NOTES ON DRINFELD’S THEORY OF CLASSIFYING PAIRS
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A. Classifying Pairs
1. The setting: Loop Grassmannians and Hilbert schemes of points

Let k be the ground ring. By C we will denote a smooth curve over k and by X an
arbitrary smooth scheme over k.

1.0.1. Curve C. For a smooth point ¢ of a curve C' denote O = O(¢) and K = O(c) for
the formal neighborhood ¢ of ¢ and ¢ = ¢ — ¢. Then the fiber of the loop Grassmannian
at cis

G(G)e = Gx/Go.

1.0.2. Group GG. We assume that G is semisimple, split and simply connected algebraic
group over k. We will fix two opposite Borel subgroups B* with unipotent radicals N*
and a common Cartan T'= Bt N B™.

For any Borel BCG the group H “'p /[B, B] is canonically independent of the choice

of B, For a Cartan T, a choice of a Borel BDT gives an identification tp : TSH as
TCB—H. The Lie algebras are g, b*,n*, t,h as usual.

Let o; € X*(H), ii, be the simple roots.

1.1. Hilbert schemes of colored points Hcy;. The Hilbert scheme of points of X
is graded by the length of the subscheme Hx = U,en H%. For a smooth curve C, the
“Hilbert powers” Hg = C" coincide with the symmetric powers C™.

For a set I the Hilbert scheme of the multiple X xI decomposes as Hyx; = (H X)I =
(Unen H%) = Uaeni HS, where for a = 3, ; ayi € N[I] we denote by Hg = X[ = X
the product Hiel Xl So, D € Hxys is a system (D;)ier of D; € Hx, we also denote it
by D=3, Dji.

In particular we denote Al & (Al

1.1.1. The loop Grassmannians G(G) — R¢. Let Re be the Ran space of the curve C,
i.e., the moduli of finite subsets E of C. The loop Grassmannians Gr.(G) — R is the
moduli of triples (7,7, E') where, T is a right G-torsor over C', E € R¢ is a finite subset
and 7 is a section of T off E, i.e., defined over C' — E.

Lemma. For a curve C the fiber of the loop Grassmannian at £ € R¢ is given by maps
of pairs
G(G)p = Map[(C,C - E), (B(G), pt)].

Proof. For X'CX, and a subgroup G’ — G, amap F' € Map[(X, X'), (B(G),B(G"))] is a
pair of a G-torsor T over X (i.e., amap f: X — B(G)) and a G'-torsor T’ over X’ (i.e.,



amap f': X' — B(G)), together with a compatibility which is a G'-map T' — T|x-,
i.e., areduction on X’ of T to the G’-torsor T".

So, Map[(X, X"), (B(G),B(G"))] is the moduli of a G-torsor on X with a G’-reduction on
X'. The lemma is the case G’ = 1. O

1.1.2. Global loop Grassmannian G(G). Here we will restate lemma [LI.1] so that it de-
scribes the whole space rather than just a single fiber.

One defines the global loop Grasmannian G(G) by passing from triples (T, E, 7) € G(G)
to pairs (7,7), i.e., by omitting a choice F of an estimate on the singularity of the
rational section 7'@), ie.,

G Y lim  G(G)s.

— E€Rc

Then the lemma [[.T.T] says that
G(G) = Map[(C,nc), (B(G),pt)].

1.1.3. Some base changes of G(G) — R¢. For any Y — R we denote by Gy (G) — Y
the corresponding base change of Gr,, (G).

Example. The support map supp : Ho — R gives the pull-back Gy (G) = He to He
with the fiber at D € H¢ the moduli of all (7, 7) such that the rational section 7 of T is
defined off supp(D).

Example. For a smooth curve C, H¢ is a monoid for the schematic union operation +
which is given by tensoring the ideals Zpr p» & Ip®o.Lpr of D', D" € He. So, for a

set I the schematic union Heyw; — He gives a base change Gy, ,(G) —Hcxr. The fiber
at D = (D;)ier € Hexy is the moduli of all (7, 7) such that the rational section 7 of T is

defined off the support supp;(D) o +icr D;.
1.2. Maps into a quotient stack.

1.2.1. Adjunction. The following adjunction relates moduli of torsors and the correspond-
ing classifying spaces. For a left G-torsor P over X, the P-twist of a G-space Y over X
is the space over X

YP & Py L prly oY = G\(PxxY).

I Here, “global” refers to dependence on C' only, since we have eliminated the local part of the data
EFeRe.



Remark. One can write all formulas here without P! using the diagonal quotients Y” =
G\(PxxY). However, P! is useful for the “tensor product” notation Y” = P~1xgY
which may be more intuitive. The two are related by G-(p, y) corresponding to the G-orbit
(p~ty) € P lxgYforpePandyeY.

Lemma. For a left G-torsor P over X and any G-space Y over X one has

Mapxa(P,Y) = I'(X,Y7).

Proof. Denote P = X. The correspondence of G-maps o : P —Y over X and sections
¢ € T(X,YP) = (X, G\[PxY]) is written in terms of z € X and p € P lying above z,
by

def

p(z) = G-(p,a(p)) € G\[PxaY].

Conversely, a(p) is the unique y € Y such that (p, y) lies in the G-orbit ¢(z) € G\(PxY).
U

1.2.2. Maps into a quotient stack.

Corollary. For a space X and a G-space Y, the following are the same

e (0) Amap f: X —- G\Y.
e (1) A G-torsor P over X and a G-map P Y.

e (2) A G-torsor P over X and a section ¢ of Y? & Py ¢

ot P_IXG Y.

Proof. (0)<(1) is standard. Then (1) and (2) are related by the above adjunction.
Explicitly, the data X <~ P %Y from (1) can be viewed as a G-map over X

RGN TNG'S

Then by the above adjunction it is the same as a section ¢ € I'(X, (Y xX)?) =T['(X,Y7)
by (for any z € X and p € P lying above z)

¢(x) = G-(p.alp) € G\[PxY].
So, we get data from (2). Conversely, a(p) is the unique y € Y such that (p, y) lies in the
G-orbit ¢(z) € G\(PxY). O

1.3. The conventions. We will make a choice of positive roots A" in [[L3.2] and of the
embedding X, (T)—G(G), \—L,.
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1.3.1. The standard notation. For a Cartan T in a Borel B = T'N we will choose the
positive part AF of the root system Ay = Ag(g). This gives the positive coroots

A% o (AT)", the simple (co)roots al, &, i € I, the positive cones QFCQr = Z[Ar]
and Q5CQr = Z[A7|, as well as the notions of dominant weights X*(T)" = @;c; Nwi,
and coweights X, (T)" = @ Nwk. We write a < f in X.(T) if 3 —a € QT and

similarly in X*(7").

The abstract Cartan H & B /[B, B] is canonically independent of the choice of a Borel

B. Now, via the isomorphism ¢z : T—H (by TCB—H) a choice of AT gives com-
patible notions for the abstract Cartan H: AT 3 a;, AT 3 ¢;, QTCQ,QTCQ, X*(H) >
wh X, (H)T 3 & and <.

1.3.2. The choice of positive roots. Our choice AT & Ar(n) is traditional in representa-
tion theory (then the highest weight vectors are fixed by N )@ The reason is that the
semigroup closure H defined as the closure of H = B/N in (G /N)* will be parameterized
(for simply connected G) by positive coroots (see lemma [[4la).

1.3.3. The choice of the embedding X.(T)—G(T), A—L,. Such choice gives a
parameterization of Ni-orbits by X.(T) 3> A— S\ = Ni-L,. We will use the choice

A= Ly d:Of_z_)‘-G@ € G(G). As we will see in[2.2.3] in this case the Ni-orbits have closure
relation S)25, iff A >p M.@

1.4. The semigroup closure H. We define H as the closure of H= B/NCG/N in the
affinization (G/N)2.

Lemma. (a) H is a semigroup closure of H.

(b) O(H)CO(H) is the subspace spanned by the dominant characters of H. In particular,
when G is simply connected, the standard description of H extends to

1

G .

——I Ilier & —  Tlies wi
Gm HSC

~ ~

(¢??) For any H orbit O in G/N, the closure in (G/N)2T is described by O = OxH.
H

Proof. We know how to choose a consistent system frames ey in ViV for all A in the set
X*(H)" =@ Zw; of

2 The opposite choice A} ef Ar(g/b) agrees with algebraic geometry in the sense that say, the regular
dominant weights correspond to very ample line bundles on G/B.

3 The closure relation is the same for what may be the simplest choices where L def G if AJTF is
chosen in the geometric way as Ar(g/b).
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(b") Recall the Tannakian description of G/NC(G/N)™. Let X+ = X*(H)* oo X*(H)n
@ Zw; be all dominant characters of H. We can choose a consistent sytem of realizations

of standard representations V) of G, of frames ey in V¥ for A\ € XT and of surjections

eV, LN Vg for A, p € X (so, € is associative and sends e ®e,, to e,\ﬂ).@

Then the map ¢ : G/N — v [Lex+ Va by G/N 5 gN— (gex)rex+ identifies

G/N with all v = (vy)xex+ € V that satisfy the corresponding Tannakian equations
Ovp(VA®v,) = vy, and vy # 0. If we choose a finite system X' of generators of the cone
XT we can use 1y : G/N—Vy = @ cx V. and the corresponding embedding equations
are called Pluecker equations.

Now, (G/N)™ is the closure of G/N in V| i.e., precisely all v = (v)).ex € V that satisfy
the Tannakian equations Cy ,(VA®V,) = Vrtp.

(b”) The image ¢(H)Ci(G/N) consists of all Tannakian systems v with 0 # vy € VY for
A € X*. By definition H is the closure of «(H) in «((G/N)*), ie., all Tannakian systems
v with vy € V;¥. The functions on [[,.; V¥ are the polynomials in variables X\, A € X*.
The Tannakian equations for H are then A\ + u = X fi. Therefore, the functions on H
are indeed the span of X in X*(H).

In particular, when G is simply connected then O(H) = @) a,., nw; KA are the polyno-
mials in w;, ¢ € 1.

(c) It follows from (b) by left translations.?? O

Remark. H usually does not act on n nor g/b since the weights need not be dominant.

4 [E. It suffices to make the choice for simply connected G?
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2. Finitely supported maps

The loop Grassmannian G(G) of G is the moduli of finitely supported maps into B(G).
We find that the interesting local moduli of G-torsors (factorization subspaces or local
subspaces of loop Grassmannians G(G)) have classifying spaces in the sense of finitely
supported maps into pointed stacks ) that lie above B(G) (i.e. Y is of the form G\Y).

We consider the moduli My (C') = Mapy,[C, (Y, pt)] of “generically trivialized’ maps
from a curve C' into a given pointed stack ().pt). When (), pt) has a presentation

(Y,a) with ) = G\Y we define the loop Grassmannian of G with the condition Y to

be G(G,Y) oo My (2.2). This notation contains redundancy but it has the relation to

the usual loop Grassmannian G(G) which is just G(G, pt) and when Y is separated then
G(G,Y) is a subfunctor of G(G).@

In 2.1l we notice that in general the moduli M5y, has a structure of a (colored) factorization
space over curves (under Drinfeld’s conditions on the pointed stack (), pt)).

In the reminder of this section we describe the classifying spaces of standard subspaces
of the loop Grassmannian G(G). These are the closures of Sy = Ni-L, ([B.3]) etc. The
origin of the present point of view is Drinfeld’s description of the zastava space in terms
of classifying spaces (theorem ?7).

2.0.1. Moduli G(G,Y) and orbits in G(G). We will reproduce in the form G(G,Y) certain
moduli of G-torsors (with extra structures) that are local spaces. For this, the space Y (or
the classifying space ) = G\Y') will be produced from G. Say, Y could be a semigroup
closure of G or the affinization (G/A)2T of a homogeneous space.

Typically, the connected components of our moduli G(G,Y') will be certain orbits in G(G),
their closures and intersections of such. In particular, the closure relations on orbits will
be more transparent from the description via classifying spaces.

Ezample. For a subgroup ACG the orbits in G(G) of the subgroup A = Ng(A)o-Ax of
Gy are related to homogeneous space Y° = G/ A, the closures of orbits are then related to
some partial compactification Y of G/A. So, in some sense “probing a space G\Y° with
curves leads to its partial completion Y.

