Algebra 411.2, Homework 4

> \odot
> All answers should be justified.
> \odot
> Due Wednesday February 28, in class.

\bigcirc
4.1. Prove that

- (a) If A is a commutative ring then for any $a \in A$ the subset

$$
(a)=a A \stackrel{\text { def }}{=}\{a x ; x \in A\}
$$

is an ideal in A.
(One says that (a) is the ideal generated by a. Such ideals, i.e., ideals which are generated by one element, are called principal ideals.)

- (b) The ring $A=\mathbb{R}[X] /\left(X^{2}+1\right)$ is isomorphic to \mathbb{C}.
[Hint: One starts with a map $\phi: \mathbb{R}[X] \rightarrow \mathbb{C}, \phi(P)=P(i)$; and shows that (i) it is a homomorphism, (ii) $\operatorname{Im}(\phi)=\mathbb{C}$ and $\operatorname{Ker}(\phi)=\left(X^{2}+1\right)$.]
4.2. Recall that $\mathbb{Q}[\sqrt{2}]$ is a subring of \mathbb{R} which consists of all sums $a+b \sqrt{2}$ with $a, b \in \mathbb{Q}$. Prove that
- (a) $\mathbb{Q}[\sqrt{2}]$ is a subfield of \mathbb{R}.
- (b) Ring $A=\mathbb{Q}[X] /\left(X^{2}-2\right)$ is isomorphic to $\mathbb{Q}[\sqrt{2}]$.
[Hint. This is similar to the preceding problem. One starts with the evaluation $\operatorname{map} \phi: \mathbb{Q}[X] \rightarrow \mathbb{R}, \phi(P)=P(\sqrt{2})$ and shows that $\ldots]$
4.3. Over the ring $F=\mathbb{Z}_{3}$ consider the polynomial $P=X^{2}+1$,
(1) Show that P has no roots in F.
(2) In $F[X]$ consider the principal ideal $I=\left(X^{2}+1\right)$. How many elements does the ring $A=F[X] /\left(X^{2}+1\right)$ posses? Show that the function

$$
f: F^{2} \rightarrow A, f(a, b)=(a+b X)+I
$$

is a bijection.
(3) Show that A is an integral domain, i.e., if $a+b X+I \neq 0_{A}$ and $\alpha+\beta X+I \neq 0_{A}$, then $(a+b X+I) \cdot(\alpha+\beta X+I) \neq 0_{A}$. ${ }^{(1)}$
(4) Show that A is a finite field with 9 elements.
[Hint: This problem uses division of polynomials!]
4.4. Let I and J are ideals in a ring R such that $I \subseteq J$. Prove that

- (a) The function

$$
q: R / I \rightarrow R / J, q(r+I) \stackrel{\text { def }}{=} r+J
$$

is well defined,

- (b) q a homomorphism of rings,
- (c) q is surjective.
- (d) The kernel of q is $J / I \stackrel{\text { def }}{=}\{r+I \in R / I ; r \in J\}$.

[^0]4.5. Let $R \supseteq J \supseteq I$ be a ring with two ideals as in the preceding problem.

- (a) ["Cancellation isomorphism."] J / I is an ideal in R / I and the quotient

$$
(R / I) /(J / I)
$$

is isomorphic to R / J.

- (b) Prove that for any integers a, b

$$
(\mathbb{Z} / a b \mathbb{Z}) /(a \mathbb{Z} / a b \mathbb{Z}) \cong \mathbb{Z} / a \mathbb{Z}
$$

- (c) Prove that the ring \mathbb{Z}_{28} has an ideal I with 7 elements, such that \mathbb{Z}_{28} / I is isomorphic to \mathbb{Z}_{4}.
4.6. Prove that that the following equations have no solutions in \mathbb{Z}.
- (a) $X^{4}+X^{3}+X^{2}+X+1=0$.
- (b) $X^{3}+10 X^{2}+6 X+1=0$.

[^0]: ${ }^{1}$ One possible strategy is the following: First discuss the case when $b=0$ (easy!). Once you check the claim in this case you will know that it is also true in the case $d=0$. It remains to consider the case when $b \neq 0$ and $d \neq 0$, here you can factor out b and d and reduce to the case when $b=d=1$. Finally, the case when $b=1=d$, will use part (1).

