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0. Introduction

0.1. Topics.

0.1.1. The field k. We will work in vector spaces (usually finite dimensional) over a field
k which is either R or C. In representation theory it will often be convenient for the field
to be algebraically closed so that operators have eigenvectors. Therefore in representation
theory we will usually consider Lie algebras over C.

0.1.2. Lie algebras. In the end we will see that these are just the infinitesimal groups.(1)

However, in order to make sense of this claims requires some knowledge of the language
of manifolds (or algebraic varieties).

We will postpone a recollection of manifolds in order to introduce Lie algebras in a simple
way. We base the definition in 0.3.3 on a single example of general linear groups GLn(k)
in 0.3.1.(2)

0.2. Manifolds and Lie groups. Here we will only recall these ideas on the intuitive
level. This will suffice for some examples of Lie algebras.

0.2.1. Manifolds. First, the idea of manifolds appears in several types of geometries which
are distinguished by the type of functions f : U → k (for U open in k) that are used.

For k = R this could be

• continuous functions C(U,R) (this gives topological manifolds);
• smooth functions (i.e., infinitely differentiable functions) C∞(U,R) (gives differen-
tiable manifolds);

• analytic functions (which ar locally powers series) Cω(U,R) (gives analytic mani-
folds).

For k = C this will be the holomorphic functions H(U,C) (gives holomorphic manifolds).

In each case we will denote this class of “allowed” functions by O(U). Notice that when
O is any of these classes of k-valued functions on U ’s open in k, it extends to class of
k-valued functions O(U) on any U open in any kn, and then it further extends to a class
of maps MapO(U, V ) for any open U⊆kn and V open in km. (we may define it simply
Map(U, V ) when we think that the class O is obvious.)

A manifold of class O over k is a topological space M with a consistent system of local
identifications (called charts) with open subsets of kn. (Here ‘consistent” means that the
differences between these trivializations are in the class O of maps between open subsets
of kn’s.)

1 A more precise claim is that there is a notion of infinitesimally small groups and these equivalent to
Lie algebras (over fields of characteristic zero).

2 This only requires calculations in kN .
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Now, manifolds of a given class O form a category, i.e., for two k-manifolds M,N we
have the allowed class of maps MapO(M,N) (the maps that are in O when rewritten in
terms of local charts).

0.2.2. Lie groups in class O. These are groups (G, ·) with a compatible structure of an

O-manifold. The compatibility requirement is that the multiplication G×G ·−→ G is a
map of manifolds (i.e., that locally, after identification with parts of kn, it is in the class
O).

0.3. Lie algebras: definition and examples.

0.3.1. The relation of the group GLn and the vector space Mn. Mn happens to be a k-
algebra and motivated by the following lemma on Mn we will consider the commutator

[x, y]
def
= xy − yx in Mn(k).

Lemma. (a) There is a well defined exponential map Mn(k) → GLn(k).

(b) It restricts to an isomorphism between certain neighborhoods of 0 ∈ Mn(k) and
1 ∈ GLn(k).

(c) euxeuxeuxeux = 1 + u2[x, y] + O(u3). �

Remark. So, Mn sees GLn near 1 and the commutator in GLn for elements near 1/

0.3.2. Commutator operation in an associative k-algebra. We will use the lemma 0.3.1 as
a motivation to consider the properties of the commutator operation.

Lemma. If A is an associative k-algebra then

(a) (Antisymmetry) [y, x] = −[x, y];

(b) (Jacobi identity)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

�

Remark. The Jacobi identity is an infinitesimal rewriting of associativity. The proof uses
only associativity in A.
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0.3.3. Lie algebras definition. A Lie algebra over a k is a vector space g together with a
bilinear operation [−,−] which is antisymmetric and satisfies the Jacobi identity.

(Ex 0.) Any associative algebras (A, ·) gives a Lie algebra (A, [−,−]) for the commutator
operation. [This is actually our motivation for the definition of Lie algebras. A better
motivation comes from Lie groups.]

(Ex 1.) A subspace h of a Lie subalgebra g is (said to be) a Lie subalgebra if it is closed
under the bracket in g. Such h is naturally a Lie algebra.

Lemma. (Ex 2.) For any associative k-algebra A the set of derivations of A

Derk(A)
def
= {α ∈ Endk(A); α(ab) = α(a)b+ aα(b)}

is a Lie subalgebra of the associative algebra Endk(A).

Example. (Ex 2’.) Let M be a k-manifold Then V(M)
def
= Derk[O(M)], the derivations

of functions on M , is a Lie algebra called vector fields on M

Lemma. For M = kn the vector fields are a free module over functions with the basis
given by partial derivatives

V(kn) = ⊕n
1 O(kn)

∂

∂xi
.

0.3.4. Actions of groups. A. Actions on sets. An action of a group (G, ·) on a set
X is a map ∗ : G×X −→ X (we denoted ∗(g, x) by g ∗ x such that e ∗ x = x and
g ∗ (h∗x) = (g·h)∗x. [We often denote g ∗x simply by gx. Another notational possibility
is to denote for each gh ∈ G by π(g) the map X → X given by by the action, i.e.,
π(g) (x) = g ∗ x.]

Remark. When G acts on X we say that G is a symmetry of X . Interesting groups arise
as symmetries of objects.

Lemma. When G acts on X then for each a ∈ X its stabilizer Ga = {g ∈ G; g ∗ a = a}
is a subgroup of G. �

B. The induced actions on the sets of structures on a given set X. A structured
sets is a pair (X,Σ) of a set with some structure Σ on X . For simplicity we will not
formally define what we mean by a structure on a set, or a class of structures on sets, but
it will be clear from examples.

Lemma. For any class S of structures on n-tuples of sets (X1, ..., Xn), an action of a group
(G, ·) on sets Xi extends to an action of G on the set S(X1, ..., Xn) of structures of type
S on (X1, ..., Xn). �
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Remark. This is a part of the transport of action principle:

“If G acts on each of the sets Xi then it acts on any set naturally produced from Xi’s.”

Examples. (0) If G acts on the sets X and Y then it acts on the set Map(X, Y ) of maps
from X to Y . For a function φ : X → Y any g ∈ G defines a new function by the

“conjugation” formula gφ(x)
def
= g ∗Y f(g−1 ∗ x).

(1) If G acts on all Xi it acts on
∏

i∈I Xi and ⊔i∈I Xi.

(2) If G acts on X it also acts on the set BO(X) of all binary operations on X . (G acts on
X , hence on X×X and then also on Map(X×X,X) = BO(X) of all binary operations

on X . Here, g ∈ G acts on an operation ◦ : X×X by (g◦)(x, y) def
= g ∗ (◦ [g−1 ∗−1(x, y)]),

i.e., x(g◦)y def
= g ∗ [g−1 ∗ x ◦ g−1 ∗ y]. �

C. Actions on structured sets. An action of a group (G, ·) on a set X with a structure
Σ is an action of G on X which preserves Σ (i.e., if Σ belongs to the class S of structures
on sets then we require that g is in the stabilizer of Σ for the action of G on S(X)).

Examples. [Actions that preserve structures on sets.] (0) If G acts on the sets X and Y
then it preserves a map φ ∈Map(X, Y ) if gφ = φ, i.e., we have that (gφ) = g∗ φ(g∗X−1x)
equals φ(x) for all x ∈ X . When we write y = g−1x ∈ X , the condition becomes that for
all y ∈ X we have g ∗ φ(y) = φ(g ∗ y). So, the whole group G preserves the function φ
iff φ is a G-map from X to Y (for the standard notion of G-maps).

(1) If the structure Σ on X is that of a k-manifold then g ∈ G preserves Σ iff the map
g∗− : X → X is a map of manifolds. (Then g∗− is actually an isomorphism of manifolds
with the inverse g−1 ∗ −.)

(2) Similarly, when G acts on a set X then G preserves the operation ◦ on X if for all

x, y ∈ G one has (g◦)(x, y) def
= g ∗ (◦ [g−1 ∗ −1(x, y)]), i.e., g(x◦y) = gx ◦ gy]. �

Lemma. (a) An action of a group G on a vector space V is the same as an action of G
on the set V by linear operators.

(b) This is the same as a homomorphism of groups π : G→ GL(V ).

Proof. (a) We notice that the phrase “vector space V ” means a structured set, the set
V with operations + of addition and · of multiplication with a scalar. So, an action on
the vector space V really means an action on the set V which preserves these operations,
i.e., g ∗ (u + v) = g ∗ u + g ∗ v and g ∗ (c·v) = c ·(g ∗ v) for c ∈ k. If we denote by
π(g) : V → V the action g ∗ − of g on V this is exactly the requirement that the action
operators π(g) are linear.

Then automatically π is a homomorphism, i.e., π(e) = idV (since π(e)v = e ∗ v = v)
and π(gh) = π(g)·π(h) (since π(gh)v = gh ∗ v = g ∗ (h ∗ v)) = π(g)π(h)v. In particular,
π(g) ∈ GL(V ) with the inverse π(g−1). �
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Remark. An action of a group G on a vector space V is called a representation of G on
V . Usually it is written as a map of groups π : G→ GL(V ).

D. The “transport of action” principle. It says that

“If G acts on each of the structures sets (Xi,Σi) then G acts on any structured set
naturally produced from (Xi,Σi)’s.”

Here are some examples.

Lemma. (a) An action of G on set X gives an action of G on the algebra of functions on
X .

(b) An action of G on a k-manifold M of class O gives on

• an action of G on the algebra O(M) of O-functions on M and also
• an action of G on the Lie algebra V(M) of vector fields on M .

Proof. (b) Group G acts on the set of all functions f : X → k using the given action of G

onM and the trivial action of G on k, i.e., gf(x)
def
= f(g−1∗x). The phrase “k-algebra of

functions” means a structured set of function with operations of addition, multiplication
with a scalar and the multiplication of functions. Preserving these structures means that

g(φ+ ψ) = gφ + gψ, g(φ·ψ) = gφ · gψ and g(c·ψ) = c · gψ

for c ∈ k.

(c) Again, if we consider a manifold as a structured set then the phrase “G acts on the
manifold M” means that G acts on the set M and that all maps g ∗ − : M → M are
morphisms of manifolds.

Then G acts on the algebras of all function f :M → k as in (b). However, we need that
this action gφ = g◦φ◦g−1 preserves the subalgebra of differentiable functions on M . This
is so because g :M →M is differentiable.

Finally, by transporting actions, since G acts on manifold M it also acts on

• the algebra O(M);
• the associative algebra Endk(M), hence also on
• the Lie algebra of Derk[O(M)] = V(M) of derivations of M .

�

Remark. In part (c), the action of G on functions f and vector fields ξ are compatible
with the action of vector fields on functions, i.e., gξ gφ = g(ξφ). This comes from the
definition of the action on vector fields by transport of structure (if you write the proof
of (c) in detail). �
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E. Invariants of actions. When G acts on a set X , the set of G-invariants in X is

XG def
= {x ∈ X ; g ∗ x = x for all g ∈ G}.

Lemma. (a) If G acts on a set X and trivially on the point pt then XG is the set of
G-maps from pt to X .

(b) If G acts on a structured set (X,Σ) then XG inherits the structure of the same kind
as Σ. �

Example. If G acts on a Lie algebra h then the invariants hG⊆h are a Lie subalgebra of
g.

0.3.5. The Lie algebra Lie(G) = TeG of a Lie group G.

Proposition. For any Lie group G its tangent space TeG (at the neutral element) is canon-
ically a Lie algebra.

Proof. A group G acts on the set G by left translations by Lg(u) = gu and by right
translations Rg(u) = ug−1. These actions commute so we get an action of G×G on G by
(g, h)u = guh−1. (Via the diagonal embedding G→֒G×G we also get the diagonal action
of G on G by conjugation Cg(u) = gug−1.) Therefore G acts on the Lie algebra V(G) of
vector fields on G in three ways L,R,G.

We define the left invariant vector fields on G as the invariants V(G)G×1 of the left
multiplication action. We know that this is a Lie subalgebra of all vector fields. This
makes TeG a Lie algebra via the isomorphism

V(G)G×1 ∼= Te(G).

We see this from the dual nature of vector fields on a manifold M and on the other
they are sections of the tangent vector bundle TG. Now, the left action of G on the Lie
group G can be used trivialize the tangent vector bundle TG. For any g ∈ G we have an

isomorphism Lg : G
∼=−→G which takes e to G, so its differential deLg : TeG → TgG is an

isomorphism.

Therefore, for any v ∈ TeG there is precisely one left invariant vector field ξ on G such
that its value at e is V . (A vector field ξ is left invariant iff at each g in G we have
ξ(g) = (deLg) ξ(e)).)

So, the evaluation at e is an isomorphism of vector spaces. Now we can use it to transport
the Lie algebra structure from V(G)G×1 to TeG. �
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Remarks. (0) Now one should check that the commutator bracket on Mn(k) is the same
as the Lie algebra structure on T1GLn(k) defined as left invariant vector fields on G.

(1) One can also use the right multiplication action of G on G to trivialize TG and this
gives another Lie algebra structure on TeG which is now identified with V(G)1×G.

We define the Lie algebra of a Lie group G (usually denoted g) to be TeG with the bracket
coming from left invariant vector fields.

1. Representations of Lie algebras

1.1. Representations of groups. We have defined representations of a group G on a
vector space V as synonymous with an action of G on the vector space V (viewed as a
set with the structure of a vector space).

The simplest example of a representation arises from sets – when G acts on a set X
then it acts on the algebra Map(X, k) of k-valued functions on X , so Map(X, k) is a
representation of G. If X has a structure of an O-manifold then the same holds for the
interesting vector space of functions O(X). (Actually any vector space produced from X
is a representation of G, such as differential forms Ωp(X) or vector fields V(X) on X .)

1.1.1. Category Repk(G) of representations of G over k.

Lemma. (a) Representations of G over k form a category Repk(G).

(b) This is an abelian category, i.e., it behaves like the category Ab of abelian groups or
any of the categories m(A) of modules over an associative algebra A.

Proof. (a) For two representations U, V one defines HomRepk(G)(U, V ) (denoted simply
HomG(U, V )) as all linear maps functions α : U → V such that α(gv) = g(αv) for v ∈ V
and g ∈ G.(3)

The meaning of (b) is that a map of representations α : U → V has the kernel Ker(α)⊆U ,
image Im(α)⊆V which are again representations of G and these satisfy all properties that
hold in m(A). In particular, there are notions of (short) exact sequences, of a subrepre-
sentation V ′ of V (a subspace V ′ of V which is invariant under G is a representation) and
the quotient vector space V/V ′ is again a representation. �

In particular one can say that a representation V of G is irreducible if the only subrepre-
sentations are the trivial (obvious) ones: 0 and V . If a representation V is not irreducible
then it has a proper subrepresentation U and then one says that V is an extension of the
quotient representation V/U by the subrepresentation U . So, the irreducible subrepre-
sentations of G are the basic building blocks of the representation theory of G.

3 In other words as all functions α : U → V that are compatible with the structure that is present,
that of a vector space and of a G-action.
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1.1.2. The Representation Theory Strategy. It deals with the problem of “understanding
the structure of interesting representations”, i.e., how it is built by successive extensions
of irreducible representations.

So, the steps in a representation theory of G are roughly

(1) Find the list Irr(G) of all irreducible representations of G,
(2) Study each V ∈ Irr(G) in detail (dimension, character,...).
(3) Study how “interesting representations” are built from (“well understood”) irre-

ducible representations.

The idea is that if (1-2) have been accomplished for G then they can be used as in (3) in
any setting where G appears as a symmetry. So, (1-2) can be considered as the abstract
part and then the concrete applications appear in step (3) when concrete problems supply
interesting representations of G.

1.1.3. Harmonic Analysis. The Harmonic Analysis studies spaces X in terms of relevant
functions O(X) on X . If X has G for a symmetry then O(X) is a representation of
G. The the understanding of this representation can be called the “organization of our
thinking about X in terms of its symmetry G”.

More abstractly , the Representation Theory is the principle that

“Any subject should be organized in terms of its symmetries”.

1.1.4. Example: Fourier transform. The Fourier transform is the particular case of orga-
nization of functions according to symmetries. Here the space on which G acts is G itself,
so one organizes functions on G in terms of Irr(G).

We will here consider only the case when G is a commutative group and we will start
with the case of the circle group.

The irreducible representations of the circle group T = {s ∈ C; |s| = 1} are the 1-
dimensional representations χn : T → C∗ = GL1 by χn(s) = sn. It appears as a subrepre-
sentation Cχn of C∞(T)⊆L2(T). The decomposition of L2 functions on T into irreducible
representations is as a sum of Hilbert spaces

L2(T) ∼= ⊕n∈Z Csn.

Remark. Notice here that that Z appears as Irr(T) and that Irr(T) = Z is itself a group.
The above decomposition now says that L2-functions on the group T are the same as
L2-functions on the group Z.

Theorem. This remains true for all commutative groups A: Irr(A) is a group (called the
dual group of A) and one has a canonical isomorphism

L2(A) ∼= L2(Irr(A)). �
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As in the above example this isomorphism is called the Fourier transform for the group
A.

Example. For a vector space V over R The dual group Irr(V ) is the dual vector space V ∗

in the sense that any α ∈ V ∗ gives a 1-dimensional representation V
eα−→ C∗ = GL1(C)

by eal(v)
def
= e2πi〈α,v〉. Then L2(V ) is a continuous(!) sum, i.e., an integral of irreducible

representations eα of V , the meaning of this is that for f ∈ L2(V ) we have the Fourier
inversion formula

f(v) =

∫

V ∗

cα e
2πi〈α,v〉 dα

where the coefficients cα are given by the standard Fourier transform of f .

Functions on an interval. Classically one is rather interested in functions on an interval,
say on. [0, 2π]. This interval maps to T by θ 7→ e2πiθ and then the periodic functions on
the interval [0, 2π] are the same as functions on T. So, function χn(s) = sn now becomes
the periodic function e2πinθ on [0, 2π]. Moreover, when one passes to L2-functions the
“periodic function on [0, 2π] does not make sense and we get an isomorphism of spaces of
all functions L2[0, 2π] ∼= L2(T).

Now, irreducible representations of T give the basis e2πinθ, n ∈ Z of L2(T,C) of complex
valued functions on [0, 2π]. In classical physics complex numbers were not meaningful so
one would talk in terms of the the basis cos(2πinθ), cos(2πinθ) of L2(T,R).

Therefore, the classical analysis on an interval, for instance solving a heat equation, has
representation theoretic background which need not always be manifest.

1.1.5. Harmonic analysis on homogeneous spaces. The case when symmetry G of X com-
pletely controls X itself is when X is a homogeneous space of G, i.e., X = G/A. This is
the case when the decomposition of O(X) as a representation of G organizes O(X) the
best.

The sphere Sn−1 in Rn is a homogeneous space of the orthogonal group O(n).

A 2d disc is a homogeneous space of the group SL(2,R).

1.2. Representations of Lie algebras.

1.2.1. Representations. We define a homomorphism of Lie algebra from g to h as a func-
tion φ : g → h which preserves all structures, i.e., φ is linear and φ([x, y]g) = [φx, φy]h.

Then a representation of a Lie algebra g on a vector space V is defined as a homomorphism
of Lie algebras π : g → gl(V ).

Remark. To make the analogy with groups more complete we define an action of a Lie
algebra g on a manifold M as a homomorphism of Lie algebras π : g → V(M). So. Lie
algebras act on manifolds by vector fields!
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Lemma. For any x in the Lie algebra g denote by ad x = [x,−] : g → g the linear operator

(ad x)(y)
def
= [x, y]. Then the map ad : g → Endk(g) is a Lie algebra representation.

(We call it theadjoint representation of g.)

1.2.2. Multilinear algebra of representations.

Lemma. (a) Any vector space U carries the trivial representation of any Lie algebra g –
we just let all x ∈ g act by the 0 operator.

(b) For a representation (π, V ) of a Lie algebra g show that on the dual vector space V ∗

we have a representation π∗ of g when the action π∗(x)φ for x ∈ g, φ ∈ V ∗, is defined by

〈π∗(x)φ, v〉 = −〈φ, π(x)v〉.

(c) For two representations V, U of a Lie algebra g show that on the tensor product U⊗V
there is a well defined representation of g such that for u ∈ U, , v ∈ V, x ∈ g

x(u⊗v) = xu⊗v + u⊗xv.

(d) For two representations V, U of a Lie algebra g show that the space of linear operators
Homk(U, V ) is a g by such that x ∈ g acts on A ∈ Homk(U, V ) by the commutator formula

(xA)u
def
= x(Au) − A(xu) for u ∈ U.

�

Remark. The canonical map V⊗kU
∗ ι−→Homk(U, V ) is a g-map. �

1.2.3. Schurr lemma. The following is an expression of the idea that irreducible represen-
tations are as simple as possible.

Lemma. Let k = C. If U, V is an irreducible finite dimensional g-modules then
Homg(U, V ) = C if U ∼= V and zero otherwise.

Proof. For any α ∈ Homg(U, V ), Ker(α)⊆U and Im(α)⊆V are submodules, so they have
to be either 0 or the whole representation. Therefore, if α 6= 0 we see that Ker(α) = 0 and
Im(α) = V . So, if α 6= 0 then it is an invertible linear operator hence an isomorphism of
g-modules.

