Algebra 412, Homework 2

Due Wednesday Feb 7, in class.

Reading assignment. Read sections 16 and 17 in the book and the Chapter 1 in notes.
2.1. A subset I of a ring R is said to be an ideal if
(1) it is a subgroup of $(R,+)$ (i.e., it is nonempty and if $x, y \in I$ then $x-y \in I$), and (2) it is closed under multiplication with elements of R, i.e.,

$$
x \in I \text { and } a \in R \Rightarrow a x, x a \in I .
$$

(a) Prove that the set of cosets $R / I=\{r+I ; r \in R\}$ is then a ring for the operations

$$
(a+I)+_{R / I}(b+I) \stackrel{\text { def }}{=}(a+b)+I \quad \text { and } \quad(a+I) \cdot \cdot_{R / I}(b+I) \stackrel{\text { def }}{=} a b+I
$$

(b) When $R=\mathbb{Z}$ show that for any $n \in \mathbb{Z}, I=n \mathbb{Z}$ is an ideal in \mathbb{Z}.
(c) Let n be a positive integer and denote $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$. Show that the function

$$
\iota: \mathbb{Z}_{n} \rightarrow \mathbb{Z} / n \mathbb{Z}, \quad i o(x)=x+n \mathbb{Z}
$$

is an ismorphism of rings.
(d) Write addition and multiplication tables for \mathbb{Z}_{2}.

Quaternions. Recall that $\mathbb{H} \xlongequal{\text { def }} \operatorname{span}_{\mathbb{R}}\{1, I, J, K\}=\{a 1+b I+c J+d K ; a, b, c, d \in \mathbb{R}\}$ is a subring of $M_{2}(\mathbb{C})$.
2.2. (a) The centralizer of a subset A of a ring R is the set $Z_{R}(A)$ consisting of all $r \in R$ which commute with all elements of A :

$$
(\forall a \in A) \quad a r=r a .
$$

Show that for any subset $A \subseteq R$, its centralizer $Z_{R}(A)$ is a subring.
(b) The center of a ring R is the subset $Z(R)$ consisting of all $a \in R$ which commute with all elements of R. Show that the center $Z(R)$ is a subring.
(c) For the ring \mathbb{H} of quaternions determine the center $Z(\mathbb{H})$ and the centralizer $Z_{I}(\mathbb{H})$ of the element I of \mathbb{H}.
2.3. (Vector spaces.) (a) Write the definition of " V is a vector space over \mathbb{R} ".
(b) Write the definition of a basis of a vector space V over \mathbb{R}.
(c) Show that the multiplication of elements of \mathbb{H} by elements of \mathbb{R}

$$
r \cdot(a 1+b I+c J+d K) \stackrel{\text { def }}{=}(r a) 1+(r b) I+(r c) J+(r d) K \text { for } a, b, c, d, r \in \mathbb{R}
$$

makes \mathbb{H} into a vector space.
(d) Show that $1, I, J, K$ is a basis of the vector space \mathbb{H} over \mathbb{R}.
[Hint: if you do not remember (a) and (b) from Linear Algebra, look for the definition in the book.]
2.4. Denote by $\mathbb{H} \ni x \mapsto \bar{x} \in \mathbb{H}$ the function that sends $x=a 1+b I+c J+d K$ to $\bar{x}=a 1-b I-c J-d K$. This operation is called conjugation of quaternions.
(a) Show that conjugation is an antihomomorphism of rings, i.e., that

$$
\overline{x+y}=\bar{x}+\bar{y} \quad \text { and } \quad \overline{x \cdot y}=\bar{y} \cdot \bar{x} \text { for } x, y \in \mathbb{H} .
$$

(b) Show that conjugation is an involution, i.e., that $\overline{\bar{x}}=x$.
(c) Define the norm of $x=a 1+b I+c J+d K \in \mathbb{H}$ to be

$$
|x| \stackrel{\text { def }}{=} \sqrt{a^{2}+b^{2}+c^{2}+d^{2}} \in \mathbb{R}_{\geq 0} .
$$

Show that
(1) $x \cdot \bar{x}=\bar{x} \cdot x=|x|^{2} \cdot 1$.
(2) $|x \cdot y|=|x| \cdot|y|, \quad x, y \in \mathbb{H}$.
(3) If $x \in \mathbb{H}$ is not zero, then the quaternion $\frac{1}{|x|^{2}} \cdot \bar{x}$ is the inverse of x. (So, $\mathbb{H}^{*}=$ $\mathbb{H}-\{0\}$.
[Hint: It is preferable to prove (3) using (1) then by computing with the formula $x=$ $a 1+b I+c J+d K$, since you will otherwise need to duplicate the work you did for (1).]

