Algebra 412, Homework 5 (also the 1st Sample Exam)

 \Diamond

Due at the time of the exam.

As always, answers need to be justified.

 \Diamond

An ideal I in a ring R is said to be *proper* if I is not the whole ring: $I \neq A$. An ideal I in a ring R is said to be *maximal* if it is proper and the only ideals J between I and R are the obvious ones: I and R. In other words if $I \subseteq J \subseteq R$ implies J = I or J = R.

- **5.1.** (a) Let A be a commutative ring, Prove that $\{0\}$ is a maximal ideal in A iff A is a field.
- (b) Find all maximal ideals in \mathbb{Z} .
- **5.2.** Let S be a polynomial over a field k with $\deg(S) > 0$. Consider the quotient ring A = k[x]/(S) where, we denote by (A) the corresponding principal ideal $(S) = S \cdot k[x]$.
 - (1) (a) Let $P_1, P_2 \in \mathbb{k}[x]$ be two polynomials and denote by R_1, R_2 the remainders of dividing P_1, P_2 by S. Show that in $\mathbb{k}[x]/(S)$ the two cosets of P_1 and P_2 are the same if and only if the remainders are the same:

$$P_1 + (S) = P_2 + (S) \quad \Leftrightarrow \quad R_1 = R_2.$$

- (b) Let $\mathcal{R} \subseteq \mathbb{k}[X]$ be the subset consisting of all polynomials P such that $\deg(P) < \deg(S)$. Show that the function $\phi : \mathcal{R} \to \mathbb{k}[x]/(S)$ is a bijection.
- **5.3.** Over the field $F = \mathbb{Z}_2$ consider the polynomial $P = X^2 + X + 1$ and let $\mathcal{A} = F[X]/(P)$.
 - (1) Show that P has no roots in F. [A "root of P" means the same as "solution of P=0" and "zero of P"]
 - (2) Show that the following function is a bijection:P

$$f: F^2 \to \mathcal{A}, f(a,b) = a + bX + (P).$$

- (3) Show that \mathcal{A} has no zero divisors.
- (4) Show that \mathcal{A} is a finite field with 4 elements.

5.4. Let R be a ring.

(a) Consider a family of ideals I_k in R indexed by elements k of some set K. Show that the intersection $\cap_{k \in K} I_k$ is again an ideal.

(b) For any subset S of the ring R consider the family of all ideals I in R that contain S. We now know that the intersection of this family

$$\widetilde{S} \stackrel{\text{def}}{=} \cap_{I \supseteq S} I$$

is an ideal. Show that this is the smallest ideal that contains the subset S. (We call \widetilde{S} the *ideal generated by* S.)

(c) For any two ideals I, J in R, the subset

$$I + J \stackrel{\text{def}}{=} \{x + y; \ x \in I \text{ and } y \in J\} \subseteq R;$$

is an ideal in R.

5.5. Consider the subring \mathbb{Z} of the ring \mathbb{C} of complex numbers.

(a) Show that $A = \mathbb{Z} + \mathbb{Z}i\sqrt{5}$ is a subring of \mathbb{C} .

(b) Show that the function $f:A\to A$ defined by $f(a+i\sqrt{5}b)=a-i\sqrt{5}b$ is an automorphism of the ring A.

(c) Show that the function $\nu:A\to\mathbb{Z}$ defined by $\nu(\alpha)=\alpha\cdot f(\alpha)$ has the following properties:

- (i) $\nu(\alpha \cdot \beta) = \nu(\alpha) \cdot \nu(\beta)$ for any $\alpha, \beta \in A$;
- $\nu(\alpha) \ge 0$ for any $\alpha \in A$;
- $\nu(1) = 1$.