It remains to prove that any α ∈ Homg(V, V ) is a scalar. Since V is irreducible, it is not
0 hence α has an eigenvalue λ. Then α − λ1V is in Homg(V, V ) and it is not invertible.
So, β − λ1V = 0. �
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1.2.4. Extensions in an abelian category. For any Lie algebra g the category Rep(g) of
its representations of is an abelian category, meaning that it behaves like the category of
modules over an associative algebra.(4)

In particular there are short exact sequences 0 → U −→V −→W → 0 of g-representations.
We say that V is an extension of W by U .

A splitting of the short exact sequences 0 → U
α−→ V

β−→W → 0 means any of the following
equivalent data

(1) A submodule W ′ of V complementary to U .
(2) A section β ′ of β, i.e., a g-map β ′ : W → V such that β ′◦β = idW .
(3) A retraction α′ of α, i.e., a g-map α′ : V → U such that α◦α′ = idU .

Proof. We check that the data are indeed equivalent. For instance W ′ gives α′ as the

composition V ∼= U⊕W ′ pr1−→ U and α′ gives W ′ = Ker(α′). �

1.2.5. How representations are built from irreducibles.

Lemma. Consider the category R = Repfd(g) of finite dimensional modules for a Lie
algebra fg.

(a) Any object V has a Jordan-Hoelder series, meaning a sequence of submodules 0 =
V0⊆V1⊆· · ·⊆Vn = V , such that all Vi/Vi−1 are irreducible.

(b) The following is equivalent for category R

• (i) all short exact sequences split;
• (ii) all modules are direct sums of irreducible modules;
• (iii) all extensions of irreducible modules split.

If this holds and Lk, k ∈ K is a complete list of representatives of isomorphism classes of
irreducible g-modules, then for any V ∈ R the canonical map

⊕k Homg(Lk, V ) ⊗Lk
ι−→ V, ι(

∑

k

Ak⊗lk) def
=

∑

k

Aklk

is an isomorphism of g-modules.(5)

Proof. (a) is proved by induction on dim(V ).

(b) We will prove that (i) is equivalent to (ii) in (b1-b4) below.

4 Later we will see that Rep(g) actually is the category of modules over an associative algebra called
the enveloping algebra Ug of g.

5 Here, the vector spaces Homg(Lk, V ) carry the trivial g-action, i.e., they are just the multiplicities
of representation Lk in V .
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(b1) First we notice that if all SES split then any objects V is a sum irreducibles. The
reason is that a JH-series of V , submodule Vi−1 of Vi has a complement Ci and then
Ci

∼= Vi/Vi−1 hence Ci as irreducible and V = Vn = Vn−1⊕Cn = · · · = C1⊕· · ·⊕Cn.

(b2) Second, for a module V which is a sum of irreducible submodules V = ⊕N
1 Ci we

check the decomposition V ∼= ⊕k Homg(Lk, V ) ⊗Lk
ι−→ V . If Lk, k ∈ K, are as above,

a complete list of non isomorphic irreducible modules in R, then each Ci is isomorphic to
Lk(i) for unique k(i) ∈ K. Then Homg(Lk(i), Ci) is 1-dimensional and we can regard this
line as the difference between Lk(i) and Ci since the canonical map

Mi⊗Lk(i) → Ci, A⊗v 7→Av;

is an isomorphism of vector spaces (and of g-modules when the line Mi is regarded as a
trivial g-module.)

Now,

Hom(Lk, V ) = ⊕N
i=1 Homg(Lk, Ci) = ⊕i, k(i)=k Homg(Lk, Ci) = ⊕i, k(i)=k Mi;

and therefore

V ∼= ⊕N
i=1 Ci

∼= ⊕k∈K ⊕i, k(i)=k Ci
∼= ⊕k∈K ⊕i, k(i)=k Mi⊗Lk

∼= ⊕k∈K Hom(Lk, V ) ⊗ Lk.

(b3) Assume that all modules in R are sums of irreducibles, i.e., V ∼= ⊕k Mk ⊗Lk for
the multiplicity vector spaces Mk = Homg(Lk, V ). Then all submodules V ′⊆V are of the
form ⊕k M

′
k ⊗Lk for some choice of vector subspaces M ′

k⊆Mk.

The reason is that any submodule V ′ is also of the form ⊕k M
′
k ⊗Lk for its multiplicity

vector spaces M ′
k = Homg(Lk, V

′). Then the inclusion V ′⊆V gives M ′
k⊆Mk.

(b4) Now it is clear that if all modules are sums of irreducibles then any submodule has
a complement (just choose complementary vector subspaces for M ′

k in Mk). �
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2. Representation theory of sl2

When we consider representation theory then k is assumed to be C (unless otherwise
stated).

2.1. Lie algebra sl2.

2.1.1. Lie algebras sln. We start with the example gl(V )
def
= Endk(V ) of the Lie algebras

of operators on a vector space V with the commutator bracket.

Lemma. (a) For a finite dimensional vector space V the subspace sl(V )⊆gl(V ) of traceless
operators is a Lie subalgebra.

(b) Group GL(V ) acts on the Lie algebra gl(V ) by conjugation. This action preserves
the Lie subalgebra sl(V ).

Proof. (b) For any associative k-algebra A, the group A∗ of invertible elements of A acts
on the associative algebra (A,+, ·) by conjugation. Then by the transport of action A∗

also acts on the Lie algebra (A, [−,−]) by conjugation. (Because the Lie algebra structure

was constructed from the associative algebra structure by [x, y]
def
= xy − yx.

So, the group GL(V ) of invertible elements of the algebra End(V ) acts (by conjugation)
on the algebra End(V ) and on the associated Lie algebra gl(V ). The conjugation preserves
the trace hence it also preserves the Lie subalgebra sl(V ). �

It turns out that the Lie algebras sln has interesting structure and an interesting repre-
sentation theory. We will learn these in detail and then we will extend this into a theory
of representations of the class of semisimple Lie algebras. We will start here with the case
of g = sl2.

2.1.2. Lie algebra sl2.

Lemma. (a) The following elements of sl2 form a basis (called the standard basis)

e = ( 0 1
0 0 ) , f = ( 0 0

1 0 ) , h = ( 1 0
0 −1 ) .

(b) It satisfies

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h. �

Corollary. [e and f have “symmetric” roles in sl2.] There is a unique automorphism of
the Lie algebra sl2 that takes e, h, f to f,−h, e. �

2.2. Weights and primitive vectors.
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2.2.1. The weights of a representation. The weights λ in a representation V of g = sl2 are
defined as eigenvalues λ of h in V . One calls the λ-eigenspace

Vλ
def
= {v ∈ V ; hv = λv}

the weight λ subspace of V and dim(Vλ) is called the multiplicity of weight λ in V .

Lemma. (a) The sum
∑

λ Vλ ⊆ V is direct.

(b) eVλ⊆ Vλ+2, fVλ⊆ Vλ−2, hVλ⊆ Vλ.

(c) The sum
∑

λ Vλ ⊆ V is a g-submodule.

(d) 0 6= dim(V ) <∞ then
∑

λ Vλ 6= 0. �

2.2.2. Primitive vectors. The non-zero vectors in

V o
λ

def
= {v ∈ Vλ; ev = 0}

are called the primitive vectors of weight λ in V (or the highest weight vectors of weight
λ).

For a primitive vector v of weigh λ wee define the vectors

vn
def
=

fn

n!
v ∈ V, n ∈ N.

So, v0 = v, v1 = fv etc.

Lemma. (a)

fvk = (k+1)vk+1, hvk = (λ−2k)vk k ∈ N and evk = (λ+1−k)vk−1, (k > 0).

(b) The nonzero vectors vn are independent.

(c) The sum
∑

n∈N Cvn ⊆ V is a g-submodule.

(d) If vn 6= 0 but vn+1 = 0 then λ = n. �

Corollary. If V 6= is finite dimensional then

• (a) V has a primitive vector and the weights of all primitive vectors are natural
numbers.

• (c) If v is a primitive vector of weight n ∈ N then v0, ..., vn are independent and
vi = 0 for i > n.

Proof. (c) Since the nonzero vectors vn are independent and V is finite dimensional, there
is some m ∈ N such that vm 6= 0 and vm+1 = 0 (hence vi = 0 for i > m). By (d) we have
m = n. Also, since vn 6= 0 we have vi 6= 0 for i ≤ n. �

2.3. Classification of irreducible finite dimensional modules for g = sl2.
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Lemma. (a) For any n ∈ N there is a representation L(n) of sl2 of dimension n+ 1 given
by matrices

E =




0 n
0 n−1

...
...
0 2

0 1
0


 , H =




n
n−2

n−4

...
2−n

−n


 , F =




0
1 0
2 0
...

...
n−1 0

n 0


 .

(b) L(n) is irreducible and has a primitive vector of weight n. �

Remark. (c) The standard basis of kn+1 is of the form v0, ..., vn for a primitive vector of
weight n.

Theorem. L(n), n ∈ N, is a classification of irreducible finite dimensional representations
of sl2.

Proof. The claim is that all L(n) are irreducible and that each finite dimensional irre-
ducible representation of sl2 is isomorphic to precisely one of L(n). �

Corollary. (a) Any irreducible finite dimensional sl2-module V has a unique primitive
vector (up to an invertible scalar). Its weight n is the highest weight of V . All weight
multiplicities in V are≤ 1.

(b) The dual V ∗ of any irreducible finite dimensional representation V of sl2 is isomorphic
to V . (6)

�

Remark. So, the irreducible modules are classified by their highest weights by n7→ L(n).
�

2.4. Semisimplicity theorem for sl2. Here we state the theorem and and consider its
consequences. The proof is postponed to 2.6 (Weyl’s proof) and .... (algebraic proof).

Theorem. Finite dimensional representations of sl2 are semisimple (i.e., a sum of irre-
ducibles).

Corollary. For any finite dimensional representation V of sl2:

(a) V is isomorphic to a representation of the form ⊕n∈N L(n)⊕mn where mn is the
dimension of V o

n . More precisely,

V ∼= ⊕n∈N L(n)⊗V 0
n and Homsl2 [L(n), V ]

∼= V o
n .

(b) e, f act on V as nilpotents and h as a semisimple operator with integer eigenvalues
(i.e., V = ⊕i∈Z Vi).

(c) V ∗ ∼= V .

6 This is a special property of sl2, it is not true for sln.
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(d) For any n ∈ N the map

V−n
en−→ Vn

is an isomorphism.

Proof. (a) We have proved in 1.2.5 that

V ∼= ⊕n∈N L(n)⊗Mn for Mn = Homsl2[L(n), V ].

Now, since operators h, e act on V so that they preserve each summand and they act
trivially on Mn’s, we get that

Vp ∼= ⊕n∈N L(n)p⊗Mn and V o
p

∼= ⊕n∈N L(n)
o
p⊗Mn

∼= Mp

because L(n)op = 0 for p 6= 0 and L(n)op is a line.

Each of the claims (b,c,d) is easily checked for V = L(n) and then one notices that it
remains true for sums of copies of L(n)’s. �

2.4.1. Proofs of the semisimplicity theorem. This theorem holds for the class of so called
semisimple Lie algebras that we will define later, including all sln. One can prove this
theorem by using one of the following ideas:

(1) Weyl’s unitary trick (it is intuitive but requires relation to Lie groups and the
Haar measure on compact Lie groups).

(2) Casimir operator C (this approach gives a proof which is elementary but long, it
requires the enveloping algebras of Lie algebras).

(3) Lie algebra cohomology (requires homological algebra).
(4) In the case of sl2 the representations L(n) are so well understood that one can

provide a proof without any of these extra tools. (For instance a proof which
follows (2) above but without Casimir.)

2.5. Crystals: a combinatorial view on representations. Kashiwara found that
finite dimensional representations V of semisimple Lie algebras come with a combinatorial
structure cr(V ) called the crystal of V .

The crystal cr[L(n)] = c(n) of L(n) is the graph

−n e−→ −n+ 2
e−→ −n + 4

e−→ · e−→ n− 2
e−→ n.

Its vertices correspond to the standard basis vn, vn−1, ..., v0 of L(n) (or to the lines kvi
through this basis). The vertices are labeled by the weights of vectors in the basis. The
arrows are labeled by e symbolizing the action of the operator e on L(n).

Let us denote by C[sl2], the crystals of g = sl2, the set of all finite disjoint unions of
crystals of L(n)’s.

Then one can define the crystal cr(V ) of any finite dimensional representation V as the
disjoint union of crystals of L(n)’s corresponding to the decomposition of V into a sum
of copies of L(n)’s.
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Remark. The isomorphism classes of sl2-crystals are in bijection with isomorphism classes
of finite dimensional representations of sl2. In particular, the connected crystals corre-
spond to irreducible representations.

Example. The basis of primitive vector in V corresponds to vertices in cr(V ) which are
ends of e-strings.

2.5.1. The tensor product of crystals. Kashiwara defines the operation of the tensor prod-
uct of crystals

C(g) tim C(g) ⊗−→ C(g)
with the property that

Theorem. cr(U)⊗cr(V ) ∼= cr(U⊗V ). �

Remark. So, crystals contain the information of how tensor products decompose into
irreducibles!

2.6. Weyl’s proof of semisimplicity.

2.6.1. Semisimplicity for compact topological groups.

Theorem. Let U be a compact topological group.

(a) For any continuous representation of G on a Hilbert space
(
H, (−,−)0

)
there is new

inner product (−,−) on H which is U -invariant, i.e.,

(ux, uy) = (x, y) for x, y ∈ H, u ∈ U.

(b) For any finite dimensional continuous representation (π, V ) of G, any subrepresenta-
tion V ′ of V has a complementary representation V ′′.

2.6.2. Proof I: (a) implies (b). The point is that a finite dimensional vector space V
always has an inner product (−,−)0 and therefore it also has an invariant inner product
(−,−). Now, V ′′ can be chosen as (V ′)⊥ the orthogonal complement with respect to the
invariant inner product. �

2.6.3. Proof II: proof of (a). This is based on the following fact in analysis.
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Theorem. For any compact topological group G :

(a) There is a measure µ on G which is

(1) Strictly positive, i.e., for any open nonempty V µ(V ) > 0.
(2) Invariant under left and right translations where these translations are the canon-

ical actions of the group G on measures on G :

(Lgµ)(V ) = µ(Lg−1V ) = µ(g−1V ) and (Rgµ)(V ) = µ(Rg−1V ) = µ(V g).

(b) This measure is unique up to a multiplication with some positive number. �

Remarks. (a) The theorem holds for all locally compact groups except that in this case
one can only ask for invariance under say the left translations.

(b) These measure are called Haar measures

Proof of part (a) in the theorem 2.6.4. We get the invariant inner product as an average
of translates of any existing inner product

(x, y)
def
=

∫

u∈U

(ux, uy)0 dµ(u) �.

2.6.4. Weyl’s proof of the semisimplicity theorem. Here we finally finish the proof of the
semisimplicity theorem for sl2 from 2.4. It turns out that the theorem and Weyl’s proof
remain valid for any g in the class of semisimple complex Lie algebras which contains sl2.
So, we will state and prove the theorem it in this generality. The key is the relation of
semisimple Lie algebras and compact Lie groups that we state in 2.7.

Theorem. For any semisimple complex Lie algebra g the category Repfd(g) of finite di-
mensional representations of g is semisimple.

Proof. By 2.7, the category Repfd(g) behaves the same as the category of representations
of a compact Lie group U . However, for compact groups we know semisimplicity by
averaging inner product. �

2.7. Appendix. Relation of semisimple Lie algebras and Lie groups.

Theorem. Let g be a semisimple complex Lie algebra.

To a semisimple complex Lie algebra g we associate a complex Lie group G
def
= ˜AutLie(g),

the universal cover of the group of automorphisms of the Lie algebra g. Moreover, it turns
out that all maximal compact subgroups U of G are essentially the same – more precisely
they are conjugated by elements of G. So, we can choose any maximal compact subgroup
U of G. Then
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Theorem. The following categories are canonically equivalent

(1) Repfd(g), the finite dimensional representations of the Lie algebra g;

(2) Repfdhol(G), the finite dimensional holomorphic representations of the complex Lie
group G;

(3) RepfdC∞(U), the finite dimensional smooth representations of the real Lie group G
on complex vector spaces.

Here, the equivalence Repfdhol(G) −→Repfd(g) is given by differentiating a representation
π of G on V to a representation π′ of g on V by

π′(x)
def
=

d

ds
|s=0 π(e

sx).

The equivalence Repfdhol(G) −→RepC
∞

(U) is simply given by restricting the action of G to
the subgroup U .

Example. When G is sln then the group G = SL(n) acts on the Lie algebra g by con-
jugation. However, the center Z(G) of G acts trivially on g. The center consists of all
diagonal matrices s·1n which lie in SLn, i.e., det(s1n) = sn should be 1. This means
that Z(G) ∼= µn for the group µn of all nth roots of unity. Then the map

SLn(C)/µn −→ AutLie(sln)

is an isomorphism. The group G that is attached to g = sln is the universal cover of
AutLie(sln) = SLn(C)/µn and this is again SLn. So, G = SLn(C). Finally, a maximal
compact subgroup U of G can be chosen as SU(n) where U(n) is the group of unitary

matrices and SU(n)
def
= SLn(C) ∩ U(n).

3. Enveloping algebras of Lie algebras

We will here encode a Lie algebra g in terms of an associative algebra called the enveloping
algebra Ug of a Lie algebra g.

Remark. The enveloping algebra Ug of a Lie algebra g resolves the following problem.
When considering a representation (π, V ) of a Lie algebra one naturally needs to calculate
with linear combinations of compositions π(x1)· · ·π(xn) of operators attached to elements
xi of g.

This is a computation in the associative algebra End(V ). However, some of these compu-
tations are done just by using the commutators in the Lie algebra g. Typical example is
the change of order in a product as we can replace the product of length two π(xi−1)π(xi)
with the product in the opposite order π(xi)π(xi−1) (again of length 2), at the price of
adding a term π[xi−1, xi] which is a shorter product (of length 1).

Such computations do not really involve the representation π, rather one is computing in
some sense with linear combinations of sequences x1, ..., xn of elements of g. We would like
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to have a natural setting for such computations and this is what the enveloping algebra
Ug does.

3.1. Enveloping algebra Ug. Let us say that a linearization of a Lie algebra g is a
pair (A, φ) consisting of an associative algebra A endowed with a map of Lie algebras
φ : ga1, ..., anA (i.e., φ[x, y] = φ(x)φ(y) − φ(y)φ(x)] for x, y ∈ g. For instance any
representations π of g on a vector space V is a linearization π : g → A = End(V ).

We define the enveloping algebra U = Ug as the associative algebra generated by the
vector space g and the relations x·Uy − y·Ux = [x, y]g for x, y ∈ g. Formally, this means
that Ug is the quotient of the free algebra generated by g (this is the tensor algebra Tg)
by the relation x⊗y − y⊗x = [x, y]g for x, y ∈ g. So, Ug comes with the canonical map
of vector spaces ι : g → Ug (the composition g⊆Tg։Ug).

Lemma. (a) ι : g → Ug is a linearization of g.

(b) This is the universal linearization of g, i.e., for any linearization (A, φ) of g there is

a unique map of associative algebras Ug
f−→A such that φ = f◦ι.

(c) For an associative algebra A the map

HomAssocAlg(Ug, A)
φ 7→ φ◦ι−−−−→ HomLieAlg(g, A)

is a bijection.

Proof. (b) is just the definition of Ug and (a) is a part of (b).

(c) is a restatement of (b). �

Corollary. Representations of the Lie algebra g are the same as modules for the associative
algebra Ug.

Proof. A representation of g on a vector space V is the same as a map of Lie algebras
π : g → End(V ). A structure of an Ug-module on V is the same as a map of associative
algebras τ : Ug → End(V ). �

Remark. The correspondence of π’s and τ ’s in the lemma is that τ restricts to π = τ◦ι
and π extends to τ by τ(ι(x1)· · ·ι(xN )) def

= π(x1)◦· · ·◦π(xN) for xi ∈ g. �

3.1.1. Filtered algebra structure on Ug. Let Fp be the span of all ι(x1)· · ·ι(xN ) where
xi ∈ g and N ≤ p.

Lemma. (a)
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Lemma. The pair (Ug, F ) is a filtered associative algebra with an increasing filtration,
i.e., we have Fp⊆Fp+1 and F0 ∋ 1 as well as Fp·Fq⊆Fp+q.

(b) Construction g7→ Ug is a functor from the category Lie of Lie algebras to the category

Assoc of associative algebras. In other words, says that any map of Lie algebras g′
α−→ g

defines a map of associative algebras Ug′
α̃−→ Ug.

(c) Moreover, α̃ is a map of filtered associative algebras, i.e., α̃(FpUg
′)⊆ Fp(Ug).

Proof. �

3.2. Poincare-Birkhoff-Witt theorem.

3.2.1. Formulation and the proof of the easy part.

Theorem. If b1, ..., bn is a basis of g then the monomials ι(b1)
p1· · ·ι(bn)pn with p ∈ Nn form

a basis of Ug. �

By the “easy part” of the theorem we will mean the claim that the monomials span Ug.

Proof of the easy part of the PBW theorem. Let AN be the span of all monomials
ι(b1)

e1 · · ·ι(bn)en of degree
∑

ei less or equal to N . Clearly, AN⊆FN . We will prove
by induction that these are the same.

