Algebra 412

ρ

Homework 3

\circ
Due Wednseday Feb 14, in class.
\odot

Read: section 18 in the book.
\odot
3.1. (a) [Product of rings is related to its factors.] For rings S_{1} and S_{2} consider the maps

$$
S_{1} \xrightarrow{i_{1}} S_{1} \times S_{2} \stackrel{i_{2}}{\leftarrow} S_{2}, \quad i_{1}(u) \stackrel{\text { def }}{=}\left(u, 0_{S_{2}}\right) \quad \text { and } \quad i_{2}(v) \stackrel{\text { def }}{=}\left(0_{S_{1}}, v\right)
$$

and

$$
S_{1} \stackrel{p_{1}}{\leftrightarrows} S_{1} \times S_{2} \xrightarrow{p_{2}} S_{2}, \quad p_{1}(u, v) \stackrel{\text { def }}{=} u \quad \text { and } \quad p_{2}(u, v) \stackrel{\text { def }}{=} v .
$$

Show that
(1) p_{1}, p_{2} are morphisms of rings.
(2) i_{1}, i_{2} are "morphisms of rings without unity", i.e., they preserve addition and mutilpication but they do not preserve units.
(b) [Map into a product is the same as a pair of maps into factors.] Show that for any ring R the map

$$
\iota: \operatorname{Hom}\left(R, S_{1} \times S_{2}\right) \rightarrow \operatorname{Hom}\left(R, S_{1}\right) \times \operatorname{Hom}\left(R, S_{2}\right), \quad \iota(f) \stackrel{\text { def }}{=}\left(p_{1} \circ f, p_{2} \circ f\right) ;
$$

is well defined and it is a bijection.
3.2. Let m, n be positive integers. Show that
(a) There is precisely one homorphism of rings

$$
\phi: \mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}
$$

(b) If m, n are relatively prime then ϕ is an isomorphism.
(c) If m, n are not relatively prime then the rings $\mathbb{Z}_{m n}$ and $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ are not isomorphic.
[Hint: A homomorphism of rings is in particular a homomorphism of additive groups. The part when you only consider the morphisms of abelian groups should be familiar from 411.]
3.3. Show that in the following pairs, the two rings are not isomorphic
(1) \mathbb{R} and \mathbb{C}.
(2) \mathbb{Z} and \mathbb{R}.
(3) $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and \mathbb{Z}_{8}.
3.4. Show that for rings R and S
(1) If $I \subseteq R$ and $J \subseteq S$ are ideals show that $I \times J=\{(x, y) ; x \in I$ and $y \in J\}$ is an ideal in $R \times S$.
(2) Any ideal K in $R \times S$ is equal to $I \times J$ for some ideals $I \subseteq R$ and $J \subseteq S$.

