are zero. One has no kernels or images but there is a replacement for
the class of short exact sequences, is a certain class E of triangles that are called exact
triangles.
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Finally, any a ∈ A defines a complex which has a in degree 0 and other terms are zero.
This gives an embedding of categories A↪→D(A).

B.2. Functoriality for the derived categories Dc(X,R) of constructible sheaves.
Choose a ring R and associate to each topological space X the triangulated category
D[Sh(X,R)] of sheaves X with values in k-modules. We will consider a triangulated

subcategory D(X,R)
def
= Dc[Sh(X,R)] of constructible complexes of sheaves. Here, F ∈

D[Sh(X,R)] is said to be , constructible if for all integers n, the cohomology Hn(F) ∈
Sh(X,R) is a constructible sheaf.(19)

Category Dc(X,R) has the Verdier duality functor DX : Dc(X,R)o
∼=−→Dc(X,R) with D2 =

id, which is a generalization of duality of vector spaces. Moreover, any map of topological

spaces X
f−→ Y produces four functors

Dc(X,R)
f!,f∗−−→ Dc(Y,R)

f∗,f !−−→ D[Sh(X, k)].

Remark. We previously had direct image f sh∗ for sheaves and now we have a direct image
fdsh∗ for the derived category of sheaves. These are related but not the same. If F is
sheaf, i.e., F ∈ Shc(X,R)⊆Dc[Sh(X,R)] = Dc(X,R) then f sh∗ F is a sheaf but fdsh∗ F is a
complex of sheaves, the derived version carries more information since f sh∗ F = H0[fdsh∗ F ].

From now on we denote f∗
def
= fdsh∗ and we think of f sh∗ F as H0(f∗F).

The same also works for f ∗ and f!.
(20) The sheaf version H0(f!) of f! is understandable, it

is the direct image with compact support. However, f ! is something new, i.e., it does not
have a natural incarnation without the derived category.

B.2.1. Properties of functoriality of the construction Dc(−, R).

Theorem.

(1) For X
f−→ Y

g−→Z one has (g◦f)? = g?◦f? and (g◦f)? = f ?◦g? for ? ∈ {!, ∗}. Also,
(idX)? = idDc(X,R) = (idX)?.

(2) D2
X
∼= idDc(X,R) and f! = D(f∗)

def
= DY ◦f∗◦DX , f ! = D(f ∗)

def
= DX◦f∗◦DY . (One is

really conjugating with Verdier duality.)
(3) (f!, f

!) and (f ∗, f∗) are adjoint pairs of functors.

19 In some hidden way we use here the much larger category D[Sh(X,R)] of all sheaves of R-modules
on X. This is actually, a much smarter construction than the derived category D[Shc(X,R)] of the
abelian category of constructible sheaves.

20 Actually, f∗sh is exact, hence which means that f∗dsh is just f∗sh applied to complexes.
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(4) [Base Change.] For any Cartesian square of spaces (see A.1.3)

Σ
F−−−→ Y

G

y g

y
X

f−−−→ Z

one can go from X to Y in two compatible ways

f !g∗ = G!F
∗.

(5) [Gluing or excision.]

(6) When f is smooth then f !G ∼= f ∗G[dimR(f)]⊗ orf where dimR(f)
def
= dimR(X)−

dimR(Y ) and orf is the local system of orientations of fibers of f .
(7) There is a canonical map of functors f! → f∗ and when f is proper this is an

isomorphism.

Remarks. For the Base Change property it is necessary that one uses different kinds of
functors ! and ∗) for direct and inverse images. So, Base Change is the place where having
both ! and ∗ functorialities becomes essential for calculations.)

B.2.2. Functoriality of constructible sheaves contains (co)homological constructions of al-
gebraic topology. For any space X we have a map a = aX : X → pt. For any R-module
M , the pull back a∗M from the point is the constant sheaf MX on X. The pull-back a!M
is called the dualizing sheaf on X with values in M . For M = R we denote the dualizing
sheaf a!R by ωX (or ωRX).

Lemma. (a) The dualizing sheaf of a real manifold X of dimension n is
ωX ∼= orX [dimR(X)] for the orientation sheaf orX on X.

If X is a complex manifold then orX is canonically trivialized so ωX ∼= RX [2 dimC(X)].

(b) The sheaf theory refines the cohomology H∗(X,M) of X with coefficients in M to a
complex a∗a

∗M = a∗MX in Dc(pt, R) = D(m(R)) whose cohomology is H∗[a∗a
∗M ] =

H∗(X,M). The same works for (compactly supported) cohomology and homology:(21)

(1) H∗(X,M) = H∗[a∗a
∗M ],

(2) H∗c (X,M) = H∗[a!a
∗M ],

(3) H∗(X,M) = H∗[a!a
!M ],

(4) Hc
∗(X,M) = H∗[a∗a

!M ].