Fp is the span of all ι(x1)· · ·ι(xN ) . By writing each xi as a linear combination of elements
bj of the basis and multiplying out, we see that actually Fp is the span of all ι(x1)· · ·ι(xN )
with N ≤ p and all xi in {b1, ..., bn}.
Such product ι(x1)· · ·ι(xN ) is in Ap if the order x1, ..., xN is compatible with the order in
b1, ..., bn in the basis. If not we have two neighbors xi−1, xi which are in the wrong order.
Then we write ι(xi−1)ι(xi) as ι(xi)ι(xi−1)+ ι[xi−1, xi)]. So, the product ι(x1)· · ·ι(xN ) can
be written as another product of the same length N with one inversion straightened out,
plus a shorter product which lies in Fp−1 which is by induction assumption Ap−1.

By repeating this procedure we can write the product ι(x1)· · ·ι(xN ) as a sum of the
same product but in the correct order (this lies in Ap) and some thing in Ap−1. So,
ι(x1)· · ·ι(xN ) ∈ Ap. �

3.2.2. Some consequences of PBW theorem.

3.3. The Casimir element C of Ug.

3.3.1. The center of the enveloping algebra. Denote by z
def
= Z(Ug) the center of the

algebra Ug.
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Sublemma. (a) g acts on the vector space Ug by

• left multiplication Lx u
def
= x·u for u ∈ Ug and x ∈ g;

• right multiplication Rx u
def
= u·(−x);

• adjoint action adx u
def
= [x, u]

def
= xu− ux.

(b) The left and right multiplication actions commute: LxRy = RyLx and ad = L+R.

Lemma. (a) The adjoint action is by derivations of the algebra Ug, i.e.,

adx(uv) = (adxu)v) + u(adxv).

(b) The map ι : g → Ug is a map of g-modules for the adjoint action on Ug.

(c) The center of Ug is the same as g-invariants in Ug for the adjoint action:

Z(Ug) ∼= (Ug)g.

Proof. By definitions. �

3.3.2. Casimir elements of bilinear forms on g∗. A bilinear form σ = (−,−) on g∗ is a
linear map g∗⊗fg∗ → k, so its adjoint is a map σ∗ : k → g → g, i.e., a vector σ∗(1)

that lies in g⊗g = T 2g⊆Tg. Then π : Tg։Ug defines an element Cg
def
= π(σ∗(1k) in

the enveloping algebra, called the Casimir element of σ.

Lemma. (a) In terms of dual bases xi of g and yi of g∗ in Ug we have

Cg =
∑

ij

σ(yi, yj) xi·xj

(b) If the bilinear form σ is g-invariant then Cg lies in the center Z(Ug).

Proof. (a) The adjoint of σ : g∗⊗g∗ → k takes 1k ∈ k to σ(yi, yj) xi⊗xj . Its image Cg in
U(g) is

∑
ij σijxi·xj .

(b) A bilinear form σ on a representation V of g is said to be g-invariant if σ(x·u, v) +
σ(u, x·v) = 0 for all u, v ∈ V . We know that this is equivalent to the condition that the
corresponding vector σ in the g-module V ∗⊗V ∗ is g-invariant in the sense of being killed
by g.

In our case V = g∗ hence σ ∈ V ∗⊗V ∗ = g⊗g. Now Cσ is the image of σ under the natural
map g⊗g ⊆ Tg ։ Ug. The naturality of this map implies that it is a g-map for the
adjoint action on Ug.

Therefore, it sends g-invariants to g-invariants, hence Cσ lies in (Ug)g which is the same
as Z(Ug). �
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Remarks. (0) A symmetric bilinear form σ on V defines a quadratic form q on V by
q(v) = σ(v, v). One can go in the opposite direction by σ(u, v) = 1

2
[σ(u + v, u + v) −

σ(u, u)− σ(v, v)].

(1) A symmetric bilinear form (or equivalently a quadratic form) on a Lie algebra is also
called a level.

3.3.3. Casimir elements of nondegenerate bilinear forms on g. We will use the following
lemma to move a non-degenerate bilinear form τ on g to a bilinear form σ on g∗.

Sublemma. (a) A non-degenerate bilinear form τ on a finite dimensional vector space V
is the same as a non-degenerate bilinear form σ on V ∗.

(b) To a basis vi of V one can attach a τ -dual basis vi of V and also the dual basis yi of
V ∗. Then the matrices of τ and σ in bases vi and yi of V and V ∗ are the same.

Proof. (a) Any bilinear form τ on g can be viewed as a linear operator τ̃ : g → g∗ by
τ̃(x) = τ(x,−). The nondegeneracy of τ is then the same as τ̃ being invertible. We can
then use it to move τ from V to V ∗ by

σ(λ, µ)
def
= τ(τ̃−1λ, τ̃−1µ).

(b) follows because the operator τ̃ : V
∼=−→V ∗ sends vi to yi since τ̃ vi = τ(vi,−) equals

yi. �

Now, to any g-invariant non-degenerate bilinear form τ on g we can associate a non-
degenerate bilinear form σ on g∗. We, define the Casimir Cτ of τ as Cσ. If τ is g-invariant
then τ̃ : g → g∗ is a g-map, and therefore σ is also g-invariant. Therefore, Cτ lies in
Z(Ug).

Lemma. When τ is non-degenerate for any basis xi of g there is a τ -dual basis xi of g,
i.e., τ(xi, xj) = δij. Then

Cτ =
∑

xix
i.

Proof. The map τ̃ : g → g∗ is given by τ̃(xi) = τ(xi,−) = yi. Therefore, Cτ def
= Cσ is

∑
σ(yi, yj) xi⊗xj =

∑
τ(xi, xj) xi⊗xj =

∑

i

xi⊗(
∑

j

τ(xi, xj) xj) =
∑

i

xi⊗xi. �

3.3.4. Examples. These will come from finite dimensional representations. Any finite
dimensional representation V of g defines a bilinear form κgV = κV on g by

κV (x, y)
def
= TrV (xy).

In the particular case when the representation V of g is the adjoint representation V = g,
the form κg is called the Killing form of the Lie algebra g
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Lemma. (a) Form κV is always symmetric and invariant.

(b) Let

For g = sln and V = kn, the corresponding invariant symmetric bilinear form β = κV on
g is non-degenerate. It is called the basic level β.

(c) For g = sln the Killing form κg is non-degenerate.

Proof. (a) Symmetry comes from Tr(xy) = Tr(yx). The invariance property
κV ([[x.u], v]) + κV ([u, [x, v]]) means the vanishing of

Tr
(
[[x.u], v]+[u, [xv]]

)
= Tr

(
xuv−uxv+uxv−uvx[[x.u], v]+[u, [xv]]

)
= Tr

(
x(uv)−(uv)x

)
.

(b) We can regard V = kn as a representation of gln. Then we have βgln(Eij , Epq) =
Tr[EijEpq = δjpδqi. So, we have dual basis in sln given by E ′

ijs and Eji’s and the form is
non-degenerate.

Notice that sln⊆gln is orthogonal to scalars k·1n as κV (x, 1n) = Tr(x). So, β = βsln

which is the restriction of the non-degenerate form βgln is again nondegenerate. �

Question. The Killing form κ
def
= κsln is a positive integral multiple of β, κ = ?·β.

Remark. As observed by Filip Dul, the Casimir for sl2 appears in quantum mechanics as
the angular momentum operator.

3.3.5. More on invariant bilinear forms. This should be skipped until we need it later.

The radical rad(κ) of a symmetric bilinear form κ on a vector space W is the set of all
w ∈ W such that κ(w,W ) = 0, i.e., rad(κ) = W⊥.

Lemma. (a) A symmetric bilinear form κ on a vector space W descends to the space
W/rad(κ).

(b) The center Z(g) lies in the radical of the Killing form κg

(c) If κ is an invariant symmetric bilinear form on a Lie algebra g then for any ideal a in
g, a⊥ is also an ideal. In particular the radical of κ is an ideal in g.

(d) For operators on a vector space V the expression Tr([x, y]z) is cyclically invariant,
i.e.,

Tr([x, y]z) = Tr([y, z]x) = Tr([z, x]y).

Proof. (a) is the claim that κ(u+ rad(κ), u+ rad(κ))
def
= κ(u, v) is well defined.

(b) If z ∈ Z(g) then ad(z) = 0 hence κg(z, x) = Trg[ad(z)ad(x)] = 0.

(c) If z ∈ a⊥ and x ∈ g we want [x, z] to be in a⊥ again. But, for any y ∈ a, the invariance
of κ gives

κ([x, z], y) = −κ(z, [x, y]).
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This is zero since [x, y] ∈ a and z ∈ a⊥. The last claim follows from rad(κ) = fg⊥.

(d) Tr([x, y]z) = Tr(x(yz))−Tr(y(xz)) = Tr((yz)x)−Tr((xz)y) = Tr([y, z]x). � �

Proposition. (a) For a linear operator A ∈ End(V ), if V ′⊆V is a subspace such that
AV⊆V ′ then TrV (A) = TrV ′(A|V ′).

(b) If a is an ideal in g then the Killing form on a is the restriction of the Killing form on
g.

Proof. (a) Just consider the matrix of A in a basis of V that contains a basis of V ′.

(b) follows, for x, y ∈ a, κg(x, y) = Trg(ad(x)ad(y)) which is by part(a) just
Tra(ad(x)ad(y)) = κa(x, y). �



29

4. Finite dimensional representations of sln

4.0. Summary. sln is the next example of the class of semisimple Lie algebras (which
we will define later). A key feature of Lie algebras g in this class is that “everything” is
captured by combinatorial data called the system of roots of g.

The combinatorial data come from consider certain maximal abelian Lie subalgebra h of g
called Cartan subalgebra. By considering g as a representation over h we find the finite set
∆⊆h∗ of roots of the Lie algebra g , defined as the nonzero weights (i.e., eigen-functionals)
of the action of h on g. The structure of the root system on the set ∆ essentially refers
to angles between the roots and to lengths of roots. Here roots are considered as vectors
in the vector space h∗ endowed with a certain inner product.

Each root α gives a copy sα of sl2 that lies inside g. The subalgebras sα generate g, so
the Lie algebra structure of g is captured by the relation of Lie subalgebras sα. These are
in turn determined by the angles and lengths for the corresponding roots.

4.1. Lie algebra sln.

4.1.1. Cartan and Borel subalgebras. Lie algebra g = sln lies inside a larger Lie algebra
g0 = gln. The following subspaces of g0 have special names.

• Diagonal matrices h0
def
=




∗
∗
...

∗
∗


 (“Cartan subalgebra”);

• Upper triangular matrices b0
def
=




∗ ∗ ··· ∗
∗
...

...
∗ ∗
∗


 (“Borel subalgebra”);

• Strictly upper triangular matrices n0
def
=




0 ∗ ··· ∗
0
...

...
0 ∗
0




(“the nilpotent radical of the Borel subalgebra b0”).

Notice that b0 = h0⊕n0.

The same terminology is used for intersections with g = sln: h = h0 ∩ g is a Cartan
subalgebra of g, b = b0 ∩ g is a Borel subalgebra of g, n = n0 ∩ g = n0 is the nilpotent
radical of b, and we have b = h⊕n.

Lemma. (a) g0, b0, h0, n0 are associative algebras.

(b) g, b, h, n are Lie algebras.

Proof. (a) Consider the lines Li = kei and subspaces Fi = L1⊕· · ·⊕Li of V = kn. Then

• h0 consists of all A ∈Mn(k) such that ALi⊆Li;
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• b0 consists of all A ∈Mn(k) such that AFi⊆Fi;
• h0 consists of all A ∈Mn(k) such that AFi⊆Fi−1.

(b) Now g, b0, h0, n0 are all known to be Lie subalgebras of g0. So the intersections b, h, n
are also Lie subalgebras. �

Remark. There are symmetrically subalgebras b−0 , b
− of lower triangular matrices and

n−0 = n− of strictly lower triangular matrices

Example. In sl2 we have g = {( a b
c −a )} with h = kh, n = ke, h− = kf . So, the Lie

subalgebras h, n, n− of g will play the role analogous to that of the basis h, e, f of sl2.

4.1.2. Weights. Notice that the Lie algebra h is abelian, i.e., [x, y] = 0 for x, y ∈ h. This
makes it reasonable to look for joint eigenvectors for h.

For a representation V of g and λ ∈ h∗, the λ-weight space in V is

Vλ
def
= {v ∈ V : hv = 〈λ, h〉·v for all h ∈ h}.

Then we say that λ is a weight of V if Vλ 6=. Let W(V ) be the set of weights in V .

The primitive vectors of weight λ are the nonzero vectors in

V o
λ

def
= {v ∈ Vλ : n v = 0}.

Remark. A basis of h∗0 is given by linear functionals εoi such that 〈εoi , diag(a1, ..., an)〉 = ai.
We denote by εi the restriction of εoi to h⊆h0, so

∑
εi = 0 (since

∑
εoi is the trace on

h0) and ε1, ..., εn−1 is a basis of h∗.

4.1.3. Roots of g = sln. For any Lie algebra fg we have one obvious representation, the
adjoint representation of g on the vector space g (1.2.1). The study of this representation
is the study of the structure of the Lie algebra g.

We define the set ∆ of roots of g = sln as the nonzero weights in the adjoint representation:

∆
def
= W(g)− {0}.

Lemma. (a) The roots of sln are all linear functionals αij
def
= εi − εj for 1 ≤ i, j ≤ n and

the corresponding weight spaces (now called root spaces) are gεi−εj = kEij .

(b) W(sln) = ∆(sln)⊔{0} and g0 = h.

(c) We have g = h ⊕ ⊕α∈∆ gα.

(d) The roots in n (i.e. the roots α such that gα⊆n) are all εi − εj with i < j. We denote
these by ∆+ and call them the positive roots. Then n = ⊕α∈∆+ gα.

(e) For a representation V of g and λ ∈ W(V ), α ∈ W(g) = ∆⊔0 we have

gα Vλ ⊆ Vλ+α.
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In particular [gα, gβ ]⊆ gα+β.

Proposition. (a) If α, β, α+ β are roots then [gα, gβ] = gα+β .

(b) If α, β ∈ ∆ but α + β /∈∆ and β 6= −α then [gα, gβ] = 0.

(c) For α ∈ ∆, [gα, g−α] is a one dimensional subspace of h.

Proof. It is easy to see that EijEpq = δj,pEiq, hence [Eij , Epq] = δj,pEiq − δi,qEpj,

(a) We know that α = εi − εj and β = εp − εq with i 6= j and p 6= q. Then α + β is a
root (i.e., of the form εr − εs with r 6= s), iff j = p and i 6= q or (symmetrically) q = i
and j 6= p. In the first case α+ β = αij + αiq = εi − εq = αiq and [Eij , Ejq] = Eiq. In the
second case α + β = αij + αpi = εp − εj = αpj and [Eij , Epi] = −Epj . So, in both cases
[gα, gβ] = gα+β .

(b) [gα, gβ]⊆gα+β but the conditions are that α + β /∈ ∆⊔0 = W(g) hence gα+β = 0

(c) [Eij , Eji] = Eii − Ejj. �

4.1.4. The sl2 subalgebras sα⊆g associated to roots α. For a root α ∈ ∆ let

sα
def
= gα ⊕ [gα, g−α] ⊕ g−α.

Lemma. (a) sα is a Lie subalgebra.

(b) There is a Lie algebra map ψ : sl2 → g such that 0 6= ψ(e) ∈ gα, ψ(f) ∈ g−α. Any
such ψ gives an isomorphism ψ : sl2 → sα.

(c) The image ψ(h) is independent of the choice of ψ. We denote it α̌. Then [gα, g−α] =
sα ∩ h has basis α̌.

Proof. (a) [gα, g−α]⊆gα+−α = h and h preserves each gφ. Anyway, (a) follows from (b).

(b) A root α = αij, i.e., a choice of indices i 6= j, gives an embedding of of Lie algebras
φ : sl2→֒sln by φ(e) = Eij , φ(f) = Eji, φ(h) = Eii −Ejj .

For another choice ψ, ψe ∈ gα = kφe we have ψ(e) = aφe, ψ(f) = bψf for some scalars
a, b. Then ψh = abφ(h) as

ψh = ψ[e, f ] = [ψe, ψf ] = [aφe, bφf ] = abφ[e, f ]h = abφ(h).

So it remains to notice that ab = 1 since

2ψe = ψ[h, e] = [ψh, ψe] = [ab φh, aφe] = a2b[φh, φe] = a2b φ[h, e] = a2b 2φe = ab 2ψe.

Finally, sα ∩ h = (gα ⊕ [gα, g−α] ⊕ g−α)h = [gα, g−α] = k[φe, φf ] = kφh = kα̌ for
α = αij. �

Remark. α̌ij = Eii − Ejj was noticed in the proof of the lemma.

4.2. Root systems.
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4.2.1. Reflections. For a real vector space V a pair of a vector v ∈ V and a “covector”

u ∈ V ∗ such that 〈u, v〉 = 2 defines a liner map sv,u : V → V by sv,ux
def
= x− 〈u, sx〉v.

Lemma. (a) su,v is identity on the hyperplane u⊥⊆V and sv,u = −1 on kv.

(b) s2v,u = id.

Proof. (a) su,vv = v − 〈u, v〉v = v − 2v = −v. (b) follows. �

Remarks. (0) We say that sv,u is a reflection in the hyperplane u⊥.

(1) If V has an inner product then a non-zero vector α ∈ V defines a pair (v, u) with
vector v = α and the linear functional u = (α̌,−) where we denote

α̌
def
=

2

(α, α)
α ∈ V.

Clearly, 〈u, v〉 = 2 and the corresponding reflection sv,u only depends on vector α so we
denote it

sαx = x− 〈(α̌,−), x〉α = x− (α̌, x)α = x− 2
(α, x)

(α, α)
α.

This is a reflection in the hyperplane Hα of all vectors orthogonal to α. The reflection sα
is orthogonal, meaning that it preserves the inner product on V . (Because V = Rα⊕Hα

is an orthogonal decomposition and sα is ±1 on summands.)

(2) We will for now work with in an Euclidean vector space V and use the orthogonal
reflections sα. However, eventually one finds it advantageous to work withe pairs of a
vector space V which contains α and the dual vector space V ∗ which contains α̌.

4.2.2. Root systems. A root system in a real vector space V with an inner product is a
finite subset Σ⊆V − 0 such that

• For each α ∈ Σ, reflection sα preserves Σ.

• For α, β ∈ Σ, 〈α, β̌〉 = 2(α,β)
(α,α)

is an integer.

• Σ spans V .

We say that a root system is reduced if α ∈ Σ implies that 2α/∈Σ. The non-reduced root
systems appear in more complicated representation theories. When we say root system
we will mean a reduced root system.

Our first example will be the roots ∆ of sln as a root system in an Euclidean vector space
h∗R which we define next.

4.2.3. Real form h∗R of h∗, root lattice Q and the positive cone Q+. Recall that h∗0 has
a basis εi dual to the basis Eii of h0 (1 ≤ i ≤ n). Their restrictions to h are linear
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functionals εi = εoi |h on h with
∑n

1 εi = 0. While εi for 1 ≤ i < n is a basis of h∗, we will
actually use another basis of h∗ given by the simple roots

Π
def
= {αi

def
= αi,i+1 = εi − εi+1; i = 1, ...n− 1}.

Lemma. Π is a basis of h∗.

Proof. We use the relation −εn =
∑

i<n εi =
∑

i<n αin + εn. Solving for εn we get that
εn lies in spanQ∆.

However, spanQ∆ = spanQΠ since ∆+⊆ spanNΠ (for i < j one has αij = αi + αi+1 +
· · · + αj−1), hence ∆⊆ spanZΠ. Now spanQ + Π = spanQ∆ contains εn, hence also all
εi = εn + αni. �

Now, inside h∗ we define

• the real vector subspace h∗R
def
= ⊕n−1

1 Rαi generated by simple roots,

• the subgroup Q
def
= ⊕n−1

1 Zαi generated by simple roots,

• the semigroup Q+
def
= ⊕n−1

1 Nαi generated by simple roots.

We have h∗⊇h∗R⊇Q⊇Q+. By the preceding proof we know that Q = spanZ∆ so we call
it the root lattice and Q+ = spanN∆

+ so we call it the positive cone.

Lemma. For λ, µ ∈ h∗ let λ ≤ µ mean that µ−λ ∈ Q+. This is a partial order on h∗. �

4.2.4. The inner product on h∗R. We will first define it by a formula and then we will
deduce it from an obvious inner product on h∗0,R.

Lemma. (a) On h∗R there is a unique inner product such that (αi, αj) is

• 2 if i = j,
• −1 if i, j are neighbors, i.e., |j − i| = 1,
• 0 otherwise.

(b) The inner products of roots are (αij , αpq) = δi,p − δi,q − δj,p + δj,q. In more details

• (αij, αpq) = 0 when {i.j} and {p, q} are disjoint.
• (αij, αiq) = 1 when q /∈{i, j};
• (αij, αij) = 2.

Proof. (a) We can embed the vector space h∗R into h∗0,R
def
= ⊕n

1 Rεoi so that αi goes to
εoi − εoi+1. Then point is that on h∗0,R we have an obvious inner product (−,−) with
orthonormal basis εoi . It restricts to an inner product on h∗R such that

(αij , αpq) = δi,p − δi,q − δj,p + δj,q.

Now all formulas in (b) are clear. �



34

Corollary. (a) All roots α ∈ ∆(sln) have the same length (=
√
2).