For instance for a parabolic P = U x L with the unipotent radical U and a Levi factor
L we have U = Ux X Lo. The extreme cases of this are the disc group Go (here P =G
and Y is the Vinberg semigroup of G) and Tp Nx for a Borel B = NT (the “semi-infinite
orbits”, here P = B and Y = (G/N)¥).

6 In this way we restate the usual theory of moduli of torsors in the more flexible and general terms
of maps into (classifying spaces). In terms of physics this is the slogan that “All quantum field theories
are Y-models.”
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Ezxample. [E]. ANOTHER example? The connected component of Ax for a subgroup
ACG.

2.1. Moduli of finitely supported maps. We are interested in various moduli of G-
torsors over a curve C' that are local spaces over C'. As observed by Beilinson and Drinfeld,
the relevant spaces Y are usually of the form My (C'), the moduli of finitely supported,
i.e., generically trivialized maps into some pointed stack (), pt) built from G. (We usually
omit pt from notation.)

2.1.1. Versions of the moduli. A pointed stack (Y, pt) will give a functor (an algebro-
geometric “sigma model”) that associates to each source space X the moduli of generically
trivialized maps from X to Y. We first define the global version, for the generic point nx
of X this is the moduli

def

Mﬁ(y) = Map[(X> 77X)’ (y>pt)]‘

We will now assume that X is a curve and we denote it C'. Then “generically trivialized”
is the same as finitely supported. We will consider two versions depending on how one
organizes these finite supports into an algebro-geometric objects. The Ran space Rx of
X is the moduli of finite subsets of X.

e (1) Factorization space version M()). To a curve C' it associates the space M (Y) —
Rc over the Ran space of C. The fiber at £ € R is

MEV)p = Map[(C — E), (Y, pt).

e (2) The “filtered” or “local space” version fM(Y) of M(Y). It is only defined under
the Drinfeld condition that the pt — Y is an open inclusion. Then we can define its

boundary 9(pt) o pt — pt which is closed in pt. So, one has the singularity map

def

MGQY) = He, w(f) = fo(pt).
(Since f is generically in pt, 7(f) is a proper closed subscheme of C| hence it is a finite

subscheme.)

Now, fMY(Y) is the space Mﬁ(y) considered with the structure map m, i.e., considered
as a family of spaces indexed by finite subschemes D € H¢ :

def

fMED)p = 77D = {f:(Cine) — (V,pt); f[0(pt)] = D}.
2.1.2. Properties of the moduli M ().

g
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Lemma. (a) For a pointed space (), pt) the space M%()) — Re is indeed a factorization
space over (.

(b) If the point pt of ) is open in Y then fM()) is a local space over C' whose associated
factorization space is M ().

Moreover, if the boundary d(pt) = )Y — pt is a divisor with irreducible components
Y, i €I, then fMY(Y) can be defined with a structure fM®(Y) — Heyy of an I-
colored local space over C.

Proof. (a) To simplify the notation denote Mg = MY (). The locality structure is a
consistent system of isomorphisms for I —disjoint@ E, e Hox,

L ME1XME2;> MEluE2~

To (f1, f2) in the LHS it associates f in the RHS so that on C' — E; one has f = f, and
on C' — E5 one has f = f; (on the intersection C' — (E1LE,) both are equal to y).

(b) The locality structure, i.e., the gluing for fMy(C)p is the same as in (a), one just
needs to observe that 7(f) = = (f1)Un(f2).

When the boundary divisor d(pt) has irreducible components D; we can refine 7 to a
collection of m;(f) = f~1(D;) € He so that now 7 : MG (V) = (He)' = Hew

For a local space Z — H¢ with a “growth” structure Z}), — Zp for D'CD, there is an
associated factorization space Z/% — R with the fibers

z{ee < Jim Zp, E€Re.
— supp(D)CE

In our case this is

(MED)N*)p = lim . FMEY)p = Map|(C,C = E), (¥, pt)] = M (V).

supp(D)C

O

Ezample. (a) The standard example is ) = B(G) (we will see that then My = G(G)).
Here, the map pt — ) is not an open inclusion, so the factorization space Mpg(C) =
G(G) — Hc does not have a filtered version.

(b) The local version appears for Y = G\(G/N)*t @3), Y = N\B (??) and Y = G\G
B.3).

(c) [Ra] For any X, the moduli M (G, \A") (with the point 1 — G,,\A" is the moduli
of effective Cartier divisors in X.

Proof. For f: X — A'/G,,, the pull back f~'0 = X x 1, 0CX is a Cartier divisor in
X. U

8 Define I-disjoint.
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2.2. Subfunctor G(G,Y)CG(G) given by “condition Y. Consider a G-space Y with
a point y@ It gives a pointed stack (G\Y, pt) where pt is the composition y € Y — G\Y'.
For any X We consider the corresponding moduli of fintely supported maps

G(G,Y) = M(G\Y)

(we omit the base point y from the notation). To a curve C' it associates the factorization
space GY(G,Y) = MY(Y) over C with the fiber at E € R¢

G(G.Y)p = GG, Y)r & Map|(C,C — R),(G\Y,pt)].

Here we study the functor G(G, —) on the category Spe(G) of G-spaces with a point
(Y,y) By definition, G(Y, pt) is the loop Grassmannian G(G). We will see that when Y is
separated then G(G,Y) is a subfunctor of G(G) (lemma2.2.2/b). Actually, the interesting
subfunctors of G(G) are usually of this form.

2.2.1. Loop Grassmannians G(G,Y') with the “condition Y ”. If Y is a scheme near y then
the stabilizer of y is a subgroup A of G and the orbit Y o G-yCY is a well defined
subscheme of Y isomorphic to G/A.

The Drinfeld setting is the case when the orbit Y is free, i.e., A =1, ie., pt - G\Y is
an open embedding. Then lemma 2.1.1lb provides a refinement of the factorization space

functor G(G,Y) has to a local space functor fG(G,Y) oo fM(G\Y) — Hc with the
fiber at D € H¢

fG(G.Y)p = {f:(Cync) = (G\Y,pt); f~'[d(pt)] = D}.

We start with some formal properties.

Lemma. (a) [Redundancy in the notation G(G,Y').] For a normal subgroup KCG one
has G(G,Y) = G(K\G,K\Y).

(b) [Fibered products.] We consider a system of groups G; — G and a compatible system
Y; 25 Y, of Gp-spaces Y.

(b1) The general formula for two factors is
G(G1,Y1)X6(Gov0)9 (G2, Ya) = G[Go, (Goxa, Y1) Xy, (GoxXa,Y2)]
= g[lemeo (GOXG2}/2)] = g[G%(GOXGIK)XYO Yé]

(b2) If Gy = G; /K is a quotient of G; for 1 <7 < n, then

H (Gi,Y:) = G(Go, Yo)] = g[H Gi/Go, [ Vi/Yal-
1 1 1

(b3) [Products.] G(Gy,Y1)XG(Ga, Ya) G (G1xGa, V1 XY3).

9 y is a point of the underlying space of the G-space Y, i.e., y € Y need not be a G-map.
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Proof. (a) is obvious since (K\G)\(K\Y) = G\Y.

(b) holds because Map(X, —) preserves fibered products. For instance when in (bl) one
calculates the first component of objects in the moduli G(G1,Y1)Xg(cy,v,)G (G2, Y2) one
gets

Map(C, Gl\Yl)XMap(c,Go\Yo)M@P(C, Gy\Y2) = Map[C, Gi1\Y; X Go\Yo Gy\Ya).
By [02.1] the target is
GiI\Y1 Xgp\y, G2\Y2 = Go\[(Goxc, Y1) Xy, (Goxg,Y2)
= G1\[Y1Xy, (Goxa,Y2) = Go\[(Goxe, Y1) Xy, Ya.
The claim (b2) follows by induction from its case n = 2. For n = 2 we use (bl) and
Gy = G1/K; to identify
G(G1, Y1) Xg(Gov0)9(Ga, Ya) = G[Ga, (Goxa, Y1) Xy, Yo
= GGy, Ki\Y1 xy, Yal.
Since K acts trivially on Yj this is
= GGy, (K1X1)\(Y1XY0 Y2)]
and since (K1 x1)\(G1x¢g,G2) = K1\G1x¢g,G2 = Go, by (a) we get
= G[G1xa,G2, Y1 Xy, Y]
Finally, (b3) is a special case of (b2) when Gy =1 and Y = pt. O

2.2.2. G(G,Y) when'Y is a separated scheme. Under this assumption one has the follow-
ing lemma.

Lemma. (a) In terms of torsors, the fiber G(G,Y)p is the moduli of all (7,7) € G(G)p
such that the A-reduction A-7 € I'(U, A\T) of T over C' — D, extends to a section of Y7
over C ,) in the sense of the embedding (that is given by the choice of y € Y°):

AT = G\(TxG/A) = (G/A)T = (v°)T c YT,

(b) G(G,Y) is a subfunctor of G(G) and it carries the induced structure of a factorization
space.

(c) If Y is affine then G(G,Y) is a closed subfunctor of G (G).) If YV is quasiaffine and
Yt is separated then the subfunctor G(G,Y)CG(G, YY) is open,

10 The inverse map from the above submoduli of G(G) to G(G,Y) = Mapy(C,G\Y) sends (T,7) to
a triple (7, ¢, T) consisting of a map (7,¢) : C — G\Y and the trivialization 7 of the map on U. Here,
¢ € T(C,YT) is the unique extension of 7 € I'(C — D, A\T). In the opposite direction we have the
projection (T, ¢, 7)—(T,T).

' This is not true for arbitrary Y, For a counterexample let Y = G/A so that G(G,G/A) = G(A)
according to the corollary 22321 When A is a proper parabolic P # G, then G(P) is not closed in G(G).

As one can see in the proof of (a), the problem arises because Map(d*,Y) is not local in Y for nonaffine
Y. So, when Y = G/A is not affine then there is a difficulty in defining Map(d*,Y) as a geometric object.
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(d) If Y is a scheme near a then the map G(G, G-a) — G(G,Y) is an isomorphism.

Proof. (a) (1) A map (C,C — D) EiN (G\Y,pt) is a map C ER G\Y together with the
commutativity constraint for the square

C%G\Y

R

U —5 pt,

where the map i is the composition [pt =a € Y — G\Y] and f is a pair of a G-torsor T
on X and ¢ € T'(X,YT).

We will see that for f : C' — G\Y a completion to the above diagram, i.e., a factorization
of f|y through the point pt, is the same as a U-trivialization 7 € I'(U,T) of T whose
image in I'(U, A\T) extends to a section of Y7 on C.

(2) The map pt — G\Y is defined as (pt 2 Y—i»G\Y). Here, ¢’ is represented by the
trivialized G-torsor GxY over Y and the trivial Y-section of the (trivial twist) Y&*Y =
GxY, ie., the map idy.

So, iq = i'aq is represented by the trivial G-torsor (aq)*(GxY) = GxU over U and the
U-section of the trivial twist Y&V = Y xU, ie., amap o : U — Y, which is the
constant map with value a € Y.

(3) Now, the commutativity constraint is an isomorphism of G-torsors 7: GxU — T |y,
i.e., a section 7 € I'(U,T), such that the corresponding trivialization of the T-twist

7: YxU — Y7l takes the constant section a’ of Y xU to the section ¢|; of Y7,

The twist is Y7Iv = G\(TxY) and 7(a') = G-(r,ad’). So, the data for a map F are
a G-torsor T over Y, a section 7 € T'(U,T) and a section ¢ € TI'(C,Y7) such that
7 o(w)] = G-(r(u),a), u€U.

(4) ¢ is an extension of T. Since T~ 1¢ is representable with a pair (7,a) € T'(U, T xY?°) we
know that ¢(U) lies in (Y°)7. Moreover, as we identify (Y°)7 with G\(TxG/A) = A\T
we see that ¢|y € T[U, (Y°)7] identifies with the image 7 € I'[U, A\T] of 7 € I'(U,G7).
So, ¢ is an extension of T to a C-section of Y7

(5) Since U is dense, such extension is unique provided that Y is separated. Therefore,
the data reduce to a G-torsor 7 over C' and a section 7 € I'(U, T) such that the image
7 e (U, A\T) =T(U, (Y°)T) extends to a C-section of Y7. (9

(b-c) We now know that G(G,Y) is the submoduli of G(G), given by the property of the
existence of an extension of the image 7 € I'(U, A\T) = T'(U, (G/A)T) of the section 7

12 1f we only know that Y is a scheme near a then the steps (1-4) of this argument are still valid. This
only tells us that there is a map G(G,Y) — G(G) by (T, ¢, 7)—(T,7) such that ¢|y is A-T.
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to an X-section of Y7. The factorization claim is known (lemma2.1.1)). So, we only need
to show that G(G,Y) is closed.

