Algebra 412, Homework 5 (also the 1st Sample Exam)

Due at the time of the exam.

As always, answers need to be justified.
\bigcirc
An ideal I in a ring R is said to be proper if I is not the whole ring: $I \neq A$. An ideal I in a ring R is said to be maximal if it is proper and the only ideals J between I and R are the obvious ones: I and R. In other words if $I \subseteq J \subseteq R$ implies $J=I$ or $J=R$.
5.1. (a) Let A be a commutative ring, Prove that $\{0\}$ is a maximal ideal in A iff A is a field.
(b) Find all maximal ideals in \mathbb{Z}.
5.2. Let S be a polynomial over a field \mathbb{k} with $\operatorname{deg}(S)>0$. Consider the quotient ring $A=\mathbb{k}[x] /(S)$ where, we denote by (A) the corresponding principal ideal $(S)=S \cdot \mathbb{k}[x]$.
(1) (a) Let $P_{1}, P_{2} \in \mathbb{k}[x]$ be two polynomials and denote by R_{1}, R_{2} the remainders of dividing P_{1}, P_{2} by S. Show that in $\mathbb{k}[x] /(S)$ the two cosets of P_{1} and P_{2} are the same if and only if the remainders are the same:

$$
P_{1}+(S)=P_{2}+(S) \quad \Leftrightarrow \quad R_{1}=R_{2} .
$$

(b) Let $\mathcal{R} \subseteq \mathbb{k}[X]$ be the subset consisting of all polynomials P such that $\operatorname{deg}(P)<$ $\operatorname{deg}(S)$. Show that the function $\phi: \mathcal{R} \rightarrow \mathbb{k}[x] /(S)$ is a bijection.
5.3. Over the field $F=\mathbb{Z}_{2}$ consider the polynomial $P=X^{2}+X+1$ and let $\mathcal{A}=$ $F[X] /(P)$.
(1) Show that P has no roots in F. [A "root of P " means the same as "solution of $P=0$ " and "zero of P "]
(2) Show that the following function is a bijection: P

$$
f: F^{2} \rightarrow \mathcal{A}, \quad f(a, b)=a+b X+(P)
$$

(3) Show that \mathcal{A} has no zero divisors.
(4) Show that \mathcal{A} is a finite field with 4 elements.
5.4. Let R be a ring.
(a) Consider a family of ideals I_{k} in R indexed by elements k of some set K. Show that the intersection $\cap_{k \in K} I_{k}$ is again an ideal.
(b) For any subset S of the ring R consider the family of all ideals I in R that contain S. We now know that the intersection of this family

$$
\widetilde{S} \stackrel{\text { def }}{=} \cap_{I \supseteq S} I
$$

is an ideal. Show that this is the smallest ideal that contains the subset S. (We call \widetilde{S} the ideal generated by S.)
(c) For any two ideals I, J in R, the subset

$$
I+J \stackrel{\text { def }}{=}\{x+y ; x \in I \quad \text { and } \quad y \in J\} \subseteq R ;
$$

is an ideal in R.
5.5. Consider the subring \mathbb{Z} of the ring \mathbb{C} of complex numbers.
(a) Show that $A=\mathbb{Z}+\mathbb{Z} i \sqrt{5}$ is a subring of \mathbb{C}.
(b) Show that the function $f: A \rightarrow A$ defined by $f(a+i \sqrt{5} b)=a-i \sqrt{5} b$ is an automorphism of the ring A.
(c) Show that the function $\nu: A \rightarrow \mathbb{Z}$ defined by $\nu(\alpha)=\alpha \cdot f(\alpha)$ has the following properties:

- (i) $\nu(\alpha \cdot \beta)=\nu(\alpha) \cdot \nu(\beta)$ for any $\alpha, \beta \in A$;
- $\nu(\alpha) \geq 0 \quad$ for any $\alpha \in A$;
- $\nu(1)=1$.