(b) All possibilities for the angle θ between two roots α, β in ∆(sln) are

(1) θ = 2π/3 iff α + β is a root;
(2) θ = π/3 iff α− β is a root;
(3) θ = π/2 iff neither of α± β is a root and β 6= ±α.
(4) θ = 0 iff β = α;
(5) θ = π iff β = −α.

(c) For β 6= ±α the following are equivalent (i) θ = 2π/3; (ii) (α, β) = −1; (iii) α + β is
a root; (iv) [gα, gβ] 6= 0; (v) [gα, gβ] = gα+β.

Proof. The cosine of the angle between α, β is (α,β)√
(α,α)

√
(β,β)

= 1
2
(α, β).

(1) If α + β is a root then the pair α, β (or β, α) equals αij, αjk for some distinct i, j, k.
Then (α, β) = −1 and the cosine is −1

2
.

(2) If α − β is a root then α, β (or −α,−β) are of the form αij , αkj for distinct i, j, k.
Then (α, β) = 1 and the cosine is 1

2
.

(3) If neither of α ± β is a root and β 6= ±α then our roots are of the form αij , αpq for
disjoint i, j and p, q. Then (α, β) = 0.

(4-5) Clearly if β = α then θ = 0 and β = −α gives θ = π.

By now we have proved implications in (1-5) (from RHS to LHS). This implies equiva-
lences. �

Remark. One can derive the formula for the inner product naturally by using the relation
to gln(C). I will skip it here.(7)

4.2.5. Roots of sln form a root system.

Lemma. (a) Roots of sln form a root system in h∗R.

(b) α̌ = α for each root.

Proof. Most of the properties are clear form the list of roots αij : there are finitely many
roots and none is zero. Already the roots αi span h∗R.

For each α ∈ Σ, we have α̌ = 2
(α,α)

α = α. Therefore, for α, β ∈ ∆ we have (α, β̌) = (α, β)

which is one of 0,±1 so it is an integer.

Finally, to see that reflections sα preserve Σ we consider sαβ = β− (α̌, β)α = β− (α, β)α.
If β ⊥ α this is β ∈ ∆. If α±β is a root then (α, β) = ∓, hence sαβ = β−∓α = β±α ∈
∆. �

7 I did it in class but it was more confusing then illuminating.
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4.2.6. Positive roots. For a root system Σ a subset Σ+⊆Σ is called a system of positive
rots if Σ = Σ+ ⊔ − Σ+ and Σ+ is closed under addition within Σ, i.e.,

• If α, β ∈ Σ+ and α+ β ∈ Σ then α + β ∈ Σ+.

We often write “α > 0” for “α ∈ Σ+”.

The set of simple roots for a system of positive roots ∆+ is a subset Π⊆∆+ such that

• (i) It generates all positive roots under addition, i.e., ∆+⊆spanN(Π) and
• (ii) Π is the smallest subset of ∆+ with the property (i).

Lemma. (a) The roots that lie in the Borel subalgebra ∆(b) = ∆(n) form a system of
positive roots ∆+ in the root system ∆(g).

(b) The subset Π = {α1, ..., αn−1 is the set of simple roots for ∆+.

Proof. The roots in either n or b are all αij with i < j. Since −αij = αji, −∆(n) is given
by the condition j < i, This makes Σ = Σ+ ⊔ −Σ+ clear. If α, β, α+ β ∈ ∆ then (after
possibly exchanging the order of α and β), we have α = αij , β = αjk. If α, β ∈ Σ+ then
i < j and j < k, hence α+ β = αik with i < k. �

Corollary. gα with α ∈ Π generate the Lie subalgebra n.

4.3. Finite dimensional representations of sln (announcement).

4.3.1. The coroot lattice Q̌⊆h. Recall that to any root α ∈ ∆ we have associated an
element α̌ of h. We call such elements of h the coroots. Inside of the set of coroots

∆̌
def
= {α̌; α ∈ ∆} we have the subset ∆̌+ def

= {α̌; α ∈ ∆+} of positive coroots and the

subset Π̌
def
= {α̌; α ∈ Π} of simple coroots.

We define the coroot lattice Q̌⊆h to be the subgroup generated by by all coroots α̌, α ∈ ∆.

Lemma. Q̌ = ⊕α∈Π Zα̌ and Q̌+ = ⊕α∈Π Nα̌.

Proof. �

4.3.2. The weight lattice P⊆h∗. We define the subgroup P⊆h∗ of integral weights to con-
sist of all λ ∈ h∗ that are integral with coroots, i.e.,

P
def
= {λ ∈ h∗; 〈λ, α̌〉 ∈ Z for α ∈ ∆.

We will often omit the word “integral”, so we will call P the weight lattice.

We will also use the sub semigroup P+ of dominant weights, these are required to be
non-negative on each positive coroot.

P+ def
= {λ ∈ h∗; 〈λ, α̌〉 ∈ N for α ∈ ∆+}.
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An example will be the fundamental weights ω1, ..., ωn−1 defined as the basis of h∗ dual to
the simple coroots basis α̌1, ..., α̌p of h.

Lemma. (a) ωi = ε1 + · · ·+ εp.

(b) P = ⊕n−1
1 Zωi and P

+ = ⊕n−1
1 Nωi.

Proof. �

4.3.3. Primitive vectors. For a representation V of g a vector v 6= 0 is primitive if it lies
in Vλ for some λ ∈ h∗ and nv = 0.

Lemma. (a) A vector v is killed by n iff it is killed by all simple root spaces gα, α ∈ Π.

(b) For a primitive vector v ∈ Vλ the g-submodule generated by v is the subspace∑
n∈N (n−)

nv of V .

Proof. (a) is clear since we know that the simple root spaces generate the Lie algebra n.

(b) We start by listing all weights of g as a sequence β1, ..., βM , 0, γ1, ..γM so that βi’s are
negative roots and γi’s are positive roots.

By the next proposition the g-submodule generated by v is the sum of subspaces

g
p1
β1
· · ·gpMβM

gr0 gq1γ1 · · ·gpMγM v
over all choices of of powers pi, r, qi ∈ N. Now, if one of qi is > 0 then the whole
expression is zero since positive roots kill a primitive vector. So, we only need to consider
g
p1
β1
· · ·gpMβM

gr0v. Since g0 preserves the line through v we can assume that r = 0. �

Remark. The weight of a primitive vector v ∈ Vλ is said to be a highest weight. Here,
“highest” refers to the partial order on h∗ defined by positive roots. Then the precise
meaning is that λ is the highest weight in the submodule generated by v. (This follows
from the part (b) of the lemma.

4.3.4. Finite dimensional representations of sln. The following theorem describes the ba-
sic structure of finite dimensional representations. Because sln is the sum

∑
α∈∆ sα of

subalgebras isomorphic to sl2, the theorem will follow from results for sl2.

Theorem. V be a finite dimensional representation of g = sln.

(a) Any h ∈ h acts semisimply on V , equivalently ⊕λ∈h∗ Vλ is all of V . More precisely, all
weights in V are integral, hence

V = ⊕λ∈P Vλ.

(b) Any x ∈ n acts nilpotently on V . Moreover, for p >> 0 we have npV = 0.

(c) If V 6= 0 then V has a primitive vector.

(d) The weight of any primitive vector is dominant.
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Proof. (a) We can restrict the action of g on V to any root subalgebras sα, α ∈ ∆. Then,

via sl2
∼=−→sα our V becomes a representation of sl2. However, we know that h ∈ sl2 acts

semisimply in any finite dimensional representation of sl2. Now, because the standard

isomorphisms sl2
∼=−→sα takes h to α̌, we know that α̌ acts semisimply on V .

Finally, h has a basis α̌i = Eii−Ei+1,i+1 of simple coroots. The actions of these on V form
a family of commuting semisimple operators, so they have a simultaneous diagonalization.
This proves that V = ⊕λ∈h∗ Vλ.

To see that any weight λ in V is integral notice that for any root α ∈ ∆, the number
〈λ, α̌〉 is an eigenvalue of the action of α̌ on V . These are integers because all eigenvalues
of the action of h ∈ sl2 in any finite dimensional representation of sl2 are known to be
integers.

(b) By npV we mean the subspace of V spanned by all x1· · ·xpv for xi ∈ n and v ∈ V .
So, the subspace npV⊆V is a sum of subspaces gφ1 · · ·gφp

Vλ over all choices of φi ∈ ∆+

and all weights λ in V .

The set W(V ) of weights in V is finite because the dim(V ) <∞.

Recall that gαVλ⊆ Vλ+α, hence gφ1 · · ·gφp
Vλ⊆ Vλ+∑p

1 φi
. However, the set W(V ) of weights

in V is finite because the dim(V ) <∞. So, for p >> 0, and any λ ∈ W(V ) we have that
λ+

∑p
1 φi is not in W(V ), hence Vλ+

∑p
1 φi

= 0.

For such p we have npV = 0, hence in particular for x ∈∈ n we have xpV = 0.

(c) Again, we use the fact that the set W(V ) of weights in V is finite. Therefore, it
contains a maximal element λ for the partial order on h∗ defined by λ ≤ µ if µ − λ ∈
Q+ = spanN(∆

+) = ⊕n−1
1 Nαi. For such λ we have λ + α/∈W(V ) for any α > 0, hence

gαVλ⊆Vλ+α = 0. So, nVλ = 0 and therefore any vector in Vλ is primitive.

(d) Let λ be the weight of some primitive vector v in V . Then for any positive root α we

have gαv⊆nv = 0. Since the standard isomorphisms sl2
∼=−→sα take e to gα, we see that for

the action of sl2 on V via sl2
∼=−→sα⊆g we have ev = 0 and hv = 〈λ, α̌〉·v. So, v is also a

primitive vector for the action of sl2 on V , so its sl2-weight 〈λ, α̌〉 must be in N. �

Remark. If u and v are primitive vectors of weights λ and µ in representations U and V
then u⊗v is a primitive vector of weight λ+ µ in U⊗V . �

4.4. Classification of irreducible finite dimensional representations of g = sln.
We know that any irreducible finite dimensional representation V of g has a primitive
vector with a dominant weight.

Theorem. (a) For each dominant weight λ ∈ P+ there is exactly one (up to isomorphism)
irreducible finite dimensional representation with a primitive vector of weight λ. We
denote it L(λ).
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(b) L(λ), λ ∈ P+ is the complete list of irreducible finite dimensional representations of
g.

Proof. (b) follows from (a) since we know that any irreducible finite dimensional repre-
sentation V of g has a primitive vector with a dominant weight.

Claim (a) consists of two parts

• Existence: for λ ∈ P+ there exists an irreducible finite dimensional representation
with a primitive vector of weight λ.

• Uniqueness: If L, L′ are two irreducible finite dimensional representation with a
primitive vector of weight λ then L′ ∼= L.

We will next prove existence and postpone the proof of uniqueness until the general setting
of semisimple Lie algebras.

4.4.1. Questions. For the sl-module V = kn what are the highest weights of irreducible
modules (i) V , (ii) ∧p V , (iii) the adjoint representations g, (iv) Sp V ?

4.5. The g-submodule generated by a vector. The proof of the following proposition
will later be a motivatxxx

Lemma. Let v be a primitive vector of weight λ in ag-module V . Denote by S the g-
submodule generated by v.

(a) S = Un−·v.
(b) The weights of S lie in λ − Q+, i.e., for any µ ∈ W(S) one has µ ≤ λ. Moreover,
Vλ = kv. (So, λ is the highest weight of S.)

(c) S has a unique irreducible quotient L. One has dim(Lλ) = 1.

Proof. (a) The first proof. The g-submodule generated by any vector v is the the subspace
of V spanned by all x1· · ·xpv for xi ∈ g. This is the same as Ug·v.
We know that the multiplication Un−⊗Ub −→ Ug is surjective, so S = Ug·v =
Un−·(Ub·v) = Un−·kv = Un−·v.
(b) follows from (a). For this we choose a basis x1, ..., xN of n− so that xi lies in gφi

, where
φ1, ..., φN is any ordering of roots in ∆(n−) = −∆(n) = −∆+. Then the monomials
xe11 · · ·xeNN span Un− and xe11 · · ·xeNN lies in (Un−)∑ eiφi

. Moreover,
∑

eiφi is 0 iff all ei
are 0.

(c) Quotients Q of S correspond to submodules S ′ of S. A quotient Q is irreducible iff
the submodule S ′ is a maximal proper submodule. Therefore, an equivalent formulation
is that

• (i) S has exactly one maximal proper submodule S and that
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• (ii) S does not have weight λ (so that for L = S/S we have Lλ = Sλ/Sλ is the line
Sλ.

For this we notice that

(∗) For any proper submodule S ′⊆S, S ′ does not contain weight λ.

Clearly, if S ′
λ⊆Sλ = kv would be nonzero then S ′ would contain v and then S ′ would

contain all of S.

Now it is clear that there exists the largest proper submodule S of S – this is just the
sum of all proper submodules S ′. This S is proper since Sλ =

∑
S ′
λ = 0. �

We say that λ is the highest weight of S in the sense that it is the largest weight in S for
the partial order defined by Q+. (For this reason we also call primitive vectors the highest
weight vectors.)

Corollary. (a) An irreducible finite dimensional g-module L has precisely one primitive
vector. Its weight λ is the highest weights of L.

(b) If for a given λ ∈ P+ there exists a finite dimensional representation with a primitive
vector of weight λ, then there exists an irreducible finite dimensional representation with
the highest weight λ.

If for a given λ ∈ P+ there exists a finite dimensional representation U with a primitive
vector of weight λ, then there exists an irreducible finite dimensional representation V
with a primitive vector of weight λ.

Proof. (a) Since L is irreducible it has a primitive vector v. The submodule S generated
by v is not zero so it is all of L. Therefore λ is the highest weight in S = L. So, any
primitive vector lies in Lλ for the highest weight λ in L. However, Lλ is one dimensional
by the lemma.

(b) If v is a primitive vector of weight λ in a finite dimensional representation V then
we get an irreducible representation of highest weight λ by taking the unique irreducible
quotient of the submodule generated by v. �

4.5.1. The second proof of the part (a) of the theorem. This can be skipped – we write the same proof but without introducing
the enveloping algebra. So, this version can be viewed as a motivation for introducing the enveloping algebras in the first place.

Proposition. Let us write all weights of g as a sequence β1, ..., βN . Then for any representation V the g-submodule generated by
a given vector v is the sum of subspaces g

p1
β1

· · ·g
pN
βN

v over all choices of of powers pi ∈ N.

Proof. The g-submodule generated by v is the the subspace of V spanned by all x1· · ·xpv for xi ∈ g. We can think of it as the
sum of subspaces gφ1

· · ·gφpv over all choices of φi ∈ W(g) = ∆⊔0. Let Vq be the sum of all such subspaces gφ1
· · ·gφpv with

p ≤ q. It contains Uq which is the sum of subspaces g
p1
β1

· · ·g
pN
βN

v for all choices of of powers pi such that
∑

pi ≤ q. We will prove

by induction in q that Uq⊆Vp is equality.

If the sequence φ1, ..., φp is compatible with the chosen order on W(g) then gφ1
· · ·gφpv is of the above form g

p1
β1

· · ·g
pN
βN

v. If not

then there are some neighbors φi−1, φi which are in the wrong order. However, for x and y in gφi−1
and gφi

,

π(x)π(y) = π(y)π(x) + [π(x), π(y)] = π(y)π(x) + π[x, y].
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So, we can replace the product of length two gφi−1
gφi

with the product in the opposite order gφi
gφi−1

(again of length 2), at the

price of adding a term which is a product of length 1. �

4.6. Existence of irreducible representations. Here we prove the first part of the
theorem 4.4.

Lemma. For each dominant weight λ ∈ P+ there exists an irreducible finite dimensional
representation L with a primitive vector of weight λ. (Then λ is the highest weight in L.)

Proof. From homeworks we know that when λ is one of the fundamental ωi then such
representation is given by ∧ikn. Denote by vωi

its primitive vector.

Now for any dominant weight λ ∈ P+ we have λ =
∑n−1

1 λiωi with λi ∈ N. Then in

⊗n−1
1 (∧ikn)⊗λi the vector ⊗n−1

1 v⊗λi

i is primitive of weight λ (see the remark in 4.3.4). �

4.7. Uniqueness of irreducible representation with a given highest weight.

4.7.1. Irreducible finite dimensional representations of b.

Lemma. (a) n is an ideal in b.

(b) [b, b] = n and bab ∼= h.

Proof. h is commutative, i.e., [h, h] = 0. Also for a root α we have [h, gα] = gα since
h acts on gα by α ∈ h∗ which is not zero. This implies that [h, b] = n. Together with
[n, n]⊆n (n is a subalgebra) this implies that [b, b] = n.

Now bab = b/[b, b] = b/n ∼= h. �

Remark. Using b։b/n ∼= h we get h∗→֒b∗. The meaning is that a linear functional λ onh
extends to b by zero on n.

Proposition. (a) Any λ ∈ h∗ gives a 1-dimensional representation kb
λ of b. The vector

space is k and b acts on it by λ viewed as a functional on b , i.e., x·1k = 〈λ, x〉 1k.
(b) This is the complete classification of 1 dimensional representations of b.

Proof. (b) is a case of lemma 6.2.1 since bab = h. �

4.7.2. Verma modules for g = sln. The Verma module with the highest weight λ is defined
as the induced module(8)

M(λ)
def
= Indgbk

b
λ

def
= Ug⊗Ub k

b
λ.

The most obvious vector in M(λ) is vλ = 1Ug⊗ 1k.

8 The notation we initially used used in class was Mλ.
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Lemma. (a) vλ is a primitive vector with weight λ.

(b) vλ generates Mλ.

4.7.3. Corollary. (1) h acts semisimply on M(λ) and the weights W(M(λ)) lie in λ−Q+

(i.e., weights are ≤ λ). Moreover the λ weight space M(λ)λ is kvλ.

(2) M(λ) has the largest proper submodule M(λ)+. Equivalently, it has a unique irre-
ducible quotient, we denote it L(λ). L(λ) is also generated by a primitive vector of weight
λ (the image of vλ which we again denote vλ) and L(λ)λ = kvλ.

4.7.4. The universal property of Verma modules. The categorical formulation of the fol-
lowing lemma is that the object M(λ) ∈ m(g) represents the functor −o

λ : m(fg) −→V eck
of taking the primitive vectors.

Lemma. For any g-module V there is a canonical isomorphism

Homg[M(λ), V ]
ι−→
∼=

V o
λ .

Here, ι(φ) = φ(vλ) ∈ V o
λ .

Proof. We use the Frobenius reciprocity, i.e., the fact that the induction Ug⊗b− is the
left adjoint of the forgetful functor F b

g ) :

Homg[M(λ), V ] = HomUg[Ug⊗Ubk
b
λ), V ]

∼= HomUb(k
b
λ, V ).

A linear map ψ : kb
λ → V is the same as a choice of a vector v = ψ(1k) in V . Now, ψ is an

h-map iff h acts on v by λ, and ψ is an n-map iff n kills v. So, ψ is an b-map iff v ∈ V o
λ ,

Now one checks that the isomorphism ι : Homg[M(λ), V ]
∼=−→ V o

λ that we have constructed
acts by the formula in the lemma. �

Corollary. For any λ ∈ h∗ there is a unique irreducible g-module L which has a primitive
vector of weight λ. This L is the unique irreducible quotient L(λ) of the Verma M(λ).

Proof. For existence of L we note that the above L(λ) satisfies the properties. We will
also see that any irreducible g-module L which has a primitive vector v of weight λ is
isomorphic to L(λ).

First, to a primitive vector v in L there corresponds some homomorphism φ : M(λ) → L.
Since v 6= 0 we have φ 6= 0. Then 0 6= Im(φ) is a submodule of L, since L is irreducible
we have Im(φ) = L, i.e., L is an irreducible quotient of M(λ). But there is only on
irreducible quotient of M(λ) and it is L(λ). �
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4.8. Proof of the classification of irreducible finite dimensional representations
of sln (theorem 4.4). A. The first claim in this theorem is that for each dominant
weight λ ∈ P+ there is exactly one irreducible finite dimensional representationL with a
primitive vector of weight λ.

The existence of L was proved in 4.6. The uniqueness is a special case of the corollary
4.7.4. This corollary also says that such L is the representation L(λ) constructed as the
unique irreducible quotient of M(λ).

B. The second claim in the theorem is that L(λ) for λ ∈ P+ is the classification of
irreducible finite dimensional representations of g, i.e., that

• (i) any irreducible finite dimensional representation L is isomorphic to one of
L(λ)’s and

• (ii) there are no repetitions in the list, i.e., the only way that L(λ) ∼= L(µ) is
when λ = µ.

For (i) notice that since L is irreducible we have L 6= 0. Then we know that since L is
finite dimensional and 6= 0 it has a primitive vector of some weight λ ∈ P+. Then the
corollary 4.7.4 guarantees that L is L(λ).

For (ii), recall that λ is the highest weight in L(λ), so if L(λ) ∼= L(µ) then they have the
same highest weight hence λ = µ. �

Remark. Our proof of this classification is actually not yet complete. The one thing that
we have used without proof is the semisimplicity theorem for sl2. We will prove this
theorem for all sln’s in 4.10 below.

