Algebra 412, Homework 2

Due Wednesday Feb 7, in class.

 \heartsuit

Reading assignment. Read sections 16 and 17 in the book and the Chapter 1 in notes.

 \heartsuit

2.1. A subset I of a ring R is said to be an *ideal* if

- (1) it is a subgroup of (R, +) (i.e., it is nonempty and if $x, y \in I$ then $x y \in I$), and
- (2) it is closed under multiplication with elements of R, i.e.,

$$x \in I \text{ and } a \in R \Rightarrow ax, xa \in I.$$

(a) Prove that the set of cosets $R/I = \{r + I; r \in R\}$ is then a ring for the operations

$$(a+I) +_{R/I} (b+I) \stackrel{\text{def}}{=} (a+b) + I \text{ and } (a+I) \cdot_{R/I} (b+I) \stackrel{\text{def}}{=} ab + I$$

- (b) When $R = \mathbb{Z}$ show that for any $n \in \mathbb{Z}$, $I = n\mathbb{Z}$ is an ideal in \mathbb{Z} .
- (c) Let n be a positive integer and denote $\mathbb{Z}_n = \{0, 1, ..., n-1\}$. Show that the function

$$\iota: \mathbb{Z}_n \to \mathbb{Z}/n\mathbb{Z}, \quad io(x) = x + n\mathbb{Z},$$

is an ismorphism of rings.

(d) Write addition and multiplication tables for \mathbb{Z}_2 .

Quaternions. Recall that $\mathbb{H} \stackrel{\text{def}}{=} span_{\mathbb{R}}\{1, I, J, K\} = \{a1 + bI + cJ + dK; a, b, c, d \in \mathbb{R}\}$ is a subring of $M_2(\mathbb{C})$.

2.2. (a) The *centralizer* of a subset A of a ring R is the set $Z_R(A)$ consisting of all $r \in R$ which commute with all elements of A :

$$(\forall a \in A) \ ar = ra.$$

Show that for any subset $A \subseteq R$, its centralizer $Z_R(A)$ is a subring.

(b) The center of a ring R is the subset Z(R) consisting of all $a \in R$ which commute with all elements of R. Show that the center Z(R) is a subring.

(c) For the ring \mathbb{H} of quaternions determine the center $Z(\mathbb{H})$ and the centralizer $Z_I(\mathbb{H})$ of the element I of \mathbb{H} .

- **2.3.** (*Vector spaces.*) (a) Write the definition of "V is a vector space over \mathbb{R} ".
- (b) Write the definition of a basis of a vector space V over \mathbb{R} .
- (c) Show that the multiplication of elements of \mathbb{H} by elements of \mathbb{R}

$$r \cdot (a1 + bI + cJ + dK) \stackrel{\text{def}}{=} (ra)1 + (rb)I + (rc)J + (rd)K \text{ for } a, b, c, d, r \in \mathbb{R};$$

makes \mathbb{H} into a vector space.

(d) Show that 1, I, J, K is a basis of the vector space \mathbb{H} over \mathbb{R} .

[Hint: if you do not remember (a) and (b) from Linear Algebra, look for the definition in the book.]

2.4. Denote by $\mathbb{H} \ni x \mapsto \overline{x} \in \mathbb{H}$ the function that sends x = a1 + bI + cJ + dK to $\overline{x} = a1 - bI - cJ - dK$. This operation is called *conjugation of quaternions*.

(a) Show that conjugation is an *antihomomorphism of rings*, i.e., that

 $\overline{x+y} = \overline{x} + \overline{y}$ and $\overline{x \cdot y} = \overline{y} \cdot \overline{x}$ for $x, y \in \mathbb{H}$.

- (b) Show that conjugation is an involution, i.e., that $\overline{x} = x$.
- (c) Define the norm of $x = a1 + bI + cJ + dK \in \mathbb{H}$ to be

$$|x| \stackrel{\text{def}}{=} \sqrt{a^2 + b^2 + c^2 + d^2} \in \mathbb{R}_{\geq 0}.$$

Show that

- (1) $x \cdot \overline{x} = \overline{x} \cdot x = |x|^2 \cdot 1.$
- (2) $|x \cdot y| = |x| \cdot |y|, \quad x, y \in \mathbb{H}.$
- (3) If $x \in \mathbb{H}$ is not zero, then the quaternion $\frac{1}{|x|^2} \cdot \overline{x}$ is the inverse of x. (So, $\mathbb{H}^* = \mathbb{H} \{0\}$.)

[Hint: It is preferable to prove (3) using (1) then by computing with the formula x = a1 + bI + cJ + dK, since you will otherwise need to duplicate the work you did for (1).]