Algebra 412

 \heartsuit

Homework 3

 \heartsuit

Due Wednseday Feb 14, in class.

 \heartsuit

Read: section 18 in the book.

 \heartsuit

3.1. (a) [Product of rings is related to its factors.] For rings S_1 and S_2 consider the maps

$$S_1 \xrightarrow{i_1} S_1 \times S_2 \xleftarrow{i_2} S_2, \quad i_1(u) \stackrel{\text{def}}{=} (u, 0_{S_2}) \quad \text{and} \quad i_2(v) \stackrel{\text{def}}{=} (0_{S_1}, v)$$

and

$$S_1 \xleftarrow{p_1} S_1 \times S_2 \xrightarrow{p_2} S_2$$
, $p_1(u, v) \stackrel{\text{def}}{=} u$ and $p_2(u, v) \stackrel{\text{def}}{=} v$.

Show that

- (1) p_1, p_2 are morphisms of rings. (2) i_1, i_2 are "morphisms of rings without unity", i.e., they preserve addition and mutilpication but they do not preserve units.

(b) [Map into a product is the same as a pair of maps into factors.] Show that for any ring R the map

 $\iota: \operatorname{Hom}(R, S_1 \times S_2) \to \operatorname{Hom}(R, S_1) \times \operatorname{Hom}(R, S_2), \quad \iota(f) \stackrel{\text{def}}{=} (p_1 \circ f, p_2 \circ f);$

is well defined and it is a bijection.

3.2. Let m, n be positive integers. Show that

(a) There is precisely one homorphism of rings

$$\phi: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n.$$

- (b) If m, n are relatively prime then ϕ is an isomorphism.
- (c) If m, n are not relatively prime then the rings \mathbb{Z}_{mn} and $\mathbb{Z}_m \times \mathbb{Z}_n$ are not isomorphic.

[Hint: A homomorphism of rings is in particular a homomorphism of additive groups. The part when you only consider the morphisms of abelian groups should be familiar from 411.]

3.3. Show that in the following pairs, the two rings are not isomorphic

- (1) \mathbb{R} and \mathbb{C} .
- (2) \mathbb{Z} and \mathbb{R} .
- (3) $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ and \mathbb{Z}_8 .

3.4. Show that for rings R and S

- (1) If $I \subseteq R$ and $J \subseteq S$ are ideals show that $I \times J = \{(x, y); x \in I \text{ and } y \in J\}$ is an ideal in $R \times S$.
- (2) Any ideal K in $R \times S$ is equal to $I \times J$ for some ideals $I \subseteq R$ and $J \subseteq S$.