4.9. Classification of finite dimensional representations of g = sln.

Theorem. Finite dimensional representations of g = sln are semisimple. So, each one is
isomorphic to a sum ⊕λ∈P+ L(λ)mλ for some multiplicities mλ ∈ N. �

Again, we will postpone the proof for the general setting of semisimple Lie algebras.

Remark. As in sl2, effectively such decomposition comes from choosing a basis vλ1 , ..., v
λ
mλ

of the spaces V 0
λ of primitive vectors for each dominant weight λ.

4.10. Proof of the semisimplicity theorem 4.9. In order to show that the category
Repfd(g) is semisimple it suffices to show that any extension

0 → E ′ α−→E
β−→E ′′ → 0

splits. The following proof is the most elementary one but it is not obviously enlightening.

4.10.1. A modification of extensions.
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Lemma. For any extension of g-modules

(E) 0 → W
α−→ V −→V/W → 0

consider the g-modules H⊇H1⊆H2 where

• H = Homk(V,W ),
• H1 = {A ∈ Homk(V,W ); A|W is a scalar c1W},
• H2 = {A ∈ Homk(V,W ); A|W = 0|].

Then we have an extension of g-modules

(E ′) 0 → H2
α−→
⊆

H1
β−→ k → 0,

where the action of g on k is trivial and β(A) = c when A|W = c1W .

4.10.2. Reduction to extensions with E ′′ = k.

Lemma. It suffices to know that the extensions split when the last term is the trivial
module k.

Proof. Then the SES E ′ splits, i.e., that there is a g-invariant line L in H1 such that
β|L : L → k is an isomorphism. Let A be the element of L such that β(A) = 1, i.e.,
A|W = idW . Since the action of g on k is trivial, the action of g on L is also trivial, i.e.,
for x ∈ g we have that xA = x◦A−A◦x is zero. In other words, A : V →W is a g-map.

Now, A◦α = idW , i.e., A is a retraction for the original SES E . So, E itself splits. �

4.10.3. Reduction to extensions with E ′′ = k and E ′ irreducible. We will here assume that
all SES of the form 0 → I → U → k → 0 with I irreducible do split. Then we will prove
(by induction in dimension of W ) that any SES of the form 0 → W → V → k → 0 splits.

If W is not irreducible then it has a proper submodule W ′ with W ′ = 0 and W ′ 6= W .
Since W is finite dimensional there exists a maximal such W ′. Now we consider SES

0 → W

W ′
→ V

W ′

γ−→ V

W ′
/
W

W ′
→ 0.

The last terms is isomorphic to V/W ∼= k. However, W/W ′ is irreducible since W ′ is a
maximal submodule of W . So, our assumption implies that this SES splits, i.e., there is
a g-invariant line L⊆V/W ′ complementary to W/W ′.

Now we use something specific to the Lie algebra sln, by 6.2.1 the only 1-dimensional
representation L of g is the trivial representation k, hence L ∼= k.

We can write L⊆V/W ′ as W ′′/W ′ for some submodule W ′′ of V that contains W ′. In the
corresponding SES

0 →W ′ →W ′′ → L→ 0
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we have L ∼= k. and also dim(W ′′) < dim(W ). So, by the induction assumption we know
that this SES splits. This means that W ′′ (which lies in W hence in V ) contains some
g-invariant line L′′ complementary to W ′.

By now,we can rewrite V/W ′ using V/V ′ ∼= W/W ′ ⊕ L and W ′′ = W ′⊕L′′, as

V

W ′
∼= W

W ′
⊕L ∼= W

W ′
⊕W

′′

W ′
∼= W

W ′
⊕W

′⊕L′′

W ′
∼= W⊕L′′

W ′
.

Therefore, V ∼= W⊕L′.

4.10.4. The case with E ′′ = k = E ′. Here, E is two dimensional with a basis e1, e2 with
e1 ∈ E ′. Therefore for the action π of g on E the matrix of x ∈ g in this basis is of the

form

(
0 ∗
0 0

)
. Therefore, π is a morphism of Lie algebras from g to

(
0 ∗
0 0

)
which is one

dimensional hence abelian. Now π(g) is an abelian quotient of g. We know that since
[g, g]⊆g is equality for g = sln, so g has no abelian quotients. Therefore, π(g) = 0, i.e.,
the action of g on E is trivial so any line complementary to E ′ is a g submodule.

4.10.5. The case with E ′′ = k and E ′ is irreducible but not k. In this case we will produce
the splitting as a g-map C : E → E which preserves E ′ and has different eigenvalues α, β
on E ′ and E/E ′ ∼= E ′′. Then the kernel of C−β will be a submodule of E complementary
to E ′.

A supply of operators that act on each g-module E and preserve each g-submodule E ′ is
given by elements C of Ug. In order that the operator C : E → E given by C ∈ Ug, to
be a g-map we need C to be in the center Z(Ug). In fact we will choose C as the Casimir
operator Cβ ∈ Z(Ug) from the appendix 4.11. �

4.11. Appendix. Casimir elements C ∈ Z(Ug). By the Casimir element for sln we

mean the the Casimir element C = Cβ of Let β be the bilinear form β(x, y)
def
= Trkn(xy)

on g.

Lemma. (a) β is nondegenerate.

(b) h⊥ = n⊕n− and b⊥ = n.

(c) The restriction of β to hR⊆h⊆g is the standard inner product ??.

Proof. In the proof of the lemma 3.3.4.c. we have noted that the extension β0 of β to
g0 = gln satisfies β0(Eij, Epq) = δij,qp. So, the restriction to the Cartan h0 of g0 is the
standard inner product, i.e., it has orthonormal basis Eii, 1 ≤ i ≤ n.

The restriction β of β0 to sln is also nondegenerate because sln ⊥ k1n for β0. Moreover,
the restriction of β to hR is the restriction of β0 from h0, and this is the standard inner
product (−,−) on hR.

Claim (b) is also obvious from the formula for β0. �
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Denote ρ =
∑

α>0 α ∈ h∗ and ρ̌ =
∑

α>0 α̌ ∈ h.

Corollary. (a) For the standard inner product on hR let ki be the basis of h dual to the
basis α̌i (1 ≤ i < n), For a root α = αij denote Eα = Eij ∈ gα. Then the Casimir element
is

Cβ = 2
∑

α>0

FαEα +
n−1∑

1

kiα̌i + 2ρ̌.

(b) For g = sln the Casimir element C = Cβ acts on the representations L(λ) and M(λ)
by the scalar

(α, λ+ 2ρ) = (λ+ ρ)2 − ρ2.

(c) Casimir distinguishes the trivial representation L(0) = k from all other irreducibles
L(λ).

Proof. (a) We use the basis of h given by Eα, α ∈ ∆ and α̌i, 1 ≤ i < n. Its β-dual basis
E−α, α ∈ ∆ and ki, 1 ≤ i < n. So,

Cβ =
∑

α∈∆

E−αEα + sumi<n kiα̌i.

It remains to notice that EαE−α = EαEα + α̌ gives
∑

α∈∆

E−αEα =
∑

α∈∆+

E−αEα +
∑

α∈∆+

EαE−α =
∑

α∈∆+

2E−αEα +
∑

α∈∆+

α̌.

(b) On the primitive vector v of highest weight λ, Cβ acts by
∑n−1

1 kiα̌i +
∑

≤>0 α̌,
i.e., by

n−1∑

1

〈λ, ki〉 〈λ, α̌i〉+ +
∑

≤>0

< λ, α̌ > .

The first term is (λ, λ) and the second is
∑

≤>0 (λ, α) = (λ, 2ρ).

(c) The only L(λ) on which C acts by 0 is L(0). The point is that (λ, λ + 2ρ) = λ2 +
(λ, 2ρ) ≥ λ2 since

(λ, 2ρ) =
∑

α>0

(λ, α) =
∑

α>0

〈λ, α̌〉 ≥ 0

since each term is ≥ 0 for dominant λ. �

Remarks. (1) Casimir alone does not distinguish all irreducible finite dimensional rep-
resentations L(λ). However, the whole center Z(Ug) does. One has Harish-Chandra’s
isomorphism

Z(Ug) ∼= (Sh)W = O(h∗//W )

which describes the center as invariants of the Weyl group W in the symmetric algebra
Sh of the Cartan.
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Here, Sh = O(h∗) are the polynomial functions on h∗ and the W -invariant functions are
functions on the “invariant theory quotient” h∗//W .

(2) ρ is dominant, actually ρ =
∑n−1

1 ωi.

(3) Our proof uses standard inner products on h and h∗ and their relation. I should
rewrite these to make everything more clear.

4.11.1.
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5. Category O

Classification of all irreducible modules for sln is a wild problem, i.e., one can prove
that we do not have a way to list all irreducibles. (This is an observation in mathemat-
ical logic.) Instead, what is interesting is to classify irreducible representations lying in
certain interesting subcategories. One subcategory is the category Repfd(g) of all finite
dimensional representations.

The next most basic and most influential one is the category O introduced by Joseph
Bernstein, Israel Gelfand and Sergei Gelfand.(9) here “O” stands for ordinary (in Russian).

For us the category O is the home for objects that we have already encountered in our
study of finite dimensional representations – Vermas M(λ) and irreducibles L(λ). It also
gives us an opportunity to notice how the behavior of infinite dimensional g-modules is
more subtle than that of finite dimensional ones.

5.1. Category O for g = sln. This is the subcategory of the category Rep(g) = m(Ug))
of g-representations (i.e., Ug-modules) that consists of all g-modules V such that

(1) V is finitely generated;
(2) h acts semisimply on V , i.e., V = ⊕λ∈h∗ Vλ;
(3) V is locally finite for the subalgebra n. The meaning is that for any vector v in V ,

the n-submodule U(n)v that it generates is finite dimensional.

Lemma. (a) The category Repfd(g) of finite dimensional representations lies in O.

(b) If V is in O then any submodule or quotient of V is also in O.

Theorem. (a) Verma modules M(λ) lie in O.

(b) The irreducible representations in O are precisely all L(λ), λ ∈ h∗.

5.2. The Kazhdan-Lusztig theory. It deals with the structure of Verma modules. The
basic fact is the following.

Lemma. Any V ∈ O has a finite length, i.e., it has a finite filtration
V = V0⊇V1⊇· · ·⊇Vn = 0 with all graded pieces Gri(V ) = Vi−1/Vi irreducible. �

Such filtration is called a Jordan-Hoelder series of V . It is a general fact in algebra that
though such filtration need not be unique, the number of times a given irreducible module
L appears in the list of Gri(V )’s for i = 1, .., n is independent of the choice of the filtration.
This number is called the multiplicity of L in V and it is denoted [V : L]. When V is in
O then all subquotients Gri(V ) are again in O, hence each is of the form L(µ) for some
µ ∈ h∗.

9 Israel was one of the most important mathematicians in 20th century. Sergei is his son.
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Problem. For any λ, µ ∈ h∗ find the multiplicity [M(λ) : L(µ)] of irreducibles L(µ) in
Verma modules M(λ).

A conjectural answer to this question was provided by a joint work of Kazhdan and Lusztig
(the “Kazhdan-Lusztig” conjecture). The proof was obtained by Beilinson-Bernstein and
independently by Brylinski-Kashiwara. It was based on

• the theory of D-modules which is the algebraization of the theory of linear partial
differential equations;

• the intersection homology and perverse sheaves in algebraic topology of complex
algebraic varieties;

• Deligne’s proof of Weil conjectures on the use of positive characteristic geometry
for algebraic topology of complex algebraic varieties.

The Beilinson-Bernstein version was very strong and elegant, so it has a become one of
basic modes of thinking in representation theory and one of a few origins of the so called
Geometric Representation Theory (The other two are Drinfeld’s Geometric Langlands pro-
gram and Springer’s construction of representations of Weyl groups such as the symmetric
groups Sn).
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6. Lie algebras

6.1. Solvable and nilpotent Lie algebras.

6.1.1. Ideals. A subspace a of a Lie algebra g is an ideal if [g, a]⊆a. Then it is clearly a
subalgebra.

Lemma. (a) If a, a are ideals, so is [a, b].

(b) Kernels of morphisms of Lie algebras are ideals.

(c) Consider a subspace a⊆g. The quotient vector space g/a has a Lie algebra structure
such that the quotient map g։g/a is a Lie algebra map, if and only if a is an ideal. Then

this structure is unique and [x+ a, y + a]
def
= [x, y] + a.

Examples. (a) [g, g] is the smallest ideal in g such that the quotient Lie algebra is abelian.

Equivalently, gab
def
= g/[g, g] is the largest quotient Lie algebra of g that is commutative.

(b) The center Z(g) = {a ∈ g; [a, g] = 0} is an ideal.

(c) The normalizer of the subalgebra a⊆g is Ng(a)
def
= {x ∈ g; [x, a]⊆a}. This is a Lie

subalgebra of g and a is an ideal in its normalizer.

(d) In sln, n is an ideal in b. Actually b is the normalizer of the subalgebra n in g.

6.1.2. The derived and lower central series of ideals.

Lemma. (s1) [The derived series of g.] The following subspaces are ideals

g(0)
def
= g, g(n+1) def

= [g(n), g(n)], ....

(s2) The derived series is a decreasing sequence: g = g(0)⊇g(1)⊇· · ·. Also,
g = g(0)⊇g(1)⊇· · ·g(n) is the smallest sequence of ideals a = a0⊇a1⊇· · ·an of g such that
all ai−1/ai are abelian for i = 1, ...n.

Lemma. (n1) [The lower central series of g.] The following subspaces are ideals

g0
def
= g, gn+1 def

= [g, gn], ....

(n2) The lower central series is a decreasing sequence: g = g0⊇g1⊇· · ·. Also, g =
g0⊇g1⊇· · ·gn is the smallest sequence of ideals a = a0⊇a1⊇· · ·an of g such that all the
action of g on ai−1/ai is trivial for i = 1, ...n.

Proof. By definitions. �

Example. g(1) = [g, g] = g1.
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6.1.3. Solvable and nilpotent Lie algebras. We say that the Lie algebra g is solvable if
g(n) = 0 for some n. We say that the Lie algebra g is nilpotent if gn = 0 for some n.

Remember that g is abelian if [g, g] = 0.

Remark. We have g(n)⊆ gn, hence

abelian ⇒ nilpotent ⇒ solvable.

Lemma. (s) g is solvable iff there exists a sequence of ideals a = a0⊇a1⊇· · ·an = 0 of g
such that all ai−1/ai are abelian for i = 1, ...n.

(n) g is nilpotent iff there exists a sequence of ideals a = a0⊇a1⊇· · ·an = 0 of g such that
a acts on all ai−1/ai by zero.

Corollary. The classes of solvable and nilpotent Lie algebras are both closed under taking
subalgebras and quotient algebras. The solvable ones are also closed under extensions
(nilpotent are not).

Example. Let g = sln.

(a) Its Borel subalgebra b is a solvable Lie algebra and [b, b] = n.

(b) The nilpotent radical n of b is a nilpotent Lie algebra.

(c) g = sln is not solvable.

Proof. Define the height of an element φ ∈ Q, φ =
∑n−1

1 φiαi, as ht(φ)
∑

φi. For
instance the simple roots have height one etc and positive roots have positive heights.

For i ∈ N let bi⊆b be the sum of all gα over α ∈ ∆⊔0 = W(g), with ht(α) ≥ i. Then
b0 = n and b1 = n. The conditions we impose in each bi is the vanishing of coefficients
on certain diagonals, for instance fn = 0.

This gives a filtration on the Lie algebra b, meaning that [bi, bj]⊆bi+j. In particular, each
bi is an ideal in b.

(a) b is solvable since each bi/bi−1 is abelian.

(b) n is nilpotent since for i > 0 we have [n, bi] = [b1, bi]⊆bi+1, hence b acts trivially on
bi/bi+1. �

Proposition. (a) If g is solvable then so is any subalgebra or quotient algebra.

(b) If a is solvable ideal in g and g/a is also solvable then g is also solvable.

(c) If I, J are solvable ideals in g then I + J is too.

Proof. (a) “g is solvable” means that there exists a sequence of ideals g = a0⊇a1⊇· · ·an =
0 of g such that all ai/ai+1 are abelian for i = 1, ...n.
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For a subalgebra k⊆g this induces a system of ideals ki = ai ∩ k with the same property
that all ki/ki+1 are abelian for i = 1, ...n. (Since ai∩k

ai+1∩k
embeds into the abelian Lie algebra

ai
ai+1

).

For a quotient algebra π : g։p, we use ideals π(ai) in π(g) = p.

(b) Suppose that we have sequences of ideals a = a0⊇a1⊇· · ·ap = 0 in a and g/a =
q0⊇q1⊇· · ·qq = 0 in g/a with abelian graded pieces. Then for j = 1, ..., q one can define
an ideal q̃j in g (such that a⊆q̃j⊆g), as the inverse of qj⊆g/a under the quotient map
g։ → g/a. In the sequence

g = q̃0⊇· · ·⊇qq = a = a0⊇· · ·⊇ap = 0

successive quotients are abelian (since q̃i/q̃i+1
∼= qi/qi+1. are abelian for i = 1, ...n.

(c) In the Lie algebra I+J we have an ideal I which is solvable and the quotient I+J
I

∼= J
J/∩I

is a subalgebra of J , so it is again solvable. �

Corollary. Any finite dimensional Lie algebra g has the largest solvable ideal.

Proof. This is just the sum of all solvable ideals. �

6.2. Semisimple Lie algebras. The largest solvable ideal of g is called the radical
Rad(g).

We say that a Lie algebra g is

• simple if it has no ideals;
• semisimple if it has no solvable ideals
• reductive if Rad(g) = Z(g).

Lemma. (a) g is simple iff its adjoint representation is irreducible.

(b) “simple” implies “semisimple”.

(c) g is reductive iff g/Z(g) is semisimple.

(d) g is solvable iff g has no abelian ideals.

Proof. (a) Ideals in g areg-submodules of the g-modules g. Now (c) follows since we
checked in homework that for sln the adjoint representation is irreducible.

(b) just says that if there no ideals then there are no solvable ones.

(c) The ideals J in g/Z(g) are in bijection with the ideals I in g that contain Z(g).
Moreover, I is solvable iff J is solvable. Therefore, Rad[g/Z(g)] = Rad(g)/Z(g).

(d) For one direction we notice that abelian ideals are solvable. Conversely, let s 6= 0 be
a solvable solvable ideal in g. For any ideal a in g, [a, a] is again ideal in g. So, the terms
in the derived series s(i) of s are all ideals in g. If s(k) is the last nonzero term then it is
abelian since 0 = s(k+1) = [s(k), s(k)].
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�

Example. sln is simple.

6.2.1. 1-dimensional representations.

Lemma. The isomorphism classes of 1-dimensional representations of g are parameterized
by (gab)∗. To λ ∈ (gab)∗ we associate the representation kg

λ on V = k where x ∈ g acts
by the scalar 〈λ, x〉.
Proof. �

Corollary. For g = sl(n) we have [g, g] = g hence g
ab

= 0 and the only one dimensional
representation is the trivial representation k = k

g
λ=0.

Proof. For roots α one has [h, gα] = gα, hence [g, g] contains n⊕n−. It also contains h

since it is spanned by vectors α̌ for α a (simple) root and α̌ ∈ [gα, g−α]. �

For λ ∈ g∗ and any representation V of g denote by

V g
λ = {v ∈ V ; x·v = 〈λ, x〉v for x ∈ g}

the corresponding g-eigenspace in V . This is subrepresentation isomorphic to a multiple
of the representation k

g
λ.

6.3. Lie’s theorem: solvable algebras are upper triangular. The precise meaning
will be that in any finite dimensional representation one can choose a basis such that the
that all elements of the Lie algebra act by upper triangular matrices.

Lemma. A solvable Lie algebra g 6= 0 has an ideal of codimension one.

Proof. If g is solvable then the inclusion [g, g]⊆g is proper (otherwise g(n) = g for all n
!). since the Lie algebra g/[g, g] is abelian, any subspace a of g/[g, g] is an ideal. Then
any subspace ã of g that contains [g, g] is an ideal in g (because it is the inverse of some
subspace a of g/[g, g] under the map g → g/[g, g]. �

Proposition. If a is an ideal in g then for any finite dimensional representation V of g,
and any λ ∈ a∗, the a-eigenspace V a

λ is g-invariant.

Proof. The meaning is that for w ∈ W and x ∈ g one has xw ∈ V a
λ , i.e., that for each

y ∈ a

y(xw) = xyw + [y, x]w = 〈λ, y〉 xw + 〈λ, [y, x]〉 w
equals 〈λ, y〉·xw, i.e., that λ ⊥ [a, x].

To check that for each y ∈ a 〈λ, [y, x]〉 is zero, we will show that its multiple is the trace
of [y, x] on some subspace U of V .
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Notice that b = a+kx is a subalgebra of g. Now we pick any nonzero vector w in W and
choose U to be the b-submodule of V generated by w.

We first define the subspaces Wi of V spanned by w, xw, ..., xi−1w. So, we have W0 =
0⊆W1 = kw⊆· · · and xWi⊆Wi+1. This sequence has to stabilize at since V is finite
dimensional. Actually, it stabilizes at the first integer n such that Wn = Wn+1 (this
implies that Wn is x invariant and then clearly Wk = Wn for k ≥ n.

We will see that the b-submodule U generated by w is Wn. Clearly, x preserves Wn so it
remains to prove that

A. Each Wi is a-invariant. This will follow from an inductive proof of a more technical
claim that for each j :

(a) For y ∈ a we have

y xjw
Wj∼= 〈λ, y〉·xjw.

