Algebra 412, Homework 8 The same as the Second Sample Exam

Due Thursday April $17^{\text {th }}$ at the exam

As always, answers need to be clearly justified.

The exam covers
(1) Extensions of fields that one gets from irreducible polynomials. [See section 20 in the book and in the notes this is chapter 7. Construction of Field Extensions from polynomials.]
(2) Prime ideals, maximal ideals, irreducible elements of a commutative ring, prime elements of a commutative ring. [This is section 21 in the book.]

Notice: The book covers more material than what we have covered.
8.1. Maximal and prime ideals in polynomials $\mathbb{F}[X]$ over a field F. We say that a polynomial $P \in F[X]$ is monic if its leading coefficient is 1 . We say that a polynomial $P \in F[X]$ is irreducible if $\operatorname{deg}(P)>0$ and P can not be written as a product $P=U V$ with $U, V \in F[X]$ and the degrees $\operatorname{deg}(U), \operatorname{deg}(V)$ both strictly lesser than $\operatorname{deg}(P)$. Prove that
(a) In $F[X]$ any ideal I is either $\{0\}$ or it is of the form $(P)=P F[X]$ for a unique monic polynomial P.
(b) For a monic polynomial P, the following is equivalent:
(1) Ideal (P) in $F[X]$ is prime.
(2) Ideal (P) in $F[X]$ is maximal.
(3) Polynomial P is irreducible,

8.2. Prove that

(a) Maximal ideals I in $F[X]$ are exactly the ideals of the form $I=(P)$ with P an irreducible monic polynomial.
(b) An ideal I in $F[X]$ is prime if and only if $I=\{0\}$ or I is of the form $I=(P)$ with P an irreducible monic polynomial.
(c) For a monic polynomial P, the ring $A=F[X] /(P)$ is a field iff P is irreducible.
8.3. For an element a of a commutative ring A prove that a is a prime in A iff the principal ideal (a) is a prime ideal in A.

$$
\circ
$$

8.4. Show that for a field \mathbb{k},

- (a) a quadratic polynomial $P \in \mathbb{k}[X]$ is irreducible iff P has no zeros in F.
- a cubic polynomial $Q \in \mathbb{k}[X]$ is irreducible iff Q has no zeros in F.

Problems from the book:

8.5. Problem 20.1.

8.6. Problem 20.2. Notice that the book uses a shorthand "domain" for "integral domain".

8.7. Problem 20.3.

8.8. Problem 20.6. Let F be a field and let $P \in F[X]$ be an irreducible polynomial. Then we know that $F[X] /(P)$ is a field and there is a natural injective map of rings

$$
\phi: F \rightarrow F[X] /(P) \text { by } \phi(a)=\bar{a} \stackrel{\text { def }}{=} a+(P)
$$

for $a \in F$.
Let K be the field obtained from $F[X] /(P)$ by replacing for each $a \in F$ the element $\phi(a)=\bar{a}$ in $F[X] /(P)$ by a. So, K is an extension of F and K is naturally isomorphic to $F[X] /(P)$.
(a) If the degree of P is n, prove that any element $\alpha \in K$ has a unique representation of the form

$$
\alpha=a_{0}+a_{1} \bar{X}+\cdots+a_{n-1} \bar{X}^{n-1}
$$

with a_{0}, \ldots, a_{n-1} in F.
(b) Show that if F is a finite field with q elements then K has q^{n} elements.

8.9. Problem 20.7.

