Algebra 412, Homework 7

 \Diamond

Due Wednesday April 11th in class

As always, answers need to be clearly justified.

 \Diamond

Irreducible elements, factorizations and prime elements

This is about how the ideas of *prime integers* and *factorization into prime integers* extend to general integral domain rings.

 \Diamond

An element a of an integral domain A is said to be *irreducible* if

• $a \neq 0$ and a is not invertible, and (ii) a is not a product of two non-invertible elements, i.e., a = bc implies that at least one of factors is invertible.

An element a of a commutative ring A is said to be a *prime* if

• $a \neq 0$ and a is not invertible, and (ii) if p divides a product ab the p divides one of factors a or b.

 \Diamond

7.1. Recall the subring $A = \mathbb{Z} + \mathbb{Z}i\sqrt{5}$ of \mathbb{C} and the automorphism $f: A \to A$ of the ring A defined by $f(a+i\sqrt{5}b) = a-i\sqrt{5}b$ for $a,b\in\mathbb{Z}$. We also know that the *norm* function $\nu: A \to \mathbb{Z}$ defined by $\nu(\alpha) = \alpha \cdot f(\alpha)$ satisfies the following properties

- (i) $\nu(\alpha \cdot \beta) = \nu(\alpha) \cdot \nu(\beta)$ for any $\alpha, \beta \in A$;
- (ii) $\nu(\alpha) \ge 0$ for any $\alpha \in A$;
- (iii) $\nu(1) = 1$.
- (a) Show that $\alpha \in A$ is invertible iff $\nu(\alpha) = 1$. List all invertible elements of A.
- (b) Prove that 3 is an irreducible element of A.

က

7.2. Consider the ring $A = \mathbb{Z}[\sqrt{5}i]$ from the preceding problem.

- (a) Prove that A is a factorization domain in the sense that any element of A which is not 0 nor invertible factors into a product of irreducible elements.
- (b) Prove that $\alpha = 2 + i\sqrt{5}$ and $\beta = 2 i\sqrt{5}$ are irreducible elements of A.

(c) Explain why A is not a unique factorization domain. In other words, show that there is an element of A that has two non-equivalent factorizations into a product of irreducible elements. [Hint: Use the irreducible elements of A that you already know.]

Here two factorizations $a = p_1 \cdots p_n = q_1 \cdots q_m$ into irreducible factors p_i and q_j are said to be *equivalent* if m = n and (after possibly reordering q_j 's), p_i , q_i only differ by invertible elements in the sense that $p_i = u_i q_i$ for i = 1, ..., n with u_i invertible.

 \Diamond

- **7.3.** (a) Let A be an integral domain. Prove that any prime element in A is irreducible.
- (b) Give an example of an integral domain A an an element a in A which is irreducible but it is not prime.

 \Diamond

- **7.4.** Show that the following ideals are maximal:
 - (1) $(X^2 11)$ in $\mathbb{Q}[X]$.
 - (2) $(X^2 + 1)$ in $\mathbb{R}[X]$.

Non-principal ideals

- **7.5.** Consider the ring $\mathbb{R}[X,Y]$ of polynomials in two variables X,Y over the field \mathbb{R} of real numbers.⁽¹⁾ Let I be the subset of $\mathbb{R}[X,Y]$ consisting of all polynomials P such that P(0,0)=0.
- (a) Show that I is an ideal in $\mathbb{R}[X, Y]$.
- (b) Show that I is not a principal ideal.

$$A = a_{0.0} + a_{1.0}X + a_{0.1}Y + a_{2.0}X^2 + a_{1.1}XY + a_{0.1}Y^2 + \cdots$$

We can write it simply as a sum with two indices $A = \sum_{i,j \geq 0} a_{i,j} X^i Y^j$ and we should keep in mind that all but finitely many coefficients $a_{i,j} \in \mathbb{R}$ are zero, so that the sum is actually finite. Also, in order to remember that A is a polynomial of variables X and Y we sometimes denote it as A(X,Y).

¹A polynomial A in X and Y is a finite linear combination of monomials $X^{i}Y^{j}$, i.e.,