21 The compactly supported homology is usually called the Borel-Moore homology.
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Remark. What is usually called the ith homology Hstandard
i (X,M) is here in degree −i,

hence it is denotedH−i(X,M). This shift of homology to negative degrees is a consequence
of considering homology and cohomology on the same footing.(22)

B.3. Appendix. Functoriality of functions. The functoriality properties of sheaves
are a version of such obvious properties for functions. Here, we consider only functions
on finite sets.(23)

Appendix C. Categories

Appendix D. Representations of finite groups as a Topological Field Theory
[David Ben Zvi and David Nadler]

In general, 2-dimensional oriented TFTs can be constructed from symmetric Frobenius
algebras.

We will consider an oriented 2-dimensional TFT ZΓ constructed from the algebra Z[Γ].
It encodes all of the familiar structures in the complex representation theory of Γ. TFT
ZΓ has values in the 2-category of algebras Algk called Morita theory

D.0.1. Symmetric monoidal 2-category Algk.

• objects of Algk are associative algebras A over k;
• 1-morphisms M ∈ Hom1

Algk
(A,B) inM are the (B.A)-bimodules that are flat over

the source A;
• 2-morphisms in Algk are morphisms of bimodules M,N ∈ Hom1

Algk
(A,B), i.e.,

f ∈ Hom2
Algk

(M,N) = HomB,A(M,N).

Algk is a symmetric monoidal category, its tensor product is just the tensor product ⊗k
of k-algebras and the unit in this monoidal category is just the algebra k.

D.0.2. Realization of the Morita 2-category Algk in k-linear abelian categories. LetAbk be
the 2-category of small k-linear abelian categories, where 1-morphisms are exact functors
and 2-morphisms are natural transformations. of such functors.

22 Traditionally homology is calculated from “complexes of chains”, i.e., with the differential going
down: d : Ci → Ci−1, while cohomology is calculated from “complexes of cochains”, i.e., with the
differential going up: d : Ci → Ci+1,

23 The direct image of functions involves integration of functions over fibers of the map, hence one
needs elements of measure theory. We avoid such analytic questions by restricting to finite sets – when
fibers are finite the integral over a fiber is just a sum of values at points in the fiber.

There are other settings in which functoriality exists without analysis: the D-modules (linear differential
equations) and quasicoherent sheaves (algebraic geometry). These theories are both parallel to the
functoriality for constructible sheaves.



86

Lemma. We can identify the Morita 2-category Algk with a full subcategory of the 2-
category Abk by assigning to each algebra A its category Perf(A) of perfect A-modules
(these are the summands of finite colimits of free modules),

D.0.3. The field theory ZΓ. It assigns to each cobordism C a linearization of the space of
“Γ-gauge fields” on C, or in other words, the orbifold of principal Γ-bundles (also called
Γ-torsors) over C.

In particular, it assigns the following to closed 0, 1 and 2-manifolds:

• To a point, ZΓ assigns the group algebra:

ZΓ(pt) = k[Γ] ∈ Algk.
In the categorical terms we would say that ZΓ of a point is the category of finite-
dimensional representations of Γ:

ZΓ(pt)
def
= Repfd(Γ) ∈ Abk.

Notice that this is the category of finite-dimensional algebraic vector bundles on
the orbifold BunΓ(pt) = B(Γ) of Γ-torsors on a point.
• To a circle, ZΓ assigns the k-modules of class functions on Γ:

ZΓ(S1)
def
= k[Γ]Γ = k[

Γ

Γ
] ∈ V ecfdk = 1HomAbk (V eck,V eck).

This is the vector space of functions on the orbifold BunΓ(S1) of Γ-bundles on the
circle.
• To a closed surface, ZΓ associates an rational number by counting Γ-bundles on Σ

ZΓ(Σ)
def
= |Hom(π1(Σ), Ga)/Ga| ∈ k = Hom2

Abk(k,k).

Here, as usual, a bundle P is weighted by 1/|Aut(P )| which is the information
contained in P . The value ZΓ(Σ) is the volume of the orbifold BunΓ(S) of Γ-
bundles on the surface Σ.

D.0.4. Cobordism Hypothesis. From the point of view of the Cobordism Hypothesis, we
only have to specify that we assign the group algebra k[Γ] to a point. This determines
the rest of the TFT structure.

Lemma. (a) Any object of Algk is 1-dualizable, with dual given by the opposite algebra.

(b) 2-dualizable objects of Algk are precisely separable algebras, i.e., algebras for which
A is projective as an A-bimodule.

Remarks. (1) Over C separable algebras are precisely finite-dimensional semi-simple al-
gebras.

(2) Invariance under SO(2) amounts to the data of a non-degenerate trace, or in other
words, the structure of a symmetric Frobenius algebra.
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