(b) Wj+1 is a-invariant.

Proof. So let us assume that both claims hold for any power j ≤ i. To prove (a) for i+ 1
we of course, “commutate one x away”:

y(xiw) = (xy + [y, x])xi−1w = x yxi−1w + [y, x]xi−1w.

Here, xi−1w ∈ Wi and [x, y] ∈ [g, a]⊆a, so [y, x]xi−1w ∈ Wi by the part (b) of the induction
assumption.

Also, by the part (a) of the induction assumption. there is a vector w′ ∈ Wi−1 such that

y xi−1w = 〈λ, y〉·xi−1w + w′ hence x(y xi−1w) = 〈λ, y〉·xiw + xw′

and we have xw′ ∈ xWi−1⊆Wi.

This proves (a). Now (b) follows from (a) since

yxiw ∈ 〈λ, y〉·xiw + Wi ⊆ Wi+1. �

B. Trace considerations. Since Wi’s stabilize at i = n we know that w, xw, ..., xn−1w
is a basis of Wn. (Otherwise for some j < n vector xjw would be a linear combination of
the preceding vectors and then the stabilization would occur at Wj ,)

We can use this basis to calculate the trace of y ∈ a in Wn. By the claim (a) above,
Tr(y,Wn) = n〈λ, y〉.
For any z]ina we have [z, x] ∈ a hence Tr([z, x],Wn) = n〈λ, [z, x]〉. However, since both
z and x are operators on Wn the trace of their commutator is zero. So, n〈λ, [z, x]〉 = 0.
Since n 6= 0 (Wj ’s do not stabilize at W0 = 0), we get 〈λ, [z, x]〉 = 0. �
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Theorem. [Lie’s theorem.] If g is solvable then any finite dimensional representation V of
g has an invariant flag.

Proof. We use induction on dim(g). To start with, if dim(g) = 0 then all subspaces are
invariant. So let g 6= 0. Now we can choose (by the lemma) an ideal a⊆g of codimension
one. Let x ∈ g be a vector such that a⊕kx = g.

Recall that the subalgebra a is again solvable. So, by induction assumption a has an
invariant line. Then a acts on it by some λ ∈ a∗, hence W = V a

λ is not zero.

Now notice that the a-eigenspace V a
λ is a g-invariant because a is an ideal in g.

Then any x-eigenvector v in Vλ gives a g-invariant line V1 = kv in V .

Now one has an invariant line in V/V1, hence an invariant plane V2 in V ... �

Corollary. Let g be solvable.

(a) g has a flag of ideals.

(b) Lie algebra [g, g] is nilpotent.

(c) All elements x of the Lie algebra g′ = [g, g] are ad-nilpotent in the sense that the
operator adx ∈ End(g) is nilpotent.

Proof. (a) Use g-module g.

(b) Let g = g0⊇· · ·⊇gn = 0 be a flag of ideals. The action of g on gi/gi+1 induces an

action of g′
def
= [g, g] whose image lies in the derived subalgebra of gl(gi/gi+1) which is 0.

Now g′ has a decreasing sequence of ideals g′i
def
= g′ ∩ gi with g′0 = g′ and g′n = 0, and

such that g′ acts trivially on the graded pieces g′i/g
′
i+1⊆ gi/gi+1). This means that g′ is

nilpotent

(c) has also been proved: since for x ∈ g′ we have ad(x) = 0 on gi/gi+1, i.e.,
ad(x)(gi)⊆gi+1 we see that ad(x)n = 0. �

6.4. Engel theorem: Lie algebras of nilpotent operators are strictly upper tri-
angular (hence nilpotent). Here we notice a strong relation between nilpotent Lie
algebras and nilpotent linear operators.

6.4.1. Subalgebras, quotients and extensions.

Lemma. (a) If g is nilpotent then so are all subalgebras and quotients.

(b) If g/Z(g) is nilpotent then so is g.

(c) If g 6= 0 is nilpotent then Z(g) 6= 0.

(d) g is nilpotent if there exists some n such that all [ad(g)]n = 0, i.e., all products
ad(xn)◦· · ·◦ad(x1) of length n vanish.
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In particular, all elements of g are ad-nilpotent.

Proof. (a) is proved the same as in the case of solvable algebras. Also, the proof of (b)
proceeds the same as for the corresponding claim for solvable algebras.

(c) is a clear from the definition of nilpotent Lie algebras: Since g 6= 0, we can choose i
as the last index such that there is the term gi of the lower central series is 6= 0. Since g

acts by zero on gi/gi+1 = gi, it lies in the center.

(d) Since the lower central series is given by gi
def
= [ad(g)]ig, the condition gn = 0 is

equivalent to [ad(g)]n = 0. �

Remark. Notice that (b) is weaker then the corresponding statement for solvable Lie
algebras which just said that solvable algebras are closed under extensions.

6.4.2. ad-nilpotent elements. We say that an element x of a Lie algebra g is ad-nilpotent
if the operator ad(x) on g is nilpotent. Similarly for ad-semisimple.

Lemma. If x ∈ End(V ) is semisimple or nilpotent then the same is true for the operator
ad(x) on End(V ).

Proof. If x is semisimple then V = ⊕ Vα for the α-eigenspace Vα of x. Now, on
Hom(Vα, Vβ)⊆ End(V ) operator ad(x) acts by β − α. so it is again semisimple.

If x is nilpotent then so are the multiplication operators Lx, Rx on End(V ). Since they
commute, ad(x) = Lx +Rx is also nilpotent. �

6.4.3. Linear Lie algebras with nilpotent elements.

Proposition. Let g be a Lie subalgebra of gl(V ) with 0 < dim(V ) <∞. If all elements of
g are nilpotent operators then

(a) The common kernel V g
0 of operators in g is 6= 0.

(b) There exists an invariant flag 0 = V0⊆· · ·⊆Vn = V such that g·Vi⊆Vi−1 (i.e., g acts
trivially on the graded pieces).

(c) g is nilpotent.

Proof. (a) We will use induction in dim(g). The case when dimension is zero is obvious.

A. Any maximal proper subalgebra m⊆g is an ideal in g of codimension one:
g = m⊕kx. If m⊆g is a proper Lie subalgebra we consider m-action on g/m. Since it is
still by nilpotent operators, by induction assumption there is a line k(x + m) in g/m on
which m acts by zero. This means that [m, x]⊆m. Now, m⊕kx is a subalgebra of g which
normalizes m. Since m is maximal we find that m⊕kx equals g, so g normalizes m.

B. Applying induction to the m-module V . The common kernel V m
0 in V of operators

in m is non-zero because dim(m) < dim(g). Since m is an ideal in g we find that V m
0 is
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g-invariant. Now, since the restriction of the operator x to V m
0 is nilpotent, the kernel of

x in V m
0 is 6= 0. However, on this subspace all of g acts by zero. �

(b) follows from (a). Once we have a line V1⊆V on which g acts by zero, we consider the
action of g on V/V1 etc.

(c) follows from (b) since we can choose a basis v1, ..., vn such that v1, ..., vi is a basis of
V . This identifies gl(V ) with gln and then g lies in the subalgebra n of strictly upper
triangular matrices which is nilpotent. Therefore, n is nilpotent. �

6.4.4. Engel’s theorem. If Lie algebra g is nilpotent it does not imply that its elements act
nilpotently in finite dimensional representations. (For instance for an abelian Lie algebra
a, any λ ∈ a∗ defines a 1-dimensional representation of a in which x ∈ a acts by the scalar
〈λ, x〉.)
However, this is true in the adjoint representation – if g is nilpotent then all operators
ad(x) are known to be nilpotent (lemma 6.4.1.d). The converse is also true:

Theorem. [Engel] If dim(g) < ∞ then the Lie algebra g is nilpotent iff all elements of g
are ad-nilpotent.

Proof. By the above remark, we just need to prove know that if all elements of a Lie
algebra g are ad-nilpotent then g itself is a nilpotent Lie algebra.

A. If g 6= 0 then Z(g) 6= 0. Now, since ad(g) is a Lie subalgebra of operators on g and
all its elements ad(x) are nilpotent operators on g, the preceding proposition 6.4.3 says
that the ad(g)-module g has an invariant vector 0 6= v ∈ g. The ad(g)-invariance of v
means that v ∈ Z(g).

B. Induction in dim(g). The Lie algebra g/Z(g) again has the property that its ele-
ments are ad-nilpotent. So, by induction assumption we know that g/Z(g) is nilpotent.
According to the lemma 6.4.1.c this implies that g itself is nilpotent. �

6.5. Jordan decomposition.

6.5.1. Jordan decomposition in linear algebra. We recall

Theorem. Let V be a finite dimensional vector space over a closed field k. For each linear
operator x

(a) There is a unique pair s, n of a semisimple operator s and a nilpotent operator s, such
that x = s+ n and s, n commute.

(b) Actually, one can choose polynomials S,N without constant coefficients, so that s =
S(x) and n = N(x). In particular, s, n commute with the centralizer ZEnd(V )(x) and they
preserve any subspace that x preserves.
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Proof. 1. Generalized eigenspaces of x. Since k is closed, we can factor the charac-
teristic polynomial χ(T ) = det(T − x) as a product

∏
α∈Σ χα of linear factors where Σ is

the set of zeros of χ and χα = (T − α)mα .

Denote the generalized eigenspaces by Vα
def
= Ker(χα(x)), α ∈ Σ. Then V = ⊕Σ Vα.

Consider the polynomials χβ def
=

∏
α6=β χα for β ∈ Σ. is 1. The Chinese Remainder

Theorem says that the greatest common divisor of polynomials χβ can be written as a
sum

∑
β∈Σ Pβχ

β for some polynomials Pβ. So, 1 =
∑

β∈Σ Pβχ
β . Now, plugin T = x to

get that

1V =
∑

β∈Σ

Pβ(x)χ
β(x).

The image of the operator Pβ(x)χ
β(x) is in Vβ = Ker since χβ(x)◦Pβ(x)χ

β(x)v =
Pβ(x)χ(x) and χ(x) = 0.

So, any vector v has a decomposition v =
∑

β∈Σ vβ for vβ
def
= Pβ(x)χ

β(x)v ∈ Vβ.

2. Choice of the polynomial S. At this point we can can choose any finite subset
Σ′⊆k that contains Σ and for α ∈ Σ′ − Σ we choose χα = (T − α)mα for some positive

power mα. Then the system of congruences S
χα∼= α for each α ∈ Σ′ has a solution because

the polynomials χα, α ∈ Σ′, are pairwise relatively simple. We will actually choose Σ′ so
that it contains 0, so that S is a multiple of T .

3. Construction of s and n. Let s = S(x) and n = N(x) for N = T −S. So, s+n = x
and s, n certainly commute with Z(x).

We see that for each α ∈ Σ we have s − α = (S − α)(x) which is a multiple of χα(x).
So, s = α on Vα and therefore s is semisimple. Now, on the generalized α-eigenspace Vα
operator n is x− α so it is nilpotent.

4. Uniqueness in (a). If x = s′ + n′ for semisimple s′ and nilpotent n′ and s′, n′

commute, then s′, n′ ∈ Z(x) and so they commute with the s, n that we have constructed
above. Now s′ + n′ = x = s+ n gives s′ − s = n− n′. Since s, s′ are semisimple and they
commute s′−s is semisimple. Since n, n′ are nilpotent and they commute operator n−n′

is nilpotent. Then s′ − s = n− n′ is both semisimple and nilpotent, hence it is zero. �

Corollary. If A⊆B⊆V are vector subspaces such that xB⊆A then sB⊆A and nB⊆A.
Proof. This follows from the claim (b) in the lemma. �

6.5.2. Jordan decomposition in Lie algebras. We can define a Jordan decomposition of an
element x in any Lie algebra g to be a pair s, n ∈ g such that x = s + n, [s, n] = 0 and
ad(s) is a semisimple operator while ad(n) is a nilpotent operator on g.

In general it need not exist nor does it have to be unique.
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Lemma. (a) The map ad : g→֒gl(g) preserves Jordan decompositions that exist in g.

(b) If Z(g) = 0 then Jordan decompositions in g are unique.

Proof. (a) If x = s+ n is a Jordan decomposition in g ad(x) = ad(s) + ad(n) is standard
Jordan decomposition in linear algebra since [ad(s), ad(n)] = ad[s, n] = 0 and ad(s) is
semisimple while ad(n) is nilpotent.

(b) follows since in this case ad : g → gl(g) is injective. �

However, we will see that both properties hold in the class of semisimple Lie algebras g.
Here, we check this for g = sln.

6.5.3. Jordan decomposition in the Lie algebra sln.

Lemma. For x ∈ gln the Jordan decomposition of the linear operator ad(x) on gln is
ad(s) + ad(n) where x = s + n is the Jordan decomposition of the linear operator x on
kn. (Also, if x ∈ sln then s, n ∈ sln.)

Proof. We have ad(s) + ad(n) = ad(s+n) = ad(x) and [ad(s), ad(n)] = ad([s, n]) = 0. So
it remains to show that ad(s) is semisimple and and(n) is nilpotent. �

Proposition. If g = sln over a closed field k then any element x ∈ g has a unique Jordan
decomposition. It coincides with the Jordan decomposition in linear operators over kn.

Proof. The requirement that [ad(s), ad(n)] = ad([s, n]) be zero is equivalent to [s, n] = 0
since Ker(sln) = Z(sln) = 0. Now the conditions on s, n are equivalent to asking that
ad(s), ad(n) are the Jordan decomposition of the linear operator ad(x) on sln. �

6.5.4. Jordan decomposition in Lie algebras of derivations. Here we establish Jordan de-
composition in a special class of Lie algebras.

Lemma. Let A be a finite dimensional associative algebra over a closed field k and let
Der(A)⊆ Endk(A) be the Lie algebra of its derivatives.

(a) If x ∈ Der(A) has Jordan decomposition x = s+ n then both s, n lie in Der(A).

(b) (b) In Lie algebras of form Der(A) there is a Jordan decomposition.

Proof. (a) Let A(α) be the generalized eigenspace of x with eigenvalue α ∈ k. Then

A(α) · A(β) ⊆ A(α+β).

The reason is that for u, v ∈ A

(x− (α + β))n(uv) =
n∑

0

( n
p ) (x− (α + β))pu · (x− β)n−pv.
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Now, s acts on the subspace A(α) of A by scalar α. So, for u ∈ A(α) and v ∈ A(β) we have

s(u)·v + u·s(v) = (α + β)uv = s(uv).

So, s is a derivative on A. Since s, x commute so is n = x− s.

(b) We know that [s, n] = 0. Also, since s is a semisimple operator on A, ad(s) is a
semisimple operator on End(A) and then its restriction adDer(A)(s) to Der(A)⊆End(A)
is also semisimple. Similarly, adDer(A)(n) is nilpotent. �

6.6. Cartan’s criterion for solvability of Lie algebras.

6.6.1. Linear algebra relating nilpotency and traces.

Lemma. For two subspaces A⊆B of gl(V ), let N consist of all x ∈ End(V ) such that
xB⊆A. Then the intersection N ∩N⊥ (for the bilinear form κ(x, y) = TrV (xy)) consists
of nilpotent operators.

Proof. Longish. �

6.6.2. Cartan criterion. The first version uses a faithful representations of g, i.e.,
g⊆gl(V ) and the corresponding form κV. The second version is completely general since
it does not require any particular representation (it uses the adjoint representation and
the Killing form).(10)

Theorem. [Cartan] (1) A Lie subalgebra g of gl(V ) is solvable iff it is orthogonal to its
derived subalgebra g′ = [g, g] for the bilinear form κV (x, y) = TrV (xy) on g.

(2) A Lie algebra g is solvable iff the derived subalgebra g′ = [g, g] is self-orthogonal for

the Killing form κg(x, y)
def
= Trg(ad(x)ad(y)) on g.

Proof. 1a. If g is solvable then its action on V can be represented by upper-triangular
matrices, i.e., in terms of some basis of V we have identification gl(V ) ∼= gln such that
g lies in the Borel subalgebra b of upper triangular matrices. Therefore, the action of
g′⊆b′ = n (the strictly upper-triangular matrices. Now recall that we have proved that
b ⊥ n (actually b⊥ = n) for the form Tr(xy) on gln. This implies that g ⊥ g′.

1b. In the more interesting direction, assume that TrV (g·g′) = 0. From this we will prove
that that any element x of g′ is nilpotent as an operator on V .

This implies that the Lie algebra g′ is nilpotent (proposition 6.4.3.c). Then g will be
solvable as an extension of an abelian Lie algebra gab = g/g′ by a nilpotent Lie algebra
g′ !

The nilpotency of x ∈ g′ will follow from the above linear algebra lemma 6.6.1 in the
case when A⊆B⊆gl(V ) is g′⊆g. Then N consists of all x ∈ gl(V ) such that [x, g]⊆g′.

10 However, the 1st version is more general in another sense. When we want to show that g is solvable),
it allows us to use any (faithful) representation V that we happen to understand.
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For instance N⊆g. The lemma says that the operators in N ∩ N⊥ are nilpotent. So, it
suffices to show that g′⊆N (true because g⊆N ), and g′ ⊥ N .

For the last claim let x, y ∈ g so that [x, y] ∈ g′ and n ∈ N then the invariance of κV
gives

κV ([x, y], n) = −κV (y, [x, n]).
Here, n ∈ N and x ∈ g imply that [x, n] = −[n, x] lies in g′. So the assumption that
g′ ⊥ g implies that the expression is zero. So, g′ ⊥ N .

(2) will follow by applying (1) to the algebra ad(g)⊆ gl(g).

The kernel of the adjoint representation ad : g → End(g) is Z(g). So, the quotient g/Z(g)
of g is exactly the image ad(g) of the map of Lie algebras ad : g → End(g).

Now, we see that g is solvable iff ad(g) is solvable (if ad(g) is solvable then g is an extension
of solvable g by abelian Z(g)).

Part (1) of the theorem now say that the subalgebra ad(g) of gl(g) is solvable iff for the

form κ
ad(g)
g on ad(g) we have

κad(g)g

(
ad(g), ad(g)′

)
= 0.

However, the left hand side is the same as κgg(g, g′) since ad(g)′ = ad(g′) (because
ad(x), ad(y) = ad([x, y])) and for x, y ∈ g

κgg(x, y) = Trg
(
ad(x)ad(y)

)
= κad(g)g (ad(a), ad(y)).

�
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7. Semisimple Lie algebras

7.1. Killing criterion for semisimplicity.

Theorem. A Lie algebra is semisimple iff its Killing form is nondegenerate.

Proof. A. Let g be semisimple, then we want to show that rad(κg) = 0. We know that
R = rad(g) = g⊥ is an ideal. So, to show that it is zero it suffices to prove that R is
solvable (there are no solvable ideals in a semisimple g). By Cartan’s criterion (version
(2)) this is equivalent to κR(R, [R,R]) = 0.

Now recall that since R is an ideal its Killing form κR is the restriction of the Killing form
on g (see proposition 3.3.5.b). So, κR(R, [R,R]) = κg(R, [R,R]) is zero since R = rad(κg).

B. Now suppose that rad(κg) = 0. To prove that g is semisimple it suffices to prove that
any abelian ideal a in g is zero. Since κg is nondegenerate it suffices to prove that a ⊥ g.
So, for x ∈ g and y ∈ a we need trg

(
ad(y)ad(x)

)
= 0.

We will actually prove that (ad(y)ad(x))2 = 0. The point is that ad(y)ad(x) maps g to a

and then also ad(y)ad(x) maps a to [a, a] = 0. �

7.1.1. Action of the radical on irreducible representations.

Theorem. If (V, π) is an irreducible representation of g then any element of Rad(g) acts
on V by a scalar.

Proof. Since Rad(g) is solvable, it has an invariant line L. Here it acts by some linear

functional λ ∈ Rad(g)∗. So, V
Rad(g)
λ is not zero.

Actually, V
Rad(g)
λ is a g-submodule. “This is proved as in theoorf of Lie’s theorem”.

Now we assume that V is irreducible, hence V
Rad(g)
λ = V and g acts on V by λ. �

Corollary. [g, Rad(g)] acts by 0 on irreducible representations.

Proof. π[g, Rad(g)] = [πg, π Rad(g)]⊆ [πg, k] = 0. �

7.1.2. Levi’s theorem. Here we jsut mention the following theorem.

Theorem. Any Lie algebra g can be written as a sum of subspaces which are subalgebras
(but s need not be an ideal)

g ∼= Rad(g) ⊕ s,

where s is semisimple.

Proof. This is a cohomological statement, the vanishing of the second cohomologyH2(s, k)
for semisimple Lie algebras. The proof is similar to the proof of semisimplicity of repre-
sentations of semisimple Lie algebras. (This also has cohomological interpretation.) �
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Corollary. Any reductive Lie algebra g decomposes as a sum of ideals [g, g]⊕Z(g) and
[g, g] is semisimple.

7.1.3.

Theorem. For a Lie subalgebra g⊆sl(V ), if the form κV on g is non-degenerate then g is
reductive.

(So, g is semisimple iff the form κV on g is non-degenerate and Z(g) = 0.)

Proof. We will assume that rad(κV ) = 0 and we will prove that Rad(g) is central, i.e.,
[g, Rad(g)] = 0.

