Algebra 412, Homework 7

Due Wednesday April $11^{\text {th }}$ in class

As always, answers need to be clearly justified.
ρ

Irreducible elements, factorizations and prime elements

This is about how the ideas of prime integers and factorization into prime integers extend to general integral domain rings.
\bigcirc
An element a of an integral domain A is said to be irreducible if

- $a \neq 0$ and a is not invertible, and (ii) a is not a product of two non-invertible elements, i.e., $a=b c$ implies that at least one of factors is invertible.

An element a of a commutative ring A is said to be a prime if

- $a \neq 0$ and a is not invertible, and (ii) if p divides a product $a b$ the p divides one of factors a or b.
7.1. Recall the subring $A=\mathbb{Z}+\mathbb{Z} i \sqrt{5}$ of \mathbb{C} and the automorphism $f: A \rightarrow A$ of the ring A defined by $f(a+i \sqrt{5} b)=a-i \sqrt{5} b$ for $a, b \in \mathbb{Z}$. We also know that the norm function $\nu: A \rightarrow \mathbb{Z}$ defined by $\nu(\alpha)=\alpha \cdot f(\alpha)$ satisfies the following properties
- (i) $\nu(\alpha \cdot \beta)=\nu(\alpha) \cdot \nu(\beta) \quad$ for any $\alpha, \beta \in A$;
- (ii) $\nu(\alpha) \geq 0 \quad$ for any $\alpha \in A$;
- (iii) $\nu(1)=1$.
(a) Show that $\alpha \in A$ is invertible iff $\nu(\alpha)=1$. List all invertible elements of A.
(b) Prove that 3 is an irreducible element of A.
\odot
7.2. Consider the ring $A=\mathbb{Z}[\sqrt{5} i]$ from the preceding problem.
(a) Prove that A is a factorization domain in the sense that any element of A which is not 0 nor invertible factors into a product of irreducible elements.
(b) Prove that $\alpha=2+i \sqrt{5}$ and $\beta=2-i \sqrt{5}$ are irreducible elements of A.
(c) Explain why A is not a unique factorization domain. In other words, show that there is an element of A that has two non-equivalent factorizations into a product of irreducible elements. [Hint: Use the irreducible elements of A that you already know.]

Here two factorizations $a=p_{1} \cdots p_{n}=q_{1} \cdots q_{m}$ into irreducible factors p_{i} and q_{j} are said to be equivalent if $m=n$ and (after possibly reordering q_{j} 's), p_{i}, q_{i} only differ by invertible elements in the sense that $p_{i}=u_{i} q_{i}$ for $i=1, \ldots, n$ with u_{i} invertible.
7.3. (a) Let A be an integral domain. Prove that any prime element in A is irreducible.
(b) Give an example of an integral domain A an an element a in A which is irreducible but it is not prime.

[^0]7.4. Show that the following ideals are maximal:
(1) $\left(X^{2}-11\right)$ in $\mathbb{Q}[X]$.
(2) $\left(X^{2}+1\right)$ in $\mathbb{R}[X]$.

Non-principal ideals

7.5. Consider the ring $\mathbb{R}[X, Y]$ of polynomials in two variables X, Y over the field \mathbb{R} of real numbers. ${ }^{(1)}$ Let I be the subset of $\mathbb{R}[X, Y]$ consisting of all polynomials P such that $P(0,0)=0$.
(a) Show that I is an ideal in $\mathbb{R}[X, Y]$.
(b) Show that I is not a principal ideal.

[^1]
[^0]: \odot

[^1]: ${ }^{1}$ A polynomial A in X and Y is a finite linear combination of monomials $X^{i} Y^{j}$, i.e.,

 $$
 A=a_{0,0}+a_{1,0} X+a_{0,1} Y+a_{2,0} X^{2}+a_{1,1} X Y+a_{0,1} Y^{2}+\cdots
 $$

 We can write it simply as a sum with two indices $A=\sum_{i, j \geq 0} a_{i, j} X^{i} Y^{j}$ and we should keep in mind that all but finitely many coefficients $a_{i, j} \in \mathbb{R}$ are zero, so that the sum is actually finite. Also, in order to remember that A is a polynomial of variables X and Y we sometimes denote it as $A(X, Y)$.