The “extension” condition on maps is closed when the target is affine; for any affine
scheme Y, the functor Map(ne,Y) has a canonical structure of an indscheme such that
Map(C,Y) is a closed subscheme.

This claim follows from its local version. It says that Map(d*,Y) is canonically an ind-
scheme such that Map(d,Y) is a closed subscheme.

The first example of this is when Y = Al here Map(d*, A') = k((z)) and the functions
that extend to the formal disc d are O = k[[z]]. The general case follows by embedding
Y into A".

(d) Moduli G(G,Y) consists of all (T,7) € G(G) and ¢ € I'(d,Y”) such that ¢ extends
the section A-7 € I'(C' — D, A\T) =T'(C — D, (Y°)7). Since ¢|c_p has values in (Y°)7,

all values of ¢ are in (Y°)T = (Y°)7. O

Remarks. (0) In terms of the global Grassmannians one states the inclusion in (b) as
G(G) 26(G.Y) = Map|(C.e). (G\Y,pt)].

(1) The inclusion map G(G,Y) — G(G) is realized on the level of moduli of maps
Map[(C, nc), (G\Y, pt)] = Map[(C,nc), (G\pt, pt)] by the G-map Y — pt.

(2) Algebraic structure on G(G,Y). When Y is a quasiaffine scheme the the part(c) of the
lemma provides sucg structure, Here, we will only define the algebraic structure in some
additional special cases.

Corollary. (a) At apoint ¢ € C, G(G,Y).CG(G, ¢) is the quotient g(/é\,?)c/G@ CGk/Go

where

T def

G(G,Y)., = {9€Gx; ga:d —Y°extends tod — Y}/Go.

(b) The functor G(G, —) in (Y,a) preserves fibered products. Moreover, on separated
schemes Y the functor G(G, —) takes all morphisms into inclusions. and the fibered
products are taken to intersections in G(G):

G(G,YixyYs) =G(G Y1) xg@cy) G(G,Y2) = G(G. Y1) Ng) G(G,Ya).

Proof. (a) The fiber G(G,Y). consists of all G-torsors T over d = a, with a section 7 over
d* = a such that AT € T'(d*, A\T) exends to a section of Y7 over d.

Since we are working locally near ¢ the torsor 7 is trivial and we can assume that T =
Gxd. Then 7 : d* — G is an element g of Gx. The condition on g is that A7 € I'(d*,Y),
i.e., ga € Map(d*,Y°) extends to a d-section of Y7 =Y xd.
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(b) The first claim is a special case of the lemma 2.2.T1b2, when n = 2 and all G; equal
G, so that G1xg,G2 = G. The rest follows since G(G,Y) is a submoduli of G(G) for
separated schemes Y (lemma 2.2.21b). O

2.2.3. Ezamples. Because of the lemma 2.2.11b we will usually consider (Y, a) such that
the G-orbit G-aCY is dense, hence open. Then the stack G\Y will have an open dense
part G\Y° = B(A).

(0) When Y is a semigroup closure G then G(G,G) can be thought of as the “loop

Grassmannian of G”. This gives extension of Langlands duality to reductive semigroups
on the level of the geometric Satake mechanism.

(1) The other class of Y’s are the affinizations of homogeneous spaces G/V which are
quasiaffine. Examples come from parabolic subgroups P = U x L, then V is a normal
subgroup of P such that POV DU. The interesting cases V = U and V = P'.

Corollary. The moduli of line bundles with a nonvanishing section is G(G,,, A!) (with the
base point a = 1 € Al). This is preceisely the punctual Hilbert scheme:

G (G, A1) = He.

Proof. Here, G(G, AY) = Map[(C,ne), (Gm\AL, pt)] is the moduli of G,,-torsors £ on C
with a section ¢ of (A)* which is generically in G,,)*. These are precisely the pairs of a
line bundle L (= (A!')%) with a generically nonvanishing section ¢.

The pair (L, @) gives an effective divisor ¢710 € Hc. Conversely, for any D € H¢ we get
a pair of a line bundle O¢(D) with a section 1. O

2.2.4. When is G(G,Y) (quasi)projective. The following conjecture is I believe actually a
result of Drinfeld.

Conjecture. The connected components of G(G,Y') are quasiprojective iff Y is a G-torsor,
ie, pt =Y =G\Y is open, ie., dim()) = 0. Then they are projective iff Y is also
affine.

Ezample. [Zhijie] The connected components of G(N,B) = G(NxH,(G/N)*h) =

LIy So NS are not projective.

Question. Possibly the claim is only correct for a reductive group G?7 Say, if we rewrite
the formula by induction to replace N by G then
G(N,B) = G(GxH,Gxy(G/N))

is (I guess) included into

G(GxH,[GxyG/NM) =~ G(GxH,[G/NxG/NM) = G(GxH, (G/N)x(G/N)M) = UFNS—A
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which does have projective connected components. O

Remark. The assumption that Y is a G-torsor, i.e., that A =1, is exactly the Drinfeld
setting, i.e., the case when the factorization space G(G,Y") has a local space filtration.

2.2.5. A case when G(G,Y°)CG(G,Y) is dense. .

Lemma. If 0Y° is in codimension 2 then the subfunctor G(G,Y°)CG(G,Y) is dense.
In particular we have a surjection m(A) = m[G(G,Y°)] — m[G(G,Y)].

Proof. G(G,Y). consists of all (T,7) € G(G). such that the section AT € T'(d*, (Y°)T)
extends to a section (call it ¢) in I'(d, Y7). Actually, we can assume that 7T is trivialized
on d, and then we can think of ¢ as a map d —Y which is generically in Y°.

So, the claim reduces to

When Z = 0Y°CY is in codimension 2 then in Map(d,Y)
the maps that meet Z are in codimension one.

. . Actually, if dim(X) = d and ZCY is in codimension ¢, then in Map(X,Y)
the maps that meet Z are in codimension ¢ — 4.9

The reason is that for s € X, Map(X,Y), = {f : f(s) € Z} is in codimension ¢, hence
Uses Map(%,Y), is in codimension ¢ — d. O

Remark. Claim fails in codimension one, say for G(G,,,A') = Hy. Here, ¢ € Hy is a
monic polynomial 2% + 3¢ ;2477 with s; nilpotent. Now, ¢(0) lies in Y° = G,, iff d = 0.
However, the connected components of H, are given by the degree d of ¢. 0

13 mThe following does not make sense until algebaic structure on G(G,Y) is defined? Is there a
notion of a dense subfunctor of a functor?

14 Still needs a proof

15 11| This reformulation only works when the moduli is connected!!!
The claim could be that (?)

(1) The closure of the subfunctor G(G,Y°)CG(G,Y) is open and closed in G(G,Y°)CG(G,Y), ie.,
a union of connected components.
This would agree with the strange expectation that the connected components of G(G,Y) are
locally closed in G(G).

(2) Another way is to require that in each connected component of Map(d,Y) the maps that meet
Z are in codimension one.

The original calim is obviously false when G(G,Y°) = G(A) is connected, ie., m(A) =0, but G(G,Y)
is not connected.

16 This explains why, for ¥ = d, we needed codimension 2.
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Question. For any Y we have inclusions

closed

G(G,Y) CG(G, Y™ C G(a).
When is the first inclusion always dense?

We know this when Y is quasiaffine and G(G,Y’) is connected . . However, denseness
also holds when Y = Y is a partial flag variety G/P since then the map G(G,G/P) —
G(G,(G/P)*) = G(G, pt) is G(P)— = G(G) which is known to be dense.

Question. Suppose that (Y7,a1) — (Y2, az) is proper and that the generic fiber A3/A — 1
is connected. Is G(G,Y1)CG(G,Ys)) dense? ™

2.3. Restriction, induction and symmetries of G(G,Y'). Here we study the functo-
riality of G(G,Y') in the group G.

A. Restriction of the condition (Y,y) to a subgroup. We consider a subgroup
KCG@G.

2.3.1. Loop Grassmannians embedd.

Lemma. (a) For any subgroup KCG, its loop Grassmannian G(K) embeds into
G(G) as a subfunctor by the induction functor that takes (S,o0) € G(K) to
Ind$(S,0) € (Gxx S, 0).

(b) The image of G(K)—G(G) is the submoduli G(G; K)CG(G) consisting of all (7,7) €
G(G) that satisfy the equivalent conditions that

e the image of the section 7 € I'(C'— D, T) in I'(C'— D, K\T) extends to a C-section
of K\T;
e the closure Tx , of K-7in T is a K-subtorsor (i.e., a reduction of 7 from G to K).
(¢) The inverse map G(G, K) — G(K) sends (T, 7) to the pair (Tx -, 7).

Proof. In (c) one observes that 7k , has a meromorphic section 7. 0J

Corollary. When Y is a single G-orbit G/A then G(G,G/A) = G(A) and G(G,G/A) is
exactly the above G(G; A). In particular, G(G,pt) = G(G) and G(G,G) = G(1) = pt.

Proof. The main claim is clear from the lemma. Then G(G,pt) = G(G,G/G) = G(G)
and G(G,G) = G(G,G/1) = G(1) = pt. O

1711 |2

18 The question requires a natural algebraic structure on G(G, Yz).
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2.3.2. Restriction to subgroups and the T'-fixed points in G(G,Y). For a subgroup KCG
denote the K-orbit through y € Y and its closure in Y by

Resg(Y") = Y? ef K. o K/(KNA) and Reng = Yy Y2

If Y is affine then so is Y.

FEzample. When K is a torus 7" in G the T-orbit Y7 is canonically identified with the
torus T =T/(T'N A) and its closure Yr in Y is then a toric variety for the torus T.

Proposition. For a subgroup K CG the intersection G(G, Y)NG(K) of subfunctors of G(G)
is Q(K, YK)

Proof. We know that the fiber at D € H¢ of

Q(G, Y) Ng(a) Q(K) = Q(G,Y) Ng(G,pt) Q(G, G/K) = Q(G,YXPtG/K)
is
and this is G(K,Y")p which is the same as G(K,Yx)p.

FEzample. The inclusion G(G')CG(G) need not be closed. For instance this fails when G’
is a proper parabolic P in a reductive G.

2.3.3. Fized points in G(Q).

Lemma. (a) For the centralizer Z &f Zg(K), we have G(G)X¥DG(Z) and
G(G,Y)¥ 2 G(2,Yz).
(b) When K is reductive the inclusions in (a) are equalities. For instance, when K is a
Cartan TCG, then Z =T and Yz = Y7 is a toric variety for the torus T/(ANT). So,
g(G)ng(T) and g(G7 Y)T 2 g(T7 YT)
(c) [Conj.] If s € G is semisimple then G(G)* = G[Zs(s).
Proof. (a) Since K acts trivially on Z we have G(G)¥2G(Z). Then
G(G,Y)¥ 2 G(GY)NG(2) = G(Z,Yz).

In (b) we just need to see that when K is reductive then G(G)* = G[Z¢(K)]. This follows
from (c) since the semisimple elements are dense in a reductive K, hence

G(G)" = NsexG(G)* = NiexGlZa(5)] = GlNser Za(s)] = G(Za(K)).
() O
B. Orbits of A in G(G,Y)
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2.3.4. Orbits of ACNg(A)o-Ax in G(G,Y)CG(G). The automorphism group of the G-
space G /A is Ng(A)/A acting by right multiplication. In particular, the normalizer Ng(A)
acts on Y = G'/A by conjugation. Let ACNg(A) consist of all elements g € Ng(A) such
that the actions of g, g~! on Y° = /A by right multiplication extends to an action on Y.
When Y is separated the extensions are unique, A is a group and its conjugation action

on Y° extends to an action on Y. In Gx we will consider the subgroup A o ApAx =

Ao XN Ao A/C.

Ezxample. (0) When Y is obtained from Y° by some canonical construction then the sym-

metries extend automatically hence A = Ng(A). For instance, when G/A is quasiaffine
we can take Y = (G/A).