The point is that for any x ∈ [g, Rad(g)] we know that it acts by zero in any irreducible
representation W . This implies that κW (x,−) = 0 for irreducible W .

However, this further implies that κU (x,−) = 0 for any representation U . The point is
that for a SES 0U′ → U → U ′′ → 0, we have κU(x, y) = κU ′(x, y) + κU ′′(x, y).

In particular κV (x,−) for the above representation V . Since κV is nondegenerate this
implies that x = 0. �

Question. If g⊆gl(V ) is semisimple, then we want to show that rad(κV ) = 0.

“Proof.” We know that R = rad(κV ) = g⊥ is an ideal in g. So, to show that it is zero
it suffices to prove that R is solvable (there are no solvable ideals in a semisimple g). By
Cartan’s criterion (version (1)) this is equivalent to κV (R, [R,R]) = 0.

Now recall that since R is an ideal its Killing form κR is the restriction of the Killing
form on g (see proposition 3.3.5.b). So, κR(R, [R,R]) = κg(R, [R,R]) is zero since R =
rad(κg). �

7.2. Semisimple Lie algebras are sums of simple Lie algebras. Recall that g is
simple if it has no proper ideals and g is not abelian. (Equivalently, g has no proper ideals
and 0 6= g 6∼= k.)

Lemma. Let I, J be ideals in a Lie algebra g.

(a) If I ∩ J thenI and J commute.

(b) If g = I⊕J as a vector space then g = I⊕J as a Lie algebra, i.e., [, J ] = 0.

ideal in

Proof. (a) [I, J ]⊆I ∩ J . (b) follows. �

The point is an ideal I in g is always of the form
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Proposition. Semisimple Lie algebras are the same as sums of simple Lie algebras.

Proof. A. To see that simple g is semisimple we need Rad(g) = 0. Since g is simple
the ideal Rad(g) has to be 0 or all of g. We can see that Rad(g) = g is impossible (so
Rad(g) = 0 and g is semisimple).

If Rad(g) = g then g would be solvable. Since g 6= 0 solvability would imply that g has
an abelian ideal a 6= 0. Since g has no proper ideals this implies that a = g, so g would
be abelian.

B. A sum g
def
= ⊕N

1 gi is semisimple iff all gi are semisimple.

This is simple in terms of the Killing criterion since κ⊕ gi = ⊕i κgi .

C. It remains to prove that any semisimple g is a sum of simple Lie algebras.

First, if g itself is not simple then it has a proper ideal 0 6= I 6= g. Then I⊥ is also an
ideal, hence so is I ∩ I⊥.
C1. The ideal s = I ∩ I⊥ is zero. It suffices to show that it is solvable and this will
follow from Cartan’s criterion (version (1)).

Fist, since g is semisimple Z(g) = 0 as it is an abelian ideal. Therefore, g
∼=−→ad(g)⊆gl(g).

Now κg(s, s)⊆ κg(I, I
⊥) = 0. So, in particular s ⊥ s′ for κg and therefore s is solvable.

C2. Now g contains the sum of vector spaces I⊕I⊥. Actually, this is all of g since
(because κg is nondegenerate) dim(I⊕I⊥) = dim(I) + (dim(g)− dim(I)) = dim(g).

Therefore, g = I⊕I⊥ as a sum of vector spaces, but then this is also a sum of Lie algebras
by the lemma �

7.2.1. The adjoint representation of a semisimple g. Recall that an ideal in g is the same
as a g-subgmodule of g. So, a

Corollary. Let g be a semisimple Lie algebra with a decomposition g = ⊕N
1 gi into simple

ideals.

(a) All ideals of g are classified by subsets S of {1, ..., n}. here S gives gS = ⊕i∈S gi.

(b) The simple ideals (in the sense of an ideal which is simple as a Lie algebra) in g

are exactly the ideals gi. (In particular the decomposition into simple Lie subalgebras is
unique up to a permutation of indices.)

(c) If g is semisimple then g′ = [g, g] is all of g.

(d) Each gi is an irreducible module for g and modules gi are mutually non-isomorphic.
As a g-module we have (gi)

∗ ∼= gi.

Proof. (a) Let x is an element of an ideal a in g and x =
∑
xi with xi →֒gi. We seethat

if xi 6= 0 Then a⊇ [x, gi] = [xi, gi] and if xi 6= 0 then [xi, gi] = gi since gi is an irreducible
gi-module.



64

(b) follows. For (c) it suffices to prove the case when g simple. Then [g, g] is an ideal in
g which is not zero (then g would be abelian), hence [g, g] = g. �

(d) For i 6= j modules gi, gj are different since gi acts by zero on gj but not on gi.
Since gi is esmisimple, its Killing form κgi is nondegenerate, hence κgi : fgi → g)i∗ is an
isomorphism.

7.2.2. Invariant bilinear forms.

Lemma. For a semsimple Lie algebra g, the invariant bilinear forms on g are exactly all
linear combinations

∑
ciκgi of Killing forms on irreducible summands gi. (In particular

they are all symmetric.)

Proof. The bilinear invariant forms κ on g are the same as g-morphisms κ : g → g∗.
However, by part (d) of the lemma 7.2.1, Homg(gi, g

∗
j)

∼= Homg(gi, gj) is zero for i 6= j
and for i = j it contains the Killing form κgi . Then Homg(gi, gi) = kκgi by Schurr’s
lemma. �

7.3. All derivations of a semisimple Lie algebra are inner.

7.3.1. Lie algebra Der(g). A derivation of a Lie algebra g is a linear map D : g → g such
that it satisfies the Leibniz rule for the bracket operation, i.e., D[x, y] = [Dx, y]+[x,Dy].
All derivations of g form a vector space Der(g).

Lemma. Der(g) is a Lie subalgebra of gl(g),

Proof. For D′, D′′ ∈ Der(g) and x, y ∈ g we have D′D′′ [x, y] = D′([D′′x, y]+ [x,D′′y]) =
[D′D′′x, y] + [D′′x,D′y] + [D′x,D′′y] + [x,D′D′′y]. Therefore,

[D′, D′′]([x, y]) = ([D′D′′x, y] + [D′′x,D′y] + [D′x,D′′y] + [x,D′D′′y])

= [[D′, D′′]x, y] + [x, [D′, D′′]y]. �

7.3.2. Inner derivations. For any x ∈ g the operator ad(x) on g is a derivation of g

because of the Leibniz rule. So, the image ad(g) of ad : g → gl(g) lies in Der(g) and this
Lie subalgebra is called the inner derivations.

Lemma. ad(g)⊆Der(g) is an ideal.

Proof. For D ∈ Der(g) and x ∈ g we have [D, ad(x)] = ad(Dx) :

[D, ad(x)]y = D[x, y]− [x,Dy] = [Dx, y]

since D is a derivation. �
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Theorem. In a semisimple Lie algebra g all derivations are inner:

Der(g) = ad(g).

Proof. For a subspace U of a vector space V which carries a bilinear symmetric form κ,
we may denote by U⊥

V,κ the subspace of V consisting of vectors orthogonal to U for κ,

Here, we will use ad(g)⊥ in the sense of ad(g)⊥Der(g),κDer(g)
.

Now, recall that g
∼=−→ad(g) and that ad(g) is an ideal in Der(g). This gives another ideal

ad(g)⊥ in Der(g).

Now, the restriction of κDer(g) to ad(g) is κad(g) because ad(g) is an ideal in Der(g). So,
the restriction of κDer(g) to ad(g) is nondegenerate. This implies a decomposition of a
vector space

Der(g) = ad(g) ⊕ ad(g)⊥.

So, it suffices to show that ad(g)⊥ is zero.

For D ∈ ad(g)⊥ and x ∈ g we need Dx = 0, It suffices that ad(Dx) = 0. However,

ad(Dx) = [D, ad(x)]

and D, ad(x) commute since ad(g)⊥ and ad(g) are ideals in Der(g) and their intersection
is zero. �

7.4. Jordan decomposition in semisimple Lie algebras.

Theorem. If g is semisimple Lie algebra then any element has a unique Jordan decompo-
sition.

Proof. For semisimple g we have

g
ad−→
∼=

ad(g) = Der(g) ⊆ End(g).

Now, for x ∈ g, the operator ad(x) ∈ End(g) has a Jordan decomposition S +N .

By lemma 6.5.4 we know that S,N lie in Der(g). Since Der(g) = ad(g) we have S =
ad(s), N = ad(n) for some s, n ∈ g.

Now, ad(x) = ad(s) = ad(n) = ad(s + n) implies that x = s + n (since Z(fg) = 0).
Moreover, [s, n] = 0 since ad[s, n] = [ad(s), ad(n)] = [S,N ] = 0. Finally operator ad(s) =
S is semisimple and ad(n) = N is nilpotent.

The uniqueness of the Jordan decomposition in g is a general property of all Lie algebras
with Z(g) = 0 (lemma 6.5.2). �

7.5. Semisimplicity theorem for semisimple Lie algebras.
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7.5.1. Invariant forms κV for semisimple g. Let (V, π) be a finite dimensional represen-
tation of a semisimple Lie algebra g. Then Ker(π) is an ideal in g so it is a sum of some
simple summands of g (see corollary 7.2.1). Hence the sum of the remaining simple ideals
gV⊆g is canonically isomorphic to the quotient π(g).

Lemma. (a) The form κ = κgVV on gV is nondegenerate on π(g).

(b) The Casimir element CV ∈ U(gV ) corresponding to the form κ on gV lies in in Z[Ug].

(c) CV acts on V as dim(π(g)).

Proof. (a) The radical of κ is (by Cartan criterion!) a solvable ideal in gV . Since gV is
semisimple this makes it zero.

(b) We know that Cκ ∈ U(gV ) commutes with gV . It commutes with Ker(π) because
gV commutes with Ker(π) (sums of disjoint families of simple ideals in g). Finally, if
we write C as a sum

∑
xpx

p for κ-dual bases of gV then TrV (C) =
∑

TrV (xpx
p) =∑

κ(xp, x
p) = dim(gV . �

Theorem. For a semisimple Lie algebra g any finite dimensional representation is semisim-
ple.

Proof. We need to split all extensions 0 → E ′ → E → E ′′ → 0. By general arguments it
suffices to split such extensions when E ′′ = k and E ′ is irreducible.

Let C = CE be the Casimir associated to the representation E in the preceding lemma
7.5.1. It acts on irreducible E ′ by a scalar c (Schurr lemma) and it clearly acts on k by 0.

If c 6= 0 then the 0-eigenspace Ker(C) of C is a g-invariant complement of E ′ in E.

If c = 0 then TrE(C) = c dim(E ′) is zero, but by lemma 7.5.1.c this implies that g acts
on E by 0, hence E would split! �

Remark. This proof is much more abstract then the one we used for sln. That one used
the knowledge of all irreducible finite dimensional representations of g !

7.5.2. Preservation of Jordan decomposition.

Remark. (a) The image of a semisimple Lie algebra g in any representation U lies in
sl(U).

(b) For a linear operator x onW , with a Jordan decomposition s+n we have s, n ∈ sl(V )
iff x ∈ sl(V ).

Proof. (a) For any semisimple Lie subalgebra s of gl(U) we have s = [s, s]⊆[gl(V ), gl(V )] =
sl(V ).

(b) We have Tr(x) = Tr(s). �
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Theorem. (a) Any representation (V, π) of a semisimple Lie algebra then preserves Jordan
decomposition, i.e., if x = s+ n is a Jordan decomposition in V then πx = πs+ πn is a
Jordan decomposition in linear operators on V .

(b) If gi are semisimple then any Lie algebra map g1
α−→ g2 preserves Jordan decomposition.

Proof. (b) follows from (a) by using the adjoint representation of g2 (and remembering
that it is faithful).

In (a) it suffices to consider the case when the representation V is faithful since any
representation V of g reduces to a faithful representation of a semisimple Lie subalgebra
gV of g (see 7.5.1).

So, we are now in a case where g is a semisimple Lie subalgebra of some gl(V ).

(S1) Let x ∈ g and let x = S +N be its Jordan decomposition as an operator on V . The
we know that adgl(V )(x) = adgl(V )(S) + adgl(V )(N) is Jordan decomposition in operators
on gl(V ). S,N ∈ gl(V ), of the The reason is that Since adgl(V )(x) preserves g⊆gl(V ),
we get that adgl(V )(x), adgl(V )(x) preserve g, so S,N lie in the normalizer subalgebra

N
def
= Ngl(V )(g) of gl(V ).

(S2) We will actually prove that S,N lie in a smaller subalgebra N ′⊆N . First for a
g-submodule W of V we define

LW
def
= {y ∈ gl(V ); y preserves W and TrW (y) = 0}.

Then we choose N ′ as the intersection of the normalizer N with all subalgebra LW corre-
sponding to submodules W⊆V .

Certainly, operator x preserves any submodule W⊆V , hence so do S and N . Moreover,
the image of the semisimple Lie algebra g in gl(W ) is a semisimple subalgebra of gl(W )
so it lies in sl(W ). Therefore, x|W is in sl(V ) and then x|V = S|V + N |V implies that
0 = TrW (x) equals Trw(S). So, restrictions of S,N to W are in LW . Therefore, S,N lie
in N ′.

(S3) We will now prove that N ′ = g hence we will get that S,N ∈ g. This will imply that
they form a Jordan decomposition of x in the Lie algebra g.

For this we will use the semisimplicity theorem. It guarantees that for the inclusion of
g-modules g⊆ N ′ there is a complementary g-submodule X .

Here, X is a trivial g-module as [X, g]⊆X and [X, g]⊆ [N, g]⊆g (since Lie algebra g is an
ideal in its normalizer N = Ngl(V )(g)). so it is an ideal in N ′⊆N .

... �
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8. Structure of semisimple subalgebras

We follow the point of view for which the structure of any semisimple Lie algebra over a
closed field k is completely parallel to that of sln.

While for sln facts can be checked by computation with matrices, for semisimple Lie
algebras in general we will “at each step” use the the Killing form κg = κ since its
nondegeneracy is an equivalent definition of semisimple Lie algebras. (This definition is
“more concrete” and “positive” than the absence of solvable ideals.)

8.1. Cartan subalgebras.

8.1.1. Toral subalgebras. A subalgebra h of a Lie algebra g is said to be toral if all its
elements are adg-semisimple. A Lie algebra h is said to be toral if it is toral as a subalgebra
of itself, i.e., if for all its elements are adh-semisimple. Clearly if h is a toral subalgebra
of some g then it is a toral Lie algebra.

Lemma. Toral algebras are abelian.

Proof. For x ∈ h, ad-semisimplicity says that g is the sum of α-eigenspaces gxα. So we
need to see that for α 6= 0 the α-eigenspace gxα of any x ∈ g is 0.

If y 6= 0 is an eigenvector [x, y] = αy then ad(y)x = −αy, hence ad(y2)x = 0. The
semisim[licity of ad(y) then gurantees that ad(y)x = 0 hence α = 0.

8.1.2. Maximal toral subalgebras. Let h be a Cartan subalgebra of a Lie algebra g, i.e., a
maximal toral subalgebra of g. By the lemma, ad(h) is a commutative family of semisimple
operators, hence g = ⊕α∈h∗ ghα. This defines the weights W(g) of h in g and roots ∆ =

∆h(g)
def
= W(g)− {0}. So,

g = Zg(h) ⊕ ⊕α∈∆ ghα.

Lemma. (a) [gα, gβ]⊆ gα+β.

(b) For α ∈ ∆, any x ∈ gα is nilpotent.

(c) If α + β 6= 0 then gα ⊥ gβ.

(d) For any α, the restriction of κ to a pairing of gα and g−α is nondegeenrate.

Remark. The following is a key observation. It says that a semisimple Lie algebra has a
“large” toral subalgebra h. The meaning of “large’ here is that anything that commutes
with h has to be in h itself!

We will then see in 8.2 that such large toral subalgebra plays the same role in g as the
diagonal matrices in sln.
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Proposition. Zg(h) = h.

Proof. (S1) For any x ∈ C def
= Zg(h) its semisimple and nilpotent parts s, n lie in C.

The point is that when x commutes with h then so do s and n.

(S2) All semisimple elements of C lie in h. The reason is that if s ∈ C is ad-semisimple
then h+ ks is toral!.

(S3) Denote by h⊥
def
= h⊥C,κg

the part of C that is orthogonal to h for κg. It contains all
nilpotent elements of C, i.e., all y ∈ C with adg nilpotent.

The point is that for h ∈ h the operator adg(h)adg(y) is nilpotent (hence has trace zero),
since adg(y) is nilpotent and adg(h), adg(y) commute.

(S4) The restrictions of the Killing form κ to C and h are non-degenerate.

The first statement is the part (d) of the preceding lemma. The second statement says
that h ∩ h⊥ = 0. It will follow from the first once we show that h∩h⊥ is orthogonal to C,
However, for any x ∈ C with the Jordan decomposition x = s + n in g we have s, n ∈ C
by (S1). Now n ⊥ h by (S3) and s ∈ h by (S2). hence s ⊥ h⊥. Therefore, x ⊥ h ∩ h⊥.

(S5) Lie algebra C decomposes as a sum of ideals C = h⊕h⊥. Also, h⊥ is the set of all adg
nilpotent elements of C.
First, h is an ideal in C (the brackets of C with h are zero), hence h⊥ is also an ideal in C
(because the restriction of κg to C is an invariant form). The decomposition as a vector
space C = h⊕h⊥ holds because κ is non-degenerate on C and h.

If y ∈ h⊥ then its Jordan parts sy, ny in g lie in C by (S1), hence sy ∈ h by (S2). But this
will imply that sy = 0 (hence y = ny is ad-nilpotent). The reason is that κ(h, ny) = 0 by
(S3) and therefore since κ(h, sy) = κ(h, y) = 0. So, sy ∈ h ∩ h⊥ = 0.

(S6) Lie algebra C is nilpotent.

Since C = h⊕h⊥ and h⊆Z(C), it suffices that u be nilpotent. This is true by Engel’s
theorem since for any y ∈ C the operator adC(x) is nilpotent (it is a restriction of adg(y)).

(S7) The center of u is zero.

This will follow from Z(h⊥) ⊥ C. First notice that Z(h⊥)⊆Z(C) since C = h⊕h⊥.

Now, for z ∈ Z(u) and any x ∈ C the operator adg(z)adg(x) is nilpotent (the factors
commute ad adg(z) is known to be nilpotent by (S5)). So, κ(z, x) = Trg[adg(z)adg(x) = 0.

(S8) h⊥ = 0. The reason is that a non-zero nilpotent algebra always has has a non-zero
center (the last non-zero term in the lower central series lies in the center!). �

8.2. Roots.
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8.2.1. Elements κ−1α of h (α ∈ ∆). In the following, κ could be any non-degenerate
symmetric bilinear invariant form on g. The important results will be independt from the
choiceof such κ. For convinience we will use the Killing form κ = κg.

Since κ|h is non-degenerate, the corresponding linear operator kah : h → h∗ is invertible.

We will use its inverse κ−1 : h∗
∼=−→h.

Lemma. (a) ∆ spans h∗.

(b) −∆ = ∆.

(c) For α ∈ ∆ and x ∈ gα, y ∈ g−α one has

[x, y] = κ(x, y) · χ−1α.

In particular,

[gα, g−α] = k·χ−1α.

(d) For α ∈ ∆ we have 〈α, χ−1α〉 6= 0. (By definition 〈α, χ−1β〉 = κ(χ−1α, χ−1β〉.)
Proof. (b) follows from non-degeneracy of κ and the lemma 8.1.2.c. �

8.2.2. Vector α̌ ∈ h corresponding to a root α. We will use kah : h
∼=−→h∗ to transfer the

bilinear form κ from h to h∗. This gives a bilinear form on h∗ denoted

(λ, µ)
def
= κ(κ−1λ, κ−1µ), λ, µ ∈ h∗.

Now we can define for each root α an element α̌ ∈ h

α̌
def
=

2

(α, β)
κ−1α =

2

κ(κ−1α, κ−1β)
κ−1α.

Lemma. (a) The construction α 7→α̌ is canonical, i.e., it is independent of the choice of
the invariant bilinear form κ.

(b) 〈α, α̌〉 = 2.

Proof. First notice that if we replace κ by a multiple cκ (for invertible c), then the form
(λ, µ) = κ(κ−1α, κ−1β) gets multiplied by c−1 and the same holds for κ−1α. So, the
multiple c cancels.

In general, we use the decomposition g = ⊕ N
1 gi of g into a sum of simple ideals. Then any

invariant bilinear form κ on g is a linear combination
∑

ciκgi . Clearly κ is nondegenerate
iff all ci are invertible. Since α ∈ ∆ lives in a single gi we can use the initial obhservation
inthis proof. �
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Remark. From (b) we see that the operator sα on h∗ defined by

sα(β)
def
= β − 〈β, α̌〉α

is a reflection.

8.2.3. sl2-subalgebras sα.

Lemma. (a) For 0 6= x ∈ gα there exists a y ∈ g−α such that (x, y) = 2/(α, α). Then

sα
def
= k·x⊕k·y⊕k·[x, y] is a Lie subalgebra with a basis x, y, [x, y] isomorphic to the Lie

algebra sl2 with the basis e, f, h.

(b) For such x, y the bracket [x, y] is α̌ (so, it does not depend on the choice of x, y or κ).

(c) (−α)̌ = −α̌.

Proposition. (a) For α ∈ ∆, dim(gα) = 1. (So, the subalgebra sα = gα⊕g−α⊕[gα.g−α]
really only depends on α.)

