Algebra 412, Exam 1.

\odot
Do any 4 of the following problems. Indicate on the cover which 4 problems you want graded.

As always, answers need to be clearly justified.
\odot
1.1. Let A be a commutative ring. We say that an ideal I is a prime ideal if whenever a product $u v$ is in I then at least one factor is in I.
(a) Prove that $\{0\}$ is a prime ideal in A iff A is an integral domain.
(b) Find all prime ideals in \mathbb{Z}.
1.2. Let R be a ring.
(a) Consider a family of subrings S_{k} of R indexed by elements k of some set K. Show that the intersection $\cap_{k \in K} S_{k}$ is again a subring.
(b) For any subset X of the ring R consider the family of all subrings S in R that contain X. We now know (by (a)), that the intersection of this family

$$
\langle X\rangle \stackrel{\text { def }}{=} \cap_{S \subseteq R} \text { is a subring that contains } X \quad S
$$

is a subring of R. Show that $\langle X\rangle$ is the smallest subring of R that contains the subset X. (We call $\langle X\rangle$ the subring generated by the subset X.)
\bigcirc
1.3. Prove that $\mathbb{Q}[i] \stackrel{\text { def }}{=} \mathbb{Q}+\mathbb{Q} i$ is a subfield of the field \mathbb{C} of complex numbers.
1.4. Prove that the ring $\mathbb{Q}[X] /\left(X^{2}+1\right)$ is isomorphic to $\mathbb{Q}[i] \stackrel{\text { def }}{=} \mathbb{Q}+\mathbb{Q} i$. (Use the evaluation function $\phi: \mathbb{Q}[X] \rightarrow \mathbb{C}$ given by $\phi(P)=P(i)$ for any polynomial $P \in \mathbb{Q}[X]$.)
1.5. Let I be an ideal in a ring R and denote by $q: R \rightarrow R / I$ the canonical quotient map

$$
q(r)=r+I, \quad r \in R
$$

We will find a bijection of the set \mathcal{J} of ideals in R that contain I and the set \mathcal{K} of all ideals in R / I.
(a) Let J be an ideal in R which contains I, i.e., $J \supseteq I$. Prove that the quotient group J / I is an ideal in the quotient ring $R / I .^{(1)}$
(b) For any subset K of R / I, we define its "pull back to R " to be the subset \widetilde{K} of R consisting of all $r \in R$ which are sent to K by the map q :

$$
\widetilde{K} \stackrel{\text { def }}{=}\{r \in R ; q(R) \in K\}=\{r \in R ; r+I \in K\} \subseteq R .
$$

Prove that if $K \subseteq R / I$ is an ideal in R / I then its pull back \widetilde{K} is an ideal in R and it contains I.
(c) Notice that observations (a) and (b) define two procedures of passing between \mathcal{J} and \mathcal{K}, i.e., two functions
(1) $\mathcal{A}: \mathcal{J} \rightarrow \mathcal{K}$ by $\mathcal{A}(J)=J / I$, and
(2) $\mathcal{B}: \mathcal{K} \rightarrow \mathcal{J}$ by $\mathcal{B}(K)=\widetilde{K}$.

Prove that these two functions are inverse to each other.
1.6. Let A be a commutative ring. We say that A is a principal ideal domain if every ideal in A is principal, i.e., of the form $(a) \stackrel{\text { def }}{=} a A$ for some $a \in A$.
Prove that if F is a field then the ring of polynomials $F[X]$ is a principal ideal domain. (Use the division of polynomials.)

[^0]
[^0]: ${ }^{1}$ Here $J / I \subseteq R / I$ consists of all cosets in R / I with representative in J :

 $$
 J / I \stackrel{\text { def }}{=}\{j+I ; j \in J\}
 $$