(1) When Y is not a canonical construct from Y then A can be A small part of Ng(A). An
example is G(Gx H, (G/N+)2Tx (G/N~)2T with a = (N*+, N7)). Here, (GxH)a is a torsor
for V = (GxH)/Z@G),s0 A = Ag. Hence, A is the part of Ngx g (Z(G)) = Gx H whose
right action on VC(G/N*)*x (G/N~)2 extends to an action on (G/N+)x (G/N—)af,
This is small and indeed G(G'x H, (G/N*)#x (G /N~)! has little symmetry. O

Remark. For a torus T in A the closure Y7 d:ef_ﬂ in Y is a toric variety for the torus
T=T/(TNA). So, Yr is a semigroup closure T of T iff Y7 is affine.

Lemma. (a) A acts on G(G,Y)CG(G).

(b) Suppose that a Cartan T of G lies in ACNg(A) and that Y7 is affine so that it is
a semigroup closure T of the torus T = T/(T N A). Then for u € X,.(T), the point
L, € G(G)T lies in G(G,Y) iff the morphism of groups G,, A 7T extends to a
morphism of semigroups (A!,-) — T.

(c) If each A-orbit in G(G) defined over the ground field contains a point in X.(7") then
G(G) has a stratification by orbits A-L, and this restricts to a stratification of G(G,Y)
over all Ly € G(G,Y).([

Proof. (a) G acts on G(G) by changing the d*-trivializations 7 € I'(d*,T) by 7— g-T.
The submoduli G(G,Y), is given by the condition that AT € I'(d*, A\T) = I'(d*, (Y°)7)
extends to a d-section of Y7. Clearly, g € Ax does not change the coset A-7 = A-g7, so
it preserves G(G,Y)CG(G).

On the other hand, the action of G on 7 induces an action of Ng(A) on A\T =
G\(TxG/A) = Y°T so that g € Ng(A) acts in the first realization by g-At = A-gt for

t € T. The second realization is related by At <> (¢, A). Therefore, g-(¢,2A) corresponds
to g-A(xz71t) = A(gx't), hence

g:(t,zA) = (gz~'t, A)) = (t,xg7' A)) = (gt, grAg™)) = (gt, 9(zA)).

19 This has versions for A,..q-orbits in G(G,Y)reaCG(G)red-




24

This uses the conjugation action so it extends to an action of A on Y7T. Therefore,
the action of Ap on sections 7 € I'(d*, T) preserves the property that A7 extends to a
d-section of Y7,

(b) We know that G(G,Y)T = G(T,Yr) where Y7 = T-aCY is a toric variety for T =
T/T N A.

For A € X,(T), the point Ly in G(T'). is the trivial T-torsor 7 = T'xd over d with
the section 7 = 27 : d* — T over d* which is the composition of a local parameter
2z d* =Gy, with =\ € Hom(G,,, T).

Now, Ly lies in G(T, Yr). iff the function ANT-z7* : d* = ANT\T =T extends to a
section of (Y7)7. Since T is trivial this means extending to a function d — Y7 = T. This

is equivalent to Gy, —> T — T extending to Al — T. O

2.3.5. Parabolic % orbits S/I\D aof U-LA for U= Uk X Lo. Let POBDOT be a parabolic,

Borel and Cartan subgroups. For the unipotent radical U of P we have U = o Uic-Po =
U X Lo for any Levi subgroup PDLDT. The orbits of U in the loop Grassmannian are pa-

rameterized by the orbits in X, (T) of the the Weyl group Wz (L) of L via ST X LoUg-Ly.

Remarks. (0) One source of interest in these orbits is that the sets of irreducible compo-
nents of intersections appear as canonical bases in the representation theory of the dual
group G. For instance Irr[Gy N S,] functions as a natural basis of the v weight space of

the standard finite dimensional representations W (v) and SS(1) (over integers).

(1) We will eventually describe these orbits and their closures as moduli. This will give a
transparent proof of their closure relations. Here we just recall the notation.

C. Induction of pairs (Y,a). For a map of groups ¢ : G' — G we have the pull-back
¢ 1 Spe(G) — Spe(G’) where ¢*(Y,a) = (Y, a) with the G'-action on Y via ¢. We also

have the direct image
def

gb*(Y',a') = Gx G/Y (1,0,/)).

We will also use the affinization operation Sp,(G) — Sp.(G) by (Y, a)™T = (Y2 q).
While affinization can enlarge or diminish the space Y, any map Y — Y” gives inclusion of
functors G(G,Y)CG(G,Y")). Moreover, when Y is quasiaffine then G(G, Y1) = G(G,Y.

2.3.6. Induction. For a subgroup K <@ the direct image is called induction ind$ :
Spe(K) — Spe(G). We can also compose it with affinization for the “affine induction”
. def
AindG(Y) = (Gxg Y)
So, lemmas ... say that in
(2)closed

Q(G,indf((Y))gg(G,Alnle((Y)) c GG
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inclusion (2) is closed and inclusion (1) is dense if Ind%(Y)) is quasiaffine.

Lemma. (a) G(G,Ind%(Y)) = G(K,Y).
(b) Ind and Res are adjoint.(?)

XXX
G(L,Y) — G(P.Y) = G(G,GxpY) — G[G, (GxpY)™T]
Really, this is

G(L.Y,a) — G(P,Y,a) = G(G,GxpY,Pxpa) — G|G,(GxpY)™ Pxpal

Lemma. (7) For the maximal central torus Z, in L,
GIG,GxpY)? = G(L,Y) and G[G,(GxpY)™M? = G(L,vaM).
2.3.7. How do A, A, A induce? Consider A;CL. Going from L to P one does not change
the spaces Y°CY', therefore P/Ap & L /A says that Ap = (P—L)'A=U x A.
In the opposite direction by fized points, one can consider G(L) as G(P)%%. Then
G(P,Yp)? =G(P,Yp)NG(L) =G(L,(Yp)L).
Next, from P to G.

2.3.8. The parabolic induction. For a parabolic P = U x L we have G<LP—q»P/U P~
L/ The “parabolic induction” from P/U = L to G is i.q" and its affine enlargement.

[E. the group U = Uc x Lo seems to come from the “induction” of G(V;,V}) to
G(Va, VaxpuVi)™M).

One starts with Ay, = 1 hence AVL = Ny, (Ay,) =V, and A = Vo)o-

=g
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3. Closures of orbits

3.1. Is Sy N S_, dense in S, N S_,?
3.2. Summary.
3.2.1. Kx orbits in G(G).

Lemma. (a) For a subgroup K of G the “trivial” orbit Kyx-Ly in G(G) is G(K) =
G(G,G/0). If G/K is quasiaffine then its closure is G(K) = G[G, (G/K)].

3.3. The closure of a semi-infinite orbit Sy and the G-space (G/N)T. The closures
of the so called semi-infinite orbits

S € Ni-Ly, (A € X.(T)),
will be given a modular description. This modular description will be used to extend
the semi-infinite filtration to the relative Grassmannian G(G) — R¢. For A = 0 the
classifying space of the closure will be described in terms of G' but for general A we will
use the the Vinberg group V = V(G).

3.3.1. The closure of Sy. Let a be a smooth point of a curve C' and denote d¥a od* e

Proposition. The closure Sy is the loop Grassmannian G[G, (G//N)2], with the condition
(G/N), . So it has equivalent descriptions as

(1) (Torsors.) The moduli of all (7,7) in G(G)., such that the image in N\7 of the
section 7 of T extends from d* to d as a section of the relative affinization (N\7)*F
of N\T over C.

(2) (Classifying spaces.) The moduli of maps of pairs Map[(d, d*), (G\(G/N)T pt)].

Proof. We know that G(G, (G/N)) is closed in G(G) since (G/N)*T is affine (lemma
221lb). Also, Sy = G(N) = G(G,G/N) is dense in G(G, (G/N)*) by the lemma ZZH,
s0 G(G, (G/N)™) = 5.

The moduli G(G, (G/N)*), is defined as in (2). The lemma EZZIb provides a reformula-
tion as the moduli of all (7, 7) € G(G).. such that the N-reduction N7 € I'(U, N\T) of T
over U, extends to a section of [(G/N)*1]7 over C.®d This is the same as the formulation
n (1) since [(G/N)T = [(G/N)T] = (N\T)T. .

2 m Is G[@, (G/N)?H], connected?
22 The last reqmrement is in terms of the embedding N\T = (G/N)7 C [(G/N)*|T.
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Corollary. (a) The reduced part [G(G)olreq of the trivial connected component G(G)o, as

well as So and Sy are the same for G and G,q = G/Z(Q).

(b) The T-fixed part So is isomorphic to the Hilbert scheme H4y; and the T'R-fixed part

St =5 N X.(T) is —O*.

(c) Sp has a stratification by orbits S, with a < 0.

Proof. (a) Sy and Sy are formed inside the reduced paart [G(G)o],eq of the trivial connected
component G(G)y which is equal to G[(G.q)se|-

(b) The fixed points S, = G(G,(G/N)T = G(G, (G/N)*)NG(T) have been identified
in Z32c with G(T, H) = G(H, H) where H is the closure of H = B/N in (G/N)M We
know that G(G,, Gp) is Ha (lemma 2.2.3). When G is adjoint then H is described as
GmI in the lemma [I.4] so we get identification SO >~ N4« in this case. According to (a)
this gives an identification for any G.

According to the lemma 23.4lb, the point Ly in G(T). (for A € X.(T)), lies
in G(G,(G/N)), iff =\ : G, — T extends to G,, — H. When G is simply
connected 1w then O(H) = klw;, i € I] (lemma [L4Db), so the condition is that
wio(—=A) : Gy, = G,,CA! extends across 0 € G,,. In other words, that (w;, —\) >0, i.e.,
—\ € QF = ®ier Nay,.

(¢) Sy only depends on G4 (corollary [6.4])), so we can assume that G is semisimple. Then
G(G)is reduced and has a stratification by Ny-orbits Sy, A € X,(T). Now, Sy has a

stratification by Sy such that L, lies in FOT, so one can use part (b) of the lemma. O

23
||

Remark. The proposition shows that we can extend the spaces SyC SoC G(G). to factor-
ization spaces over R¢ given by G(G, G/N)CG(G, (G/N)*CG(@).

3.4. The semi-infinite filtrations 5,CS, of G(G) and the V(G)-space (G/N)t

3.4.1. The Vinberg group V = V(G). For a reductive group G we define its Vinberg group
def

Y = V(G) = GXZ(G)H
The map V = V/Z(G) ¥ GuxH, isV — V/HxV/G.

We also denote by G.q “a /Z(G) its adjoint form and by G, the simply connecred cover

of G,q. Similarly, we move the data T'C B— H for G to the same kind of data T .4, Baq, H aq
for G4 and T, B,., H,. for GSC.)

23 mreference for “[G(G)olred equal to G([Gadlsc)”? Take quotients by the largest central torus Z and
then by the finite Z(G).

24 hen not?

25 S0, X*(Haq) = Q and X, (Haq) = @ier Za; while X*(Hge) = ®ier Zw; and X, (Hg) = Q.
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We denote by A : B — V the diagonal map A, oo (b,bN)-Z(G). So, Ay = B/Z(G) =

B.q and for B = N x T we have NiéN and Ay =T 4.

The Vinberg group acts on G/N by (g,h)-xN = gzNh~', hence also on (G/N)*. The
stabilizer in V' of the origin in G/N is Ap hence, as a V-space G/N is V/A .9

. We have defined V as (GxH)/Deg(G). Then A should be A™ in order to agree!
3.4.2. Loop Grasmannians of Gy, V., H.q. Here Gwill usually be simply connected.

Lemma. (a) The map G(V,.) — G(H,q) is an isomorphism on 7. It is a G(G,.)-bundle
and

g(vsc)red - g(vsc) Xg(Had)X*(Had)-

(b) For any semisimple G the map G(V) —G[V/Z(G)] = G(G.q)xG(H.q) is an open and
closed embeding.

(c) Also, the embedding G(V,G/N)—=G(V)—G[V/Z(G)] is the diagonal map
G(Bua) 29 (Gaa) XG(Ho).
(d) G[Vse, Gso/N] is open and dense in GV, (GSC/N)aﬂ] which is in turn closed in G(V,.).
Proof. (a) is the lemma [6.4.2] applied to the exact sequence 0 — G, — V.. — H.q — 0.
(b) Since Z(G) is finite anci V is connected, G(V) is open and closed in G[V/Z(G)| by the
lemma [6.4l Also, V/Z(G)—=GaaX H g, gives G[V/Z(G)] = G(Goa)xG)H .a).
(c) First, G(V,G/N) is indeed G(B,q) since

GWV,G/N)=G(V/H,G/N/H) = G(Gaq,Gaa/Baa) = G(Baq)-

Now, the following diagram commutes because all maps are canonical

GOV, V/AE) —— G(V) —— G(V/Z(Q))

G(Ap) — G(Ba) —— G(Ga)XG(Hoy)

(d) is a case of lemmas E2.22c and Z32d. (because G(G, (G/N)™) is connected EEI
). O

3.4.3. Closures of subindschemes S\CS,. Again, here G = G, is simply connected and
H=H,,V =YV, are its Cartan and Viberg groups.