(b) If α, cα ∈ ∆ then c = ±1.

8.2.4. Reflections sα.

Lemma. For roots α, β

(a) 〈α, β̌〉 = 〈α, χ−1β〉 is an integer.

(b) sα(β)
def
= β − 〈β, α̌〉α is again a root.

Corollary. If α, β, α+ β ∈ ∆ then [gα, gβ] = gα+β.

8.2.5. α-string of roots through β.

Proposition. For α, β ∈ ∆ we have

〈β, α̌〉 = r − s

where

• s is the maximum of all p ∈ N such that β + pα ∈ ∆ and
• r is the maximum of all q ∈ N such that β − qα ∈ ∆.

(b) For any p ∈ [−r, s], β + pα is a root.

Corollary. g is generated by root spaces gα, α ∈ ∆.

8.2.6. The Killing form on hQ. Let hZ
def
= spanZ∆̌ and similarly for hQ and hR.
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Lemma. (a) hQ is a Q-form of h, i.e., the map hQ⊗ZQ → h is an isomorphism. [Also,
we will see later that hZ is a Z-form of h (or of hQ).]

(b) The Killing form κg : h×h → k is integral in the sense that it restricts to κg : hZ×hZ →
Z. hR is positive definite.

(c) The restriction of the Killing form to hR is positive definite.

Proof. (a)

(b) has been observed above. In (c), for h, h′ ∈ h we have

κg(h, h
′) = Trg(h, h

′) =
∑

α∈∆⊔0

〈α, h〉·〈α, h′〉.

So, for h ∈ hR we have κg(h, h) =
∑

α∈∆⊔0 〈α, h〉2 which is ≥ 0 since 〈α, h〉2 ∈ R. Also,
the only way it could be zero is if h is orthogonal to ∆ but then h = 0. �
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9. Root systems

9.1. Root systems. We consider an Euclidean vector space V with a fixed inner product
(−,−).

9.1.1. Reflections. A non-zero vector α ∈ V defines a vector

α̌
def
=

2

(α, α)
α ∈ V

and a linear operator sα : V → V by

sαx = x− (α̌, x)α = x− 2
(α, x)

(α, α)
α.

This is a reflection in the hyperplane Hα of all vectors orthogonal to α. The reflection
sα is orthogonal, i.e., it preserves the inner product on V . (Because V = Rα⊕Hα is an
orthogonal decomposition and sα is ±1 on summands.)

Remark. One can identify V and V ∗ via (−,−). Then α̌ ∈ V ∗ is given by α̌ = 2 (α,−)
(α,al)

.

9.1.2. Root systems. A root system in a real vector space V with an inner product is a
finite subset ∆⊆V − 0 such that

• For each α ∈ ∆, reflection sα preserves ∆.

• For α, β ∈ ∆, 〈α, β̌〉 = 2(α,β)
(α,α)

is an integer.

• ∆ spans V .

We say that a root system is reduced if α ∈ ∆ implies that 2α/∈∆. The non-reduced root
systems appear in more complicated representation theories. When we say root system
we will mean a reduced root system.

We call dim(V ) the rank r of the root system ∆.

The sum of two root systems (Vi,∆i) is (V1⊕V2,∆1⊔∆2). We say that (V,∆) is irreducible
if it is not a sum.

Remark. −∆ = ∆ since sα = −α.

Lemma. (a) Root subsystems are closed under intersections.

(b) Any subset X⊆∆ generates a root subsystem (∆X , VX) where VX = span(X) and ∆X

is obtained by applying products sαn
· · ·sα1 of reflections in roots αi ∈ X to roots in X .

9.1.3. The dual root system.

Lemma. ∆̌
def
= {α̌; α ∈ ∆} is also a root system in V (called the dual root system).
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9.1.4. Example: roots of semisimple Lie algebras.

Theorem. For a Cartan subalgebra h of a semisimple Lie algebra g, the set of roots ∆⊆h∗R
is a root system.

Proof. We have already checked all requirements. In ... we constructed an invariant inner
product (−,−) on h∗R ... �

9.2. Bases, positive roots and chambers. The following three notions will turn out
to be equivalent encodings of the same data:

• A base of ∆ is a subset Π⊆∆ such that Π is an R-basis of V and

∆ ⊆ spanN(Π) ⊔ − spanN(Π).

• A system of positive rots in a root system ∆ is a subset ∆+⊆∆ such that

• ∆ = ∆+ ⊔ −∆+ and
• ∆+ is closed under addition within ∆, i.e., If α, β ∈ ∆+ and α + β ∈ ∆ then
α+ β ∈ ∆+.

Then ∆± = ∆ ∩ ±spanN(Π) are called the positive and negative roots. We often write
“α > 0” for “α ∈ ∆+”.

• For a root system ∆ in V , a chamber in V is a connected component of V − ∪α∈∆ Hα

where Hα = α⊥ is the hyperplane orthogonal to vector α.

9.2.1. Equivalence of notions.

Lemma. For a root system (∆, V ) the following data are equivalent:

• a base Π;
• a system of positive roots ∆+;
• a chamber C.

The canonical bijections are given by

(1) a base Π gives ∆+ as spanN(Π) ∩∆;

(2) A system of positive roots ∆+ gives a base Π
def
= ∆+ − (∆+ + ∆+) which is the

set of all elements of ∆+ that are minimal for addition.
(3) The chamber corresponding to ∆+ or Π can be described as

C = {v ∈ V ; (α, v) > 0 for α ∈ ∆+} = {v ∈ V ; (α, v) > 0 for α ∈ Π}.
(4) A chamber C gives a system of positive roots ∆+ = {α ∈ ∆; (α, v) > 0 for v ∈

C}.
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Remarks. (0) We can restate a part of the lemma in the following way. We say that γ ∈ V
is regular if (γ, α) 6= 0 for α ∈ ∆ (i.e., if it lies in one of the chambers in V ). For any
regular γ

∆+
γ

def
= {α ∈ ∆; (γ, α) > 0}

is a system of positive roots.

(1) In particular, any root system has a base.

9.3. Weyl groups.

9.3.1. The Weyl group W of the root system ∆. This is the subgroup of GL(V ) generated
by the reflections sα for α ∈ ∆.

Lemma. (a) W preserves ∆.

(b) W is finite.

Theorem. The Weyl groupW of ∆ acts simply transitively on each of the following classes
of objects:

• (a) systems of positive roots in ∆,
• (b) bases of ∆;
• (c) chambers in V .

Remark. One consequence is that all bases of ∆ behave the same so it suffices to consider
one.

9.4. Classification of root systems.

9.4.1. Bases and Dynkin diagrams.

Lemma. For α 6= β in a base Π we have

(a) (α, β) ≤ 0, i.e., the angle is ≥ π/2;

(b) α− β is not a root. �

To base Π we associate its Cartan matrix C : π2 → Z defined by

Cαβ
def
= (α, β̌).

We also encode it as the Dynkin diagram of Π. It is a graph whose vertices are given by
the set Π of simple roots. If |λ| ≥ |be| we connect α to β with |(α, β̌)| bonds. If |λ| > |be|
we also put an arrow from α to β over these bonds.

Notice that if α and β are not connected in the Dynkin diagram iff α ⊥ β. For the reason
the Dynkin diagram of a sum of root systems ∆i is a disjoint union of Dynkin diagrams
of ∆i’s,
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Theorem. (a) A root system ∆ is completely determined by its Dynkin diagram.

(b) A root system ∆ is irreducible iff its Dynkin diagram is connected.

(c) The irreducible root systems fall into 4 infinite series called An, Bn, Cn, Dn for n =
1, 2.... and 5 more (“exceptional”) root systems called E6, E7, E8, F4, G2.

9.4.2. Classical series of root systems. The following are all infinite series of irreducible
root systems.

Let Here E = ⊕n
1 Rεi for orthonormal εi. Type A. Here, V =

∑
ciεi with

∑
ci = 0.

The roots are all ±εi ± εj where 1 ≤ i < j ≤ n. The rank is n − 1 and root system is
called An−1. We have see that these are roots of the Lie algebra sln with respect to the
diagonal Cartan h.

Notice that ∆̌ = ∆ as α̌ = α for each root α.

Type B. Here V = E and ∆ consists of all ±εi and ±εi ± εj for i < j.

Type C. Here V = E and ∆ consists of all ±2εi and ±εi ± εj for i < j.

Type D. ...

9.5. More on root systems.

9.5.1. Rank ≤ 2 root systems.

Lemma. (a) If rank is 1 the root system is isomorphic to A1.

(a) If rank is 2 the root system is isomorphic to A1⊕A1, B2 = C2, G2. �

Corollary. The angles between two roots can be π, π
2
, π

3
, π

4
, π

6
, 0 and also 2π

3
, 3π

4
, 5π

6
.

9.5.2. The α-string of roots through β.

Proposition. For α, β ∈ ∆ not proportional, we have

〈β, α̌〉 = r − s

where

• s is the maximum of all p ∈ N such that β + pα ∈ ∆ and
• r is the maximum of all q ∈ N such that β − qα ∈ ∆.

(b) For any p ∈ [−r, s] β + pα is a root.

Remark. Root strings are of length ≤ 4. Length 4 is found in G2 only.



77

10. Classification of semisimple Lie algebras and their finite dimensional
representations

10.1. Classification of semisimple Lie algebras.

Theorem. (a) For a Cartan subalgebra h of a semisimple Lie algebra g, the set of roots
∆⊆h∗R is a root system.

(b) The root system of g determines g up to an isomorphism.

(c) Any root system comes from a semisimple Lie algebra.

Remarks. (i) The root system of a sum ⊕ gi of semisimple Lie algebras gi is the sum of
root systems of the summands gi. In particular, the Dynkin diagram of ⊕ gi is a disjoint
union of Dynkin diagrams of gi’s.

(ii) A semisimple Lie algebra is simple iff its root system is irreducible, i.e., iff its Dynkin
diagram is connected.

Corollary. The semisimple Lie algebras over k = C are classified the same as root systems
or Dynkin diagrams.

Remarks. (0) Each root α ∈ ∆ encodes an sl2-subalgebra sα of g. The geometry of the
root system gives all information on how the sl2-subalgebras sα are related and how to
reconstruct g from these subalgebras.

10.2. Semisimple groups.

10.2.1. Groups to Lie algebras. In general, to a Lie group G one can associate its Lie
algebra g as the tangent space TeG at unity, then the commutator in g is the limit of
commutators in G. Group G acts on itself by conjugation, this preserves the neutral
element e and this in turn gives an action of G on g = TeG called the adjoint action.
This action preserves the Lie algebra structure so we get a homomorphism of groups
ad : G→ Aut(g) into the group Aut(g) ⊆ GL(g) of automorphisms of the Lie algebra g.

The Lie algebra records what is happening in the group G near the origin e. This turns
out to be sufficient (since G is generated by a neighborhood of e to control the connected
component G0 of G (this means that G0 is the connected component of G which contains
e, it is itself an open subgroup of G).

10.2.2. Lie algebras to groups. The reverse direction from g to G is in general more com-
plicated. However, for a semisimple Lie algebra g it is easy to find a group corresponding
to g.
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Theorem. The group Aut(g) ⊆ GL(g) of automorphisms of the Lie algebra has Lie algebra
g. �

Remarks. (0) The point of the theorem is that the semisimple Lie algebras are “maximally
non-commutative”, so the Lie algebra g itself is recorded in its adjoint action on the vector
space g. For this reason we can expect that a group associated to g will be recorded in
its action on the vector space g.

Proposition. (a) The smallest connected Lie group with the Lie algebra g is the connected
component AutLieAlg(g)0 of AutLieAlg(g). It is called the adjoint group associated to G
and sometimes it is denoted Gad.

(b) The largest connected group G with the Lie algebra g is the universal cover of Gad =
AutLieAlg(g)0. It is called the simply connected group associated to G and sometimes
denoted Gsc.

(c) The center Z(Gsc) of Gsc is finite (and it coincides with the fundamental group π1(Gad)
of the adjoint version). All connected groups G with the Lie algebra g correspond to all
subgroups Z of Z(Gsc), a subgroup Z gives the group Gsc/Z.

Remark. Each of connected groups G with Lie algebra g has Gad = AutLieAlg(g)0 as a
quotient, so G acts on g via this quotient map G→ Gad.

Example. For g = sln the simply connected group Gsc associated to g is SLn. The adjoint
group Gad is SLn/Z(SLn), it is isomorphic to GLn/Z(GLn) which is called the projective
general linear group and denoted PGLn.

10.3. Classification of finite dimensional representations of a semisimple Lie
algebra. A Cartan subalgebra h of a semisimple Lie algebra g gives the corresponding
root system ∆. Any root α ∈ ∆ gives a vector α̌ ∈ h.

We define the integral weights P⊆h∗ to consist of all λ ∈ h∗ such that 〈λ, ∆̌〉⊆ Z.

A choice of base Π of ∆ gives the dominant integral weights cone P+⊆P consisting of all
λ ∈ h∗ such that 〈λ, Π̌〉⊆ N.

10.3.1. Borel subalgebras and Verma modules. A choice of a system of positive roots
∆+⊆∆ give a Borel subalgebra

b = h⊕n for n = ⊕α∈∆+ fgα.

Then any α ∈ h∗ defines an g-module, the Verma module

M(λ)
def
= Ug⊗Ub kλ.

Here kλ denotes the 1-dimensional b-module on which h acts by λ and n by zero.

The base Π of ∆ corresponding to ∆+ defines Let us
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Theorem. (a) Any Verma module Mλ has a unique irreducible quotient Lλ.

(b) L(λ) is finite dimensional iff λ ∈ P+, i.e., iff λ is the the dominant integral cone.

(c) All irreducible finite dimensional representations are exactly all L(λ), λ ∈ P+.

Proof. We have proved this theorem for sln. In the general case most of the proof is
the same. The difference is in one direction in part (b), where we need to show that for
λ ∈ P+ the representation L(λ) is finite dimensional.

For sln we proved this by an explicit construction of L(λ) that starts with the fundamental
weights λ = ωi. This method does not extend well to the general case because we do not
understand the fundamental representations so well.

It is actually easier to construct irreducible finite dimensional representations of a semisim-
ple Lie algebra g using the associated group G (then to do it using the Lie algebra itself).
This approach is sketched in 10.4. �

10.4. The Borel-Weil-Bott construction of irreducible representations.

10.4.1. The flag variety B of a semisimple algebra. For a semisimple Lie algebra g let
G = Gsc be the simply connected group associated to G. Inside G one finds subgroups
B,H,N with Lie algebras b, h, n.(11)

The quotient B def
= G/B is called the flag variety of g.(12)

10.4.2. A character of the Cartan group H is a homomorphism χ : H → Gm = GL1.
The characters of H form a group denoted X∗(H).

The differential of a character χ at e ∈ H is a linear map deχ : TeH = h → TeGm = k,
so it is a linear functional deχ ∈ h∗ on h.

Lemma. Taking the differential gives an isomorphism of the character group X∗(H) and
the group of integral weights P⊆h∗. �

From now on we will identify any integral weight λ ∈ P with the corresponding character
of H which we will also denote λ.

The canonical map of Lie algebras b → h (zero on n) gives a canonical map of Lie groups
B → H (with kernel N). So for any λ ∈ P we get a 1-dimensional representation kλ of

B via B։H
λ−→Gm = Gl(k).

11 Say, B consists of all g ∈ G that preserve the subspace b of g and H consists of all g ∈ G that fix
each element of h. Then N is the unique subgroup of B complementary to H .

12 The letter B stands for “Borel”. The reason is that the flag variety B can be identified with the set
of all conjugates gb⊆g of the above Borel subalgebra b under elements g in G. All these conjugates are
called Borel subalgebras of g and the particular one b that we started with can be called the “standard”
Borel subalgebra.
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As in a construction of Verma modules we now induce this to a representation of G. The
“induction” is in this case slightly different and it is called coinduction. To a representation
kλ of the group B we associate G-equivariant line bundle Lλ over the flag variety G/B.
This is called the associated bundle

Lλ
def
= (G×Lλ)/B −→ (G×pt)/B = B.

Because G acts on the line bundle Lλ, it also acts on the space of global section of the
line bundle Lλ

CoindGB(Lλ)
def
= Γ(B,Lλ).

Theorem. (a) [Borel-Weil] When λ ∈ P+ then Γ(B,Lλ) is an irreducible finite dimensional
representation of G and therefore also of the Lie algebra g.

(b) As a representation of g the space Γ(B,Lλ) has highest weight λ.

Remarks. (0) This implies that Γ(B,Lλ) is the irreducible representation L(λ) which was
defined as the unique irreducible quotient of the Verma module M(λ).

(1) If λ is not dominant then Γ(B,Lλ) = 0.

(2) Bott’s contribution is the calculation of all cohomology groups of line bundles L(λ).
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11. Geometric Representation Theory

11.0.1. The nilpotent cone N in g. For a semisimple Lie algebra g, there is a geometric
object that encodes the Weyl group, this is the so called nilpotent cone N of g. It consists
of all elements of g which are nilpotent (i.e., ad-nilpotent.

N is a singular affine algebraic variety. The group G = Aut(g) of automorphisms of
the Lie algebra g preserves N . It has finitely many orbits in g, these are called the
nilpotent orbits. Each of these orbits has a canonical symplectic structure ωO which is
G-equivariant. One of these orbits Or (the regular orbit) is dense, so we can say that N
is “generically symplectic”.

As an illustration of the representation theoretic information of the nilpotent cone we
state

Theorem. [Springer] (a) To each nilpotent orbit O one can associate an irreducible rep-
resentation πO of the Weyl group W .

(b) For sln this is a bijection of G-orbits in N and Irr(W ).

Remarks. (0) For sln we have G = GLn/Gm
def
= PGLn. N is the variety of all nilpotent

operators on kn. Its equation is that χ(A) = det(T − A) is T n.

The nilpotent orbits of G in N are the same as the GLn orbits in nilpotent matrices,
so they are indexed by partitions λ of n, i.e., decompositions n = λ1 + · · · + λp with
λ1 ≥ λ2 ≥ · · · ≥ λp > 0. The corresponding orbit Oλ consists of nilpotent matrices with
Jordan blocks of lengths λi.

(1) For general W all irreducible representations π of W are attached to data (O,L) of a
nilpotent orbit O and an irreducible local system L on O.

Actually, this does not use all irreducible local system L on nilpotent orbits. The re-
maining irreducible local systems encode information of more complicated representation
theories (of Hecke algebras and finite groups of Lie type).

(2) The explicit construction of irreducible representations of W from nilpotent orbits

uses another geometric object, the symplectic resolution Ñ of N .

11.0.2. Symplectic resolution Ñ of N . There is a canonical “symplectic resolution” µ :

Ñ → N . Being a resolutionmeans that Ñ is smooth, map µ is generically an isomorphism

and µ is proper (i.e., its fibers are compact). Being a symplectic resolution means that Ñ
has a symplectic structure ω which generically coincides with the generically symplectic
structure on N .

Here, the meaning of “generic” is that µ is is an isomorphism above the regular nilpotent
orbit Or⊆N and then ω coincides with ωOr

above Or.
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Remark. Okounkov pointed out that each symplectic singularity (not only the nilpotent
cones of semisimple Lie algebras) gives rise to a representation theory. So, he calls sym-
plectic singularities the Lie algebras of 21⋆ century.

The representation theories associated to symplectic singularities give a huge generaliza-
tion of representation theories associated to semisimple Lie algebras which captures ideas
beyond representation theory itself. One of such developments is the Bezrukavnikov-
Okounkov program of reformulating representation theory in geometric terms of quantum
cohomology.

11.0.3. Geometric Representation Theory. The above phenomenon of a representation
theoretic information being encoded in singularities of algebraic varieties is a general
phenomenon “throughout” representation theory.

This observation is one aspect of what is now called Geometric Representation Theory.
This is a general method (containing a number of deep examples) that one studies repre-
sentation theoretic questions by encoding them into algebro geometric objects.

Example. One example is the Geometric Langlands program which is a modern approach
to Number Theory.

Example. Another is that in physics the Quantum Field Theories which can be well
understood are the ones with much symmetry (“super symmetry”) and all of these turn
out to be examples of Geometric Representation Theory.

11.1. “Higher” Representation Theory. In this text we were concerned with finite
dimensional representations of a semisimple Lie algebra G or its Lie algebra g.

In some sense this is the 0-dimensional part of representation theory. The basic way more
complicated representation theories occur is that one replaces the complex group G(C)
with the groups of maps Map(X,G) from some space X to G. (This is “d-dimensional
representation theory” for d = dim(M).) These appear in Number Theory, Geometry
and Physics.

Example. X could be the spectrum of a commutative ring A. Then Map(X,G) is essen-
tially the group G(A) of elements of G with values in ring A. (Think of G as a group of
matrices: G⊆GLn, then G(A) means matrices in G with entries in A.) This case covers
groups G(R), G(Fq), G(Qp) and the groups G

(
k((z))

)
called loop groups.

Example. The case when X is 1-dimensional (“a curve”) is paramount for number theory.
The relevant rings are the so called rigs of adeles.

Example. In physics the most interesting case is when X is a 4 dimensional real manifold.
The groups Map(X,G) are called gauge groups. When X is a circle S1 these are again
called loop groups.
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11.2. Loop Grassmannians.

11.3. Quivers.
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