%6 (b, h) € BxH fixes 1gN if b-N/N-h~* = N/N-(bN-h~') equals N/N, i.e., h=bN in H = B/N.
27

28 mas we will prove in the preceding subsection.
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Proposition. (a) The following maps are isomorphisms on 7

g(Vsca Gsc/N) u_C1> g(vsca (Gsc/N)aﬁ) 2} g(vsc) % g(Had) <u_4 X*(Had)-

)
(We will denote the component corresponding to A € X, (H,q) by the index A.)

(a’) For instance,
g(Vsc):g(HSC)OXg(VSC>Ted and g(Vsc)Ted = g(Gad)'

Also,
[G(Ve)alred = G(Gaa)n] and  G(Hsc)oXG(Vee)rea—G (Vo).

(b) G(Vee, (Goo/N)*) is the filtration Usex, (m,,) Sx of G(G.a). More precisely, the map
G(Vse) = G(Gaq) induces

GV (G/N)M)3 S8y and GV, (G/N)) X g(a1, LE* = [G(Vicr (G/N) )] ea—S.

Also, [G(Vee, (G/N)M) ] rea = G(Vee, (Guo/ Ny X a1, L3 s identified with Sy.

Proof. (a) We have G/N =V /Ay, so the first object is G(V.V/uDeg) = G(Ag) = G(Baa)
and the composition uguguy is G(B.q) — G(H .4). so mo(usuguy) is an isomorphism since
0 is mo(Baq) — mo(Haa). Also, mo(us) is a bijection by the lemma B.42la. The same
calim for the fourth map is just mo(G(H)) = m(H).

By now we know that mo(uquy) is bijective so mo(uq) is injective. However, for G = G,
the inclusion u; : GV, V/AR)CGV, (V/AR)™M] is dense ??, so mo(uy) is also surjective.
NO??? Pla . 727

XXX

A. The connected components G(V, (G/N)*T)y of G(V, (G/N)*). First, recall that the
]

embedding G(V, G../N)—=G(V)—=G[(V/Z(G)] is the diagonal Q(Bad)ﬂg(Gad)xg(Had)
(lemma B:42Lb). In particular, G(V,G/N)CG(V) embedds as G(B.q)CG(Gaq) composed

idx1

with the diagonal G(G.qa) = G(Gaa)XG(H a).

The ideal p_ om0, Y k[271] defines the negative congrunce subgroups of loop

groups A, dof Ker(Ao_. —Ao_jp. € Ap_CAk. In particular, we have 7T}, i)Q(T)O. Now,
we can write the connected component of G(B,4) corresponding to A € X, (H) as

G(Baa)r = G(Tai)a-G(N) = (Tog)p -2 -S54
So, inside G(G.q)xG(H .q) we have
0[G(Baa)s] = (Ap)p (27 27 AN)-(S5* X L] = (Ap)p_-(Sy*dx Ly,

29 |I|7
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Now, G(V, (G/N)) is the closure of G(V,G/N) inside G(G.q)xG(H,q) (lemma BZ2).
Since (Ay)p_ is an indfinite indscheme, the closure of G(V,G/N), = (QT)pf-(Sfad foad)
inside g(Gad)Xg(Had) is

GV.G/N)x = (Bp)y (S L) = (Ap)y (ST Ly™).
The multiplication here is clearly free, i.e., this is isomorphic to the product

(Ap)y xSfad. Since all G(V,G/N), are disjoint we see that G(V,G/N), is a connected
component of G(V, (G/N)*), we denote it G(V, (G/N)¥),.

B. We see that
GV, (G/N)™M)\ = GV, (G/N)™) N [G(Goa) xG(Haa)s] = (Ap)p— - (Syx Ly™)
= (Ap)p—-G(V,(G/N)*), < 9(Ar)oxG(V, (G/N)™).

Also,

GV, (G/NP) N [G(Gua) xLy\™] = Sy x L™ = G(G,(G/N)"),.
Clearly the map pri : G(Gaa)XG(H.q) — G(Gaa) identifies G(V, (G/N)?M), with S

which has the corresponding presentation as 7, pf-S/\Gadi g(T )OXS/\Gad (since T},  is indfi-
nite and G(B)«=G(T)xG(N)). O

3.5. Closures of Gp-orbits and the Vinberg semigroup V.
3.5.1. Compare with Joel’s “reduceness” conjecture. 7

3.5.2. The Vinberg semigroup V. E@l

Lemma. (a) The largest commutative quotients of V and V are H,4 and H,q. So, there
is a canonical map of pairs which we call the determinant map
det,

(V, V) — (Fad, Had)-

Remark. When G = SL(U) then (V,V) ety (H g, H ) is really the determinnat map
(End(U),GL(U)) — (A, G,,) (see B.12).

froof._The claim for V is obvious since H,q4 = V/G,. and G,. is semisimple. The map
YV — H,is . still to be constructed.

O

3.5.3. The indscheme G(V, V).

30 m Some basic facts should be written here from section [Il The following lemma is in

31 |I|7



31

Lemma. (al) G(V,V) is closed in G(V) hence also in G[V/Z(G)] = G(Gaa) XG(H ,q).

(a2) G(V,V) = pt is open in G(V, V) (however, it is not dense).

(b) GV, V)CG(V) is (Gaq)o-invariant.

Proof. (al) The first claim is because V is affine. The second because G(V) is closed in
GV/Z(G)] (it is also open, i.e., a union of connected components).

(a2) G(V,V) = pt is open in G(V, V) It is not dense because the boundaru of V in V is
not in codimension two.

(b) The open V-orbit Y° =V/Ain Y = Y is V itself, hence A = 1 and therefore A =V
and A = Vp. However, Hp acts trivially on G(V) so this is really just the invariance
under the quotient (G.q)o of Vo. O

3.5.4. The toric semigroup T = T. A Cartan T of G defines a Cartan T ©T.H of V

and T = (T'xH)/Z(G).

Lemma. (a) GV)T = G(T-H) contains G(V)'™ = X, (TH) = PxXpy_ )P. The map
from G(V)T® to Wo[g(V)]i)ﬂ'Q[g(Had)] >~ P is the second projection (LS, L )=
(b) A cocharacter (u,\) € po/Qp = X,(TH) extends to G,, - TH ift®J

—\ is dominant and —\ > w(—pu) for w € W.
Proof. (a) Since H acts trivially on G(V) the T-fixed points are the same as G(V)1" =
G(T-H). Also, G(TH)® = X.(TH) maps injectively to X.TH/Z(G) = X.(TauaxH,a) =
Px P and the image is given by the requirement that the two components have the same
image in Z(G) = P/X.(H). (If G is simply connected this is Pxp,5P.)
The last claim is because G(T'H) — G(H ,q) is the second projection.

(b) Since V is Endg((G/N)2), a cocharacters (i, \) of THCV extends G,, — V iff the
action of G, on G/N corresponding to (i, \) extends to an action of G,, on (G/N).

For a choice of a frame v; of (VS)Y, and n € X,(T), te element n(s) * 1¢cN of G/N
corresponds to a collection of vectors n(s)v; = @i(n(s))-viswwﬁ)wi for i € I. This extends
to an orbit of Gy, iff (w;,n) >0, ie., iff n € QF.

For a cocharacter (i, A) let us choose v € W so that p contracts N' =Y N, For w € W an
element of N'w™'B/N can be written as uz N with u € N" and x € Ng(T) a representative
of w=t. Then

(11, \)(s) x uzN = p(s)-uzNX(s)™t = POz (wp)(s)-A(s) "IN,

32 This funny statement is what is needed in order to match the convention Ly Lf .-2Go from 3
for parametrizing G(G)T®.

In order to get rid of the minus we would have to consider the (H, G)-action on N\G.
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As s — 0, we have ")y — 1, hence (p, A)(s) *uxzN converges in (G/N)Mif (wp—N)(s)-N
does, i.e., iffwpu—\€ Q+.) Therefore, the action of G,, via (i, A) extends iff A < wp
for all w € W. O

3.5.5. Connected components of G(V, V).

Proposition. (a) The connected components of G(V,V) are paremeterized by dominant
A€ X, (H,) by

def

g(V,V))\ = g(V,V)Xg(Had) g(Had))\ = Q(V,V)ﬂ g(V)A

Their reduced parts are identified via the map G(V) — G(G,q) as

GV, V)Alred = G (Gha).

Proof. (al) Remember that the map m[G(V)] ety m0[G(H )] = X.(H,q) = P is a bijec-

tion. The extension to a map (V,V) ety (H 44, H,q) shows that V lies above H,qCH .4,

hence in the union of all connected components G(V), of G(V) such that A is dominant.

(a2) According to the lemma B5Ab, G(V, V)™ = G(TH,T)® consists of all (LY, L)
such that A is dominant and A > wu, w e W.

The first projection G(Gaa)xg(Haa) —  G(Gaa) identifies G(V)xgm,y) L
with a connected component of G(G.4). We know that for A dominant
GOV, V) Xg(m,,) Li*G(G,y)y is closed and Go-invariant (lemma B53) . So,
from the description of its TR-fixed points we see that its reduced part is G\(G.q). So,

[g(v>v))\]red - g)\(Gad)XLfad.
[

3.5.6. Langlands self-duality of the Vinberg (semi)group constructions. The Langlands
duality G<G" for reductive groups in its Satake form extends trivially to a class of
reductive semigroups M+«>M" (whose invertible parts are G' and ). For this one just
replaces G(G) with G(G, M)CG(G) (which we think of as the “Loop Grassmannian of
M”) and the category of perverse sheaves Pg, [G(G)] with Pg, [G(G, M)].

33 In terms of (G/N)3fcy L Bier V&, the image of lims_,o (1, A)(s)*uzN in V,& is lims_0 (11, A)(s) *

uzv; = zv; if p— A L w? and it is zero otherwise. So, the limit is a projector to an extremal weight space
of V&,
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Corollary. For a semisimple Lie algebra g and its Langlands dual g the Vinberg groups
V, and V; are Langlands dual. The same holds for the Vinberg semigroups V,; and V.

Proof. First, the tori TH,; and T'Hy are dual. For this we know that X = X,(TH) is
PXP/QP so it appears in 0 — X — P®P — P/Q — 0. This dualizes to 0 — (P©P)* =

X* = (P/Q) = 0, ie, 0= (Q®Q = X* — P/Q — 0 Now we can see that X* is
PxpigP = X,(THjy) and then also the duality claim for Vinberg groups.

The standard representations of the dual of Vg are according to the proposition parame-
terized by all pairs of dominant (u, A) in PX p,sP such that p < A. This is precisely the

description of V. O
3.5.7. The nonreduced directions of G(V, V) [Junk].

Questions. (a) (?) For a dominant A\ € X, (G), the map p, : G(V,V) —G(G,q) induces

GV, V)x —G(Q)s.
(b) G(V) is not reduced. .
So, for A dominant G(V, V) NG(V)r = G(V,V)Xg,,) G(Haa)x contains
So, for A dominant GV, V) NG(V)r = G(V,V)Xgu,y) G(H.a)x contains

(c) We know that G(V) — G(G.q) induces for any A € X, (H,.q4) = m(V) and its image
A€ X, (H,a)/X.(H) = 1[G(Gaa)], the isomorphism [G(V)1]rea—G(Gaa)5-

(d) 77?7 So, G(V, V) N [G(V)Xg(m,, L] is the union of Go-orbits G, = Go-L,C G(Gaa)x
such that L, is contained in G(V, V). ...

Remark. Now positivity conventions agree for all parts of the theory and for the SL2
example, while the SL3 example currently has the opposite convention.

3.6. The loop Grassmannian Q(Gad,G—ad) of the wonderful compactification G,,.
3.6.1. The loop Grassmannian G(G,,P').

Lemma. G(G,,,P!) is the union of two copies of the semigroup Hy (at 0,00 € P!) where
the zeros in semigroups are identified. In particular Z—G(Gym, P')yeq—70[G (G, P)].

Proof. Clearly, G(G,,, A') and G(G,,,P* — 0) cover G(G,,,P!). Each is isomorphic to Hy
and they meet at G(G,,, G,,) = pt which is the zero in both semigroups. O

I
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Remark. For any local space such as G * G,,,P!) there is fusion in homology and in
K-homology. Notice that these only see the reduced part Z.

Here, the fusion does not work on the level of sets or categories (such as the coherent
sheaves). ¢

3.6.2. Vinberg semigroup and the wonderful compactification. Let G be semisimple and
G be the wonderful compactification of G,q.

Lemma. G carries a canonical V-equivariant H ..-torsor 9 which is quasiaffine. Its
affinization is the Vinberg semigroup V.

Proof. The G xG-stratification of G is given by intersections of smooth irreducible G-
invariant divisors D;, i € I. These define G,,-torsors & over G and an H.-torsor V' -G
which is the product (I1/G)ier & Since the divisors D; are invariant under V, so is the
H ~torsor V° over G.

O

3.6.3. G(G,G) Jor the wonderful compactification G. This will be calculateed using the
results for G(V, V).

Lemma. (a) There is a canonical map G(G.q, G) —G(H 4, H,q). This is an isomorphism
on sets of connected components wo[g(Gad,é)i 0[G(Hag, Haa)] = Xu(Ha) /| W.
Set

(b) The reduced part of the connected component G(G, G), corresponding to the orbit
WAin X,(H,) is the Go-orbit G\(G).

(c) The map G(G, G) —G(G)xG(H ., Hoa) is alocally closed embedding. For a dominant
coweight A\ = > A\, the connected component G(G,G), is a product of G\(G) and

G(Huaa, Haa)x = Tlier Haser-
Proof. Since G(G, G) = G(G.4,G) Ng(c,, G(G) we can suppose that G = G,q.

(a) We can rewrite G(G, @) in terms of the extension V of G = G4 and the V-equivariant
H,.-torsor V° over G (lemma B.6.2):

GV V)= G(V/H. V' /H,) = G(G.,G).

Now, V° is open in its affinization V and there is a canonical map (lemma 0.1))
g(v7 V) —>g(Had7 H—ad>
such that ....

35 For “sets”, if s,u € k are nilpotent then at {x,0} € H,1 we have a map f, : (C,C — {0,z}) —
(P, Gy, such that in the coordinates u,v on P!, at 0 and oo (related by uv = 1), it is given by u = z—z+s
near z and v = z + u near 0. Then as z — 0 in A!, the map f, does not converge in G(G,,,P!) [@.
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This gives a map G(G.q, G) = GV, V)C =GV, V) =G(V/H,,V'/H.,q).

G — pt /H.. which gives The H-torsor V’ over G gives a map G — pt /H .. which gives
G(V,V) =G(H., Hy). GV, V) = o
GG(V/H.,V'/H,) = G(Go,G) = G(H,, Hy,). gives O

Corollary. (b) For a Cartan T' of G, the connected components of the fixed point set
G(G,G)T are parameterized by X,(H) so that each Ly (A € X,(T)) lies in a single
connected component [G(G,G)T]y. Tt lies in the connected component G(G,G),. of
G(G,G).

() A= >, lios; with [; € N and o € {£1} then [G(G,G)"], is canonically isomor-
phich to the connected component Hgy ;) of the colored Hilbert scheme Hgy;. So, for

each Weyl chamber C in X,(H,q), the part [G(G,G)T]c is isomorphic to Hgx; and has a
structure of a semigroup.

Proof. (b;) We have G(G,G)" = G(T, Gr) where G is the closure of the T-orbit T-a = T

in G. For the wonderful compactification the factorization T T i, I1

Gr = (PY)!. So, the claim follows from the lemma B.6.11

(a;) We already know that X,.(T)CG(G,G). Also, G(G) is invariant under A for the
stabilizer A of the point a in Y°, Herea =1 € G =Y s0 A =1and A = Go. Therefore,
G(G, @) contains each Gp-orbit Go-Ly = G.

(c) There is a canonical map O

.er Gm induces

Example. G = SLsy. The SLy example is done later in details in B.12] and that of matrices
in 3.13'!

Besides G(V,V) and G(G,G) 1 am also wondering about G(GL(V),V) ? However, for
SLy. Vis just (G/N)at

i
Remark. G(H ., Haq) = Hoxr.

3.7. Quasimaps. These are G(G,B) = G(GxH, (G/N)*) [Beilinson]. [How do they
depend on Z(G)? In the adjoint case can they be written using the Vinberg group?]

3.8. Closures of orbits of U = Ug X Lo. For P = B we use (G/N)* and for P = G
we use V = Endy ((G/N)2T).

In general we have a torsor G/U — G/P’ for P'/U = (P/U), We factor it as
G/U—~G/N—G/P" with fibers N/U and P'/N, then the relative affinization (G/U)gﬁN

37 mMaybe in ? or in section [I]
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has fibers endomorphism bundle End[(G/U )gffN] which is the Vinberg semigroup of
P'JU 777 | then the

3.8.1. U acts on G(G,G/U) = G(U)CG(G). Here, Lo acts by conjugation.

This suffices for P = B. However, we want to act on a larger subspace which is an orbit
of the connected component (Px)o = (Lx)oUx of Pg. or of orbit of

3.8.2. The first step may be to get to closres of orbits of (Pg)o since these contain the
closures of orbits of U.

G(P)=G(G,G/P)=G(V,V/P). For the cloure thewe are candidates for P as
(G/P")™M/(P/P)and(G/U)™/(P/U).
One has G/U — G/P'" and P/U — P/P’, hence
P £ (G/UY)(PJU) — G/P)*/(P/P) < P.

3.9. Intersections.

3.9.1. Orbits of a subgroup VLG on G(G). For a subgroup U of Gx we would like to
realize the (closures) of orbits of U on G(G) in terms of some mapping space G(U,Y)
related to G and *U.

Here, we choose the group U by combining G with a torus H’ such that X,(H’)
parametrizes the 2-orbits. This gives a Vinberg type group U' = Gx 5 H'.

Next, its semigroup closure U acts on some space Y'. For each v € X,(H') we get a
connected component G(U',Y"), of G(U',Y") and its reduced part should be (the closure
of) the orbit U-LY in G(G).

Notice that U'/H' = G 4.

3.9.2. Intersections. The intersections in G(G,q) of several kinds of orbits or their closures
(say Nier U;L,,), are then given by

H [G(Us, Y)) = G(Gly)] = Q(H ui/Gad,H Yi/Goa)

(see lemma 2.2.11b2. Notice that [[, U;/G.q has a Cartan T'x z) [ H;.

Remark. So, the interesting objects are now the orbit (U'xq, U")a for a = (d',a”") €

Y'xY"” and its closure, as well as the same for TH'H"a for the Cartan subgroup of
U'XGadU’.
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Ezample. The space Uy, Gy NS, has two parameters A\ and v in X,(H). So, in order
to build its classifying space we replace U by Us = U X g, U and then the above space of
intersections:

G\NS, = GUs, VX (G/NY ) x gy 2 Ly

Remark. The same for U S_;f N S~—p. However, when we fix A = 0 then we have hust one
parameter v and U suffices.

3.10. Zastavas. This is Drinfeld’s description of zastava spaces as moduli of maps from
a curve

3.10.1. Zastava spaces 1. Sy N S—; D Sy N S_; Loop Grassmannian G(Gx H) embedds
into G[Az)\(GxH)] = G(V) as a union of some of the connected components. Here,
the map 7, (GxH) =7 (V) , ie., m(H) —m(H,), is the inclusion QCP.

Let GxH act on (G/N)*x(G/N-)* by (g, h)(z,y) = (9, gyh™).

Lemma. For this action of Gx H

So N [Wuex.m S = GIGXH, (G/N)x(G/N7)™] = G[G, (G/N)*x(G/N-)/H].

SN S, = G(GXH, (G/N)"x(G/N7)" ) xgun LL.

I

Proof. The intersection in G(G) of Sy and Uyex, () S, is

G(G, (G/N)™) Xg(cpn G(GXH, (G/N7)™)
= G(Gxa(GxH), (G/N)xu(G/NT)M) = G(GxH, (G/N)™x(G/N™)™)

where the action of GxH = Gxg(GxH) on (G/N)Ex
One can also write G(G'x H, (G/N)x (G/N~)21) as

G(IGxH]/H, (G/N)'x(G/N")/H) = G(G, (G/N)*"x(G/N")*/H).

(G/N,)aff) is just as stated above.

Finally, for i € Q, So N S_; equals
G(G, (G/N)™)xg(cp0)|G(Gx H, (G/NT) ) xgu L] = G(GxH, (G/N)*x(G/N™)*F) x g L.
O

XXX

3.10.2. Zastava spaces 2. So NS, 2 Sy NS, . Let V act on (G/N)Mx (G/N7)M by
(9, h)(w,y) = (g2, gyh™").
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Lemma. For this action of V
SoNUpex. (o) Sl = GV, (Gaa/N)5(G/NT)M) = G(Gaa, (Goa/N) % (G/N- )21/ H).
SonS, = GV, (G/N)Mx(G/N™)* M) x g, L" ad,.

Proof. The intersection in G(G,4) of Sy and Upex, (H,q) g is

G(Guas (Gaa/N)™) Xg(Gpapn) GV, (G/N7))
2 G(Gaaxiyy Vs (Gaa/ NV (GINT)M) = GV, (Gaa/N)™x(G/N7)™)
where the action of V = G,4X¢,,V on (Gad/N)aﬁx(G/N,)ag) is just as stated above. This

can be written as G(V, (Goq/N)Mx(G/N-)2H) = G(V/H, (Goa/N)Mx(G/N-)M/H) =
G(Gaas (Gua/N)Mx(G/N™ ) H).

Then
50NS, = G(Gaa, (G/N)M) X g(G0 oy GV, (G/NT) ) X1, L ad, = GV, (G/N)* (G /N xgu, )L
O

Remark. Pa (G/N-)2%/H) differs from (G.q/N~)2%/H,4) since Z(G) does not act freely
on (G/N-)a,

3.10.3. The filtration of Sy by intersections Sy N S;, a < 0.

Theorem. [Drinfeld] U,<q So NS, is given by the classifying space...

Proof. The space Uye+ SaN Sy is the fibered product over G(G) = Map((d, d*), (BG, pt)]
of Map|(d,d*), (G\(G/N)* pt) and Map[(d,d*), (V\(G/N)™ pt)],cq , i.e., the space of
maps from (d, d*) to the fibered product

G\(G/N) 5 ap GI(G/NYM/H] = G\[(G/N)* xp (G/N)™/H].
0.

3.10.4. Corollary. The zastava spaces Z(G, N, N~) is the moduli G(G, (G/N*)2x (G /N~ /).

This is the same as the moduli My for Drinfeld’s compactification of a point
Y £ G\(G/N) < (/N7 H].

This global modul extends the intersections SoNS-, a<0.

o)

3.10.5. Orbits in G/NTxG/N~. The space G/N*xG/N~ has the origin a = (N, N7).
Let V act on G/NTxG /N~ by (g,h) * (a, ) = (g, gBh™1). Let us also recall the Bruhat
decomposition of NT\G/N~ into “cells” K, o NT\(NTwB~/N~, w € W(T).

38 m CHECK which one should appear in S_ﬂ
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Lemma. (a) The orbits of Vin G/N*xG /N~ are indexed by W via w— O, o V-(N,wN™).

The isomorphismm G\[G/N*xG/N‘]iNJF\G/N_ (by (a, B) — a~1f3) identifies the
quotient G\O,, with the Bruhat cell K, o NT\(NTwB~/N~. The open orbits corre-
spond to w = 1.

(b) The V-orbit V-aCG/NtxG/N~ consists of all (o, ) € G/NTxG/N~ such that
aH, SH meet (equivalently, o meets SH or aH meets §. This is open in G/NTxG/N~.

The G-orbit G-aCG/NtxG /N~ consists of (a, ) such that @ and 5 meet. It is a G-
torsor.

(c) The boundary 0Y¢ of the dense point in ) is a divisor D with irreducible components
D; parameterized by the vertices I of the Dynkin diagram.

Proof. (c) follows from (a) and the same statement for the Bruhat cells in N*\G/N~.
Here, D; = O,. ]

Corollary. Zastava space Z¢(G) has a canonical structure of a local space over C. The
structure map 7 : Zo(G) —Hcer to the Hilbert scheme of I-colored points of C' is

def

w(f) = fH0Y°).

Proof. If a map f: C — Vg visits Vg then the pull back 7 (f) o 710V is an effective

divisor D in the curve C. Moreover, it is I-colored, i.e., a system f~'D; of finite
subscheme of C' indexed by ¢ € I.

The locality structure for a disjoint union D = D'UD” is the gluing map
Zo(G)pxZeo(G) pr — Zeo(G) p which takes maps f’, f” to unique f such that f = f” off
D" and f = f" off D". 0

3.10.6. Appendiz. Some objects related to zastavas. On the global level each parabolic
P defines a partial compactification Bunc(G, P, M) of Bunc(P), defined through the
diagram GO P—M for the reductive group M = P/P;.

For any subgroup VCG we consider the normalizer Ng(V'), its quotient My = Ng(V)/V
and its center Zy. Then Gz My maps to Vy &f Autz, (G/V). If G/V is quasi-
affine we also get the semigroup Vy & End 2, ((G/V)) whose invertible part is Vy =
Autz, (G/V) = Autz, (G/V)*).

This construction appears in [?] when V' is related to some parabolic P = U x U. Here,
V' is either U or P’, hence its normalized if P and M = P/V. When P is a Borel B and
V = N we get the Vibnerg semigroup V.

3.10.7. Appendiz. Twisting by a P/V -torsor. Furthermore, a torsor @ for P/V over C,
defines a twisted form [(G/V)¥ x(G/V ) /H_]? over C. The corresponding zastava
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space
G(G, [(G/V)Ix(G/v)™/H]?
is the space of sections of [(G/V)x (G/V =) /H_]? over C.

3.10.8. Appendiz. The paper [?]. This setting was studied in [?] when V is either the
unipotent radical U of P or its derived subgroup P’. In the first case the stalks of
intersection homology sheaves were computed. That paper use the Pluecker description
(“coordinate description”) of zastava spaces.

The case V = U also appears below. The affinizations of G/U and G/[P, P] are studied
in the notes on affinization [6

3.11. Intersections G, N S,.

3.12. Example G = SL,. Let U be a two dimensional vector space and G = SL(U).

We consider the structural results in B.I2.IH3.12.3. We start woth the notation (3.12.2)
and the action of BCG on (G/N) ~ U [@IZ3).

For the Vinberg group V = V, = GL(U) we calculate G(V,(G/N)™) and
G(GxH,(G/N)™) in B124

For U of any dimension and the pair VCV given by GL(U)CEnd(U) we calculate G(V, V)
in 3.13]

3.12.1. Gy = SL(U) and Goy = PGLU). a

3.12.2. Notation. We choose a basis (ey,e_) = (e, f) so that G = SLy,D B = (ji) =
N-TforT=(3%2) and N = ({ 7). Let AT = {a} correspond to Ar(n) via T—H defined
by TCB. For p = «/2 we have p[(“ 0 )N] =a.

0a?

3.12.3. Actions of BCG on (G/N) =~ U. Group GxH acts on G/N by (g,tN) *

aN Y g-xN-(tN)™' = gat7'N. This descends to an action of the Vinberg group

y e Z(G)\(GxH) since the diagonal Az C(ZG)? acts trivially.

Lemma. (a) The affine closure of G/N is identified with U via the orbit map ¢ : G/N —
U, gN — g-e.

(b) The conjugation action of B on G/N gives a new structure of a B-module on U,
isomorphic to the B-module g/n.

(¢) The action of V on (G/N)* gives V=G L(V) which is identity on G and H is identified
with Z[GL(V)] 2 G, by p~' : HSGp.

39 m Need to see the difference in the map G[SL(U),U] — G[PGL(U), N3] to check general claims.
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(d) The image A, of T in V by T' > t+—(t,tN) is canonically isomorphic to T,4. In
terms of GL(U) the group Ay is S % (39). Asa V = GL(V)-space G/N = U — 0 is
V/NA, = GL(V)/NS.

Proof. (a) The stabilizer of e = ({) is Go. = N, so ¢ : G/N — U — {0} is an isomorphism
of G-spaces.

(b) The claim is that the action of G on G/N becomes the standard G-action on U and
the H-action becomes via p~! : H—@,, the standard action of G,, on a vector space.

Since s = (&% )N € H acts on G/N by sxaN = z(§,% ) N, So, the transported
action on u = ze € U — 0 is by

sku=sxze=x (2, %) T e=altwe=alu= p7l(s)u

(c) The new action of b € Bonu=ze € Uisb - ze & (*z)e = ba-b~le = pp(b)~ -bre.

So, the new B-action is U®pp~!, and this is non-canonically isomorphic to g/n (both are

indecomposable B-modules with the same weights —2,0).

(d) The stabilizers of 1-N € G/N in V and of e € U in GL(U) are clearly NA, and NS.
The map T'— Ay = S sends ¢t = (¢ %) € T to the image of (¢,tN) in GL(U) and this

0a?

ispt(t)t=at(8,%)=(5.2). O

3.12.4. The spaces G(GxH,(G/N)*H\CG(V, (G/N)*) = GIGL(U),U]. We have

def o

GV (G/N)™M) —— G(Gaa, (G/N/H) ——  G(Ga, B)

| | |

def

GIGL(U),U] — G[PGL(U),Gn\U]. —— G[PGL(U),P1].
since G(V, (G/N)) = G(H\V, H\(G/N)*) = G(G.a, (G/N)*T/H).

Lemma. (a) G(V, (G/N)™) = G[GL(U),U] is the submoduli of G(V) = G(GL(U)) con-
sisting of all lattices U in the sheaf URQOy« over d, such that U contains the constant
section e € U. (For U € G(V,G/N) the condition is that U N Ke = Oe.)

(b) Then G(G, (G/N)*T) = G[SL(U), U] is the connected component G[GL(U), U]y, i.e.,
the submoduli given by U € G[SL(U)|, i.e., by asking that the volume of the lattice U
is zero.

(¢) In G(SL(U)) the closrues of semiinfinite orbits Sj; are the moduli of lattices L of

volume zero such that L 3 zle.

(d) Also, Sy N S—;Lp is the moduli of L such that L > e, 2"f.  This is
Grp[z7 "0 /0edO /2" O f]?.
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Proof. (a) The elements of G(V, (G/N)*) are pairs (7,7) € G(V) such that for the
stabilizer A = NSCV = GL(U) of the origin IN = ¢ in Y = (G/N)*T = U the section
AT € T(d*,T) extends to I'(d, V7).

Here, Y7 = T 1x,U is a vector bundle U over d and (Y°)7 is U — 0. One recovers T as
the space of trivializations Isom(U,U).

Now, NS acts on T = Isom(U,U) and the restriction of isomorphisms to e € U gives
NS\Isom(U, U)i U — 0. We can think of 7 as an element of Isomg(U,U) and of

7 = NST as the section Te of U on d* (which is invertible in the sense that OTCU is a
line subbundle). Then the condition is that 7 extends to a section of U on d.

If we think of 7 as the embedding 77! : U= U®Oy4 then the data (T, 7) are a lattice U
in U0y (a vector subbundle which is generically everything) and the condition is that
U contains the section e (i.e., the subsheaf Oe).

(b) For a subgroup G’ of G G(G,Y)NG(G") = G(G', Yo ) (proposition 2.32lb). So, if
G'a = Ga then G'a = Ga, this is G(G,Y)NG(G') = G(G",Y),

Now, for the origin a € (G/N)*! we have V-a = (G/N)* = G-a, hence G(G, (G/N)*T) =
GV, (G/N)™) N G(G), ie., the elements of G(G, (G/N)) are just the elements of
G(V,(G/N)) which lie in GG(G) = G(V)o, ie., such that the lattice U has volume

Zero.

(¢) The description of Sj; for | = 0 is already in (a-b). The general [ follows by ta shift
Slp = Z_lS(].

(d) By conjugating with s € W — 1, we get that S,,,; is given by L > z7™ f.

SLy, fixes the standard symplectic structure w on U. Using w we see that
L>e2"f e LD0e®O"f & L = LC(0edO2mf)r = Ofe0ze. So, SyNS-

—mp

consists of all subspaces M = L/(Oe®z™Of) of 27"0/0e®O/z"Of which are
z-invariant and of dimension m. 0J

3.12.5. Zastavas. E@l
3.13. Example: Matrices.
3.13.1. GV, V).

Lemma. For any vector space U consider the action of G = GL(U) on Y = End(U) by
left multiplication. Then

GIGL(U), End(U)|C GGL(U)

g



43

is invariant under G;, (the global version of the group Gp). It is the moduli of lattices
U in U®O,, which lie in the trivial lattice O¢. (For dim(U) = 2 and G = SL(U) this is
gV, v).)

Proof. For (T,7) € G(G) let U = T *xcU be the corresponding vector bundle. We
have Y7 = Hom(U,U)” = Hom(U,U”) = Hom(U,U) and (Y°)7 = Isom(U,U). The
stabilizer A of the origin 1 € End(U) is trivial and so A = G acts on G(Y, G).

So, (T,7) is in G(G,Y) if the trivialization 7 € I'[d*, Isom(U,U)| extends to a d-section
of Hom(U,U). In terms of 771 : U—=U®Oy- this means that U contains . Ux0,. O

Question. . Does this say that G(V, V) is in this case reduced — it seems to be literally
a union of Gp-orbits?

3.14. Functions on asymptotic cones as intersection homology. The G-geometry,
i.e., the moduli G(Gy,Y]) that corresponds to a given G-variety Y seems easy to find.
However, the problem is that its connected components should really be viewed as a
filtration and the perverse sheaves on these components should than be viewed as an
indsystem that really geometrizes O(Y).

The second difficulty is that the appropriate sheaf may be a projective rather than just
an IC sheaf (as wee see in the case Y = Q).

Question. Does this prevent constructions through a small resolution or a perverse cor-
respondence transform?

3.14.1. G(G,Y) when Y is a semigroup closure of G. In this casse the intersection hom-
loogy of G(G,Y') has a commutative ring structure. Its spectrum is an affine G-variety.

Question. Ts this the affine closure of a homogeneous space of G? ([l

Theorem. The intersection cohomology IH|[G (V, V)] is the ring of functions on G'/N, so
its spectrum is (G/N)2f

Remark. So, affine G-variety Y = (G /Nv)aﬁvgives Vinberg group and semigroup Vy CVy.
Then IH[G(Vy, Vy)] is O(Y) for Y = (G/N)?.

Question. This extends the L-duality of semigroup closures to L-duality of closures of
homogenous spaces? Maybe of affine spherical varieties? Such Y defines its Vinberg pair

Vy CVy, then TH[G(Vy, Vy)] is O(Y).

3.14.2. aG. Let aG be the asymptotic cone of G.

41 mcheck direction

42|I|
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Lemma. O(aG) is approximately
]H[Q(VXHadV, VXV)]

[Yes as a vector space but not as convolution object in sheaves. In order to get algebra
structure on IH[G(Vx g, V,VxV)] We need to combine the convolution of IC(G,) and
IC(G,) with the projection to the quotient 1C(Gyy ).

Problems:

(1) O(G) is an injective object in Rep(G). The correct construction is as in [MV]
exvept that it shopuld be interpreted as coinduction.

(2) Since O(G) is indeomposable ober integers (7), ot can not be naturally constructed
on a disjoint union such as G(V2,Y).

So, the construction of functions on G-varieties in the form approximately G (K, K) only
works for the G-varieties that are “asymptotic cones”.

Question. How does one deform the asymtotic objects to the correct objects? (Asymptotic
cones are correct in characteristic zero.)

3.15. Appendix. Satake induction procedures. This has not yet been writ-
ten. An example is the construction of O(G) as induced from O(cH) realized as
(X(H)—=G(H)).kx. (). Then one pulls back along ¢ : G(B) — G(H). The final step

from B to G uses vgg.

(The induction needs to be in Kp-equivariant sheaves. This is miraculously satisfied for
q* and it is exactly the construction for the step from B to G.)

Also, the the line bundle and the Poisson bivector should be induced from a Cartan.
Interestingly, the passage from H to B seems weak but everything is recovered once one
get to G.

3.16. Appendix I. Several kinds of induction. .

A. Induction of conditions (Y,a). For ¢+ : G' — G one has the pullback func-

tor +* : Spg — Sp(G’) and two direct image functors v, ™ : Spl, — Sp(G). Here,

*(Y,a) = (Y,a) where Y becomes a G'-space, while ¢,(Y’, a’) oo (GxagY' (1g,a") and

2y gy ((GxaY')™ (1g,a')). Here,
G(GY') = G(G,u(Y") € G(G, & (Y).

For a parabolic P = UL one has G<i)P—q»? = P/U = L. The parabolic inductions

functors are

def . def .
pInd¢ = 0" and  pAInd¢ = Mg
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Ezample. We can view G/N as GXypt =2 Gxpg(B/N), hence
G/N = pInd$(H) and (G/N)™ = gAIndS(H).

This is used for a construction of the disjoint union of closures of ( By )g-orbits
Uy Sy = GV, (G/N)™) = G[Auty((G/N)™), Endy((G/N)™)),

ie.,

Uy (Br)o-Lx = G(Auty[pAInd(H)], Endy[pAlndf (H)]).

B. Construction of O(G/N) = C’oz’nd%[@(pt)] = C’omdg[O(H)] in terms of induc-
tion of conditions We have

OG/N) = THIGWV, V).

Here, V should appear because we want to separate closures of Go-orbits. Then the
construction ¥V = Endy ((G/N)21) si a “natural way to restrict” the V-Grassmannian.

However, for me it is still mysterious on the G-side, i.e., from the point of view of
constructing the closures Gp-orbits. On the other hand it seems natural from the G-side
since “closures of Gp-orbits” here means exactly the representations of V (the perverse
sheaves that appear on G, are the representations of G' whose weights are dominated by A).
Then one notices that the representations of HY should be realized on the Grassmannian
of the L-dual of V, i.e., of V.

Remark. Formally, V is also a double centralizer of V in the action on (G/N)l =
sInd%(H), ie., in End((G/N)2). As it should be, V is dense in its double central-
izer.

C. Satake constructions of functions of G, G/N and N. Here, O(G) = Coind$ (k)
and O(G/N) = CoindS (k).

Question. Can one combine the construction of O(N) of Jared and of Coindg in terms

of induxction of conditions to reconstruct O(G)?

D. The GS constructions of (parameters for) canonical bases. This one is “dif-
ferent” in the sense that???

E. Induction for conditions and Satake construction of (parts of) G. Induction
of conditions should clarify the Satake constructions? In particular, it should suffice for
closures of U-orbits.

F. IC shaf of G(G,Y?1)? The interesting spaces are the closures of orbits. The closure
of G(G,Y)CG(G) seems to be G(G,Y*). So, one ends up computing the IC sheaf of
G(G, v,



46

This may clarify the idea of the interseting IC sheaves being produced together with the
spaces?
G. From G to V. Fo a subgroup C of Gy, in order to realize closures of orbits C-LyCG(G)

for A € X.(H) we need to replace the group G with GxH (or more economically by

V¥ ax z@yH). ince the connected componnets G(H ), of G(H) are indexed by A €

X.(H), The role of the factor G(H) in G(Gx H) is that it separates the closures of C-L,
for different \’s in the sense that G(G)xH) = U\ G(G)xG(H), and one can realize
C-L\CG(G) in the copy G(G)x Ly € G(G)xG(H)y of G(G).

3.16.1. The closures of S{ = UL,\ for the unipotent radical U of a parabolic P. When
P =B =TN then U = N and N = Tp N is the reduced part of B(K)y. For the orbits
S, of (Bx)o we have

Unex., () @ = V[V, (G/N)aﬁ]-
When P = G then U =1 and U = Gp. We have
I—'AEX*(H)Jr g_)\ = g(V,V)

Therefore,
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4. MV cycles and their T-fixed points

4.1. Inclusion Nz' Sy'N7' Sy’ may be proper [Zhijie]. Here s = (sz,,...,51) is a
reduced decomposition of wy and w, = s, - -s1, while A, is a Lusztig walk.

Ezample. In A consider A = i + j and s = (s1, 82, $1). We consider two Lusztig walks
to A corresponding to two irreducible components of So N Sy o« = (0,4,4,7 + j) and
B = (0,0,7+ 7,2 + 7). The corresponding MV-polytopes are the two triangles P, =
conv(0,i,4 + j) and Pz = conv(0,i + 7, 7).

(1) The Kamnitzer cycles for «, 5 are

S:= SEN SN SEU A SIPT and S5= SEN SN SEY N SHP

i+7 i+ i+

He proves that they are open in MV-cycles C,,, Cj.
(2) On the other hand, the intersection of closures

S: = S ns'ns>™n s

i+

is clearly larger than C|, since it contains the point j.

(3) Actually, this intersection of closures S, seems to be the union CoUCg, ie., it

is the same as the intersection of the first and last term S N Sf}jsl

4.2. Q_AT. Denote the Cartan T'x z()H in V by T. Its closure in V is a semigroup that
we denote 7T .

Lemma. For any dominant A € X, (H) the T-fixed points in G, are
T

g_,\ = Q(T,?)Xg(Had) Ly.

Proof. We know that L Q_AT is (lemma ?7)
GV, V)red)” =[GV, V) %61, G(Hua)red) = GOV V) Xg1,0) G(Had)red
and GV, V)T is G(Zy(T),V) (by ??). Since Zy(T) = T we have
g, V)" = G(T,V) = G(T, Ty)
where the base point in V is y = 155, so the orbit Ty is just 7 and its closure in V is the
semigroup 7. Finally, G(H .q)req = X« (H) gives LI Gy = G(T. T)Xgu,,) X«(H)=. O

4.2.1. T-fized points in MV cycles. Let C' be an MV cycle with Lusztig coorinates (s, )
and AK coordinates A\e = (Ay)wew -

Conjecture. CT is described in terms of A\, the “same” as Q_AT in terms of W-A.
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4.2.2. Recall that for adjoint(?) G its Cartan group H has a semigroup closure H =
(Gp)! (with H = (G,,)1).

Define the semigroup H% by asking that 'y lies in H. This means that ....
For each w € W we get H2 = HZ_ and then H? ' Aew HZ . Notice that we can also

define T'x H by using ¢ : TSH given by (any) Borel B that contains 7.

Lemma. The T x H defined here is a Z(G)-torsor over T defined above. O

We are really interested in a larger object based on T'x H 5" for the T-fixed points torsor

BT for Wy % N (T)/T.

4.3. Questions.
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5. Odds

5.1. The “I-colored divisor map” div;: TI'[(C,n¢), (P, P)] — Hcxi. Any H-torsor
P has an extension P & Px # H. When G is simply connected then the identification
FiG—mI defines the “I-colored divisor map”

div; : T[(C,nc), (P, P)] — Hexi
(The boundary 0P 4P P is a divisor with normal crossings with irreducible components
0; P indexed by i € I.)

The divisor of a rational sections ¢ € I'(nc, P) has less structure, i.e., div;(¢) is defined
to lie in Z[|C|xI]. Here, ¢ extends to a regular section of P iff div;(¢) is effective.

5.2. Supports. A pointed stack (), pt) will give a machinery (an algebro-geometric

“sigma model”) that associates to each source space X with a family ® of supports the

space Mape(X,)) of maps from X to ) supported in ®. This is lim Maps(X,))
— Sed

where
Maps(X,Y) & Map[(X, X - S), (Y, pt)].

Ezxample. If ® consists of all proper closed subvarieties then maps with ®-support are the
same as as generically trivialized maps Map[(X,nx), (Y, pt)].

If X is also a curve then it is the same as finitely supported or generically trivialized.

5.3. The Rx-family Mif of Hecke groupoids over Map(X,)). For a space ) let
./\/li,( — R with fibers at E € Ry

MY, pt)e & Map(X, V) X ptap(x—ry) Map(X, D).

This is an R x-space familiy of groupoids over Map(X,)).

A point pt — Y defines the constant map pty : X — ) and then also the subfunctor
MX(Y, pt) with

MY, o) & Map(X, V)X prapx—zyptxy = Map[(X, E — X), (Y), pt)]-

The locality of /\/13)5 — Rx means that the original groupoid is local in k" variable for
k=1m2, ie., for E', E? € Rx disjoint we have (using pry, : MﬁptxMap(Xy) each time)

MX(Y, pt) g1 X arapx, ) ME Y, pt) 2 = MEY,pt) prupe -
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Remark. The idea is that in order to reconstruct the group G, i.e., the representing
object (B(G), pt) for G(G, pt), maube one should replace G(G, pt) with the corresponding
Hecke groupoid G(G,pt) ?

Then the origin Ly — G(G) gives B(Go) at least. Now one could take the part invariant
under Aut(d) to get B(G)?

Sounds good?

5.4. Check 2.1.71(2).

5.5.

Question. 1 would also like to see the corresponding constructions for global curves.

5.6. Improve the text. For instance for the stabilizer A of @ € Y in G, we will relate in
2.3 the orbits of Ng(A)p-AxCGx in G(G,Y)CG(G) to the Cartan fixed points.

5.7.

Ezample. The standard zastava spaces are not projective and Y = (G/N)*xG/N is not
affine (but Y is still Gx H). , i.e., pt = Y is open. (So, A = 1 and one is in the Drinfeld
setting, i.e., in the local space setting.)

Remark. When A =1 then G(G,Y)g is Map[(C,C — E),(Y,Y?)]/Go, ie., G(G,Y) is
Map[(Cyne), (Y, Y?)]/Go. So, we can think of generalizing it by

e modifying the target (Y,Y?) to 'Y, Y?®
e replacing the group G acting on the target by a groupoid G on 'Y, compatible
with Y°.

Question. We know that Y = U, xU_ contains V as the open orbit. Does it contain V?
VY acts on Y, does V act on Y, does it embedd into Y7

Ezample. In SL,, is Y a torsor copy of the semigroup V? Here, a is a frame (e, f) of U
and Y° = Va = GL(U)(e, f) is exactly the space of all frames of U.
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5.7.1. The maps d — Y = (G/N+)2x(G/N~). These will have to be divided by Go
but for a moment we consider the maps themselves.

We consider the cases (1) when we exclude U_ and (2) when we keep U_ and allow D to
go to ooc.

[Here, (1) is different from (2) since A = Ap # 1, so the map is not the only part of the
data — we also have a torsor.]

1. When we exclude U_ we get all u € Up that can be completed to a frame of Up, i.e.,
such that OuCUp is a summand of Up.]

2. When we allow D to go to coc then we get all frames (u,v) of Ux with u as above.
So, when one divides by G one gets

2. all Lagrangian lattices that contain e (?)

1. the obvious part is OQu but remember theat there is also a torsor T .

5.7.2. Twisting. The zastava space is Z = G(GxH,Y for Y = (G/N*+)aTx(G/N—)a

with H acting only on the second factor. It can be viewed as G(G,Y') where Y lives over
HexrxC and at D € Heyg the fiber is

Yy, = (G/N*)x(G/N")(D)/H.
Something like that?
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6. Appendix Generalities on loop Grassmannians

6.0. Summary. We will describe Ni-orbits ST in G, their closures SE, the intersections

SN S_B_ and the the T-fixed points in each of these (i.e., the intersections with the the
loop Grassmannian G(T') of a Cartan).

6.0.1. The loop Grassmannian of the multiplicative group G,,. For the smooth formal disc
d the commutative monoid Sy freely generated by the disc d is its Hilbert scheme (H,4, +)
with the operation + = Uy of the schematic union, i.e., the addition of divisors. The
commutative monoid Ay freely generated by d is the loop Grassmannian group G(G,,) =
Agy. The map Sy — Ay is a close inclusion Hy—G(G,,). When we replace d with the
pair (d,a) (where a is the center of d) then S;, = A, is the quotient of G(G,,) by
G(G,,)® = Z, and the quotient map has a splitting which is the connected component

gO(Gm) of g(Gm)')

The embedding Hy—G(G,,) is by Hg > D—0O4(D) € G(G,,). The image is the submonoid
G(Gpm, G,) for the semigroup closure G, = (A, ) of G,,,. The inverse map G(G,,), G, —
H, is the divisor map div.

6.0.2. Inclusions G(N)CG(B)CG(G). divy : G(T) — Z[I] = X.(T). Notice that
divy(Ly) = —A since Lo = (T'xd, 1) and Ly & 2Ly = (T'xd, ).

The induction embeds G(B) as a subfunctor G(G, B) of G(G). It consists of all z €
G(G) which have a reduction zp to B (such reduction is unique). We denote divg(z) =
divy(zy) for the image zy of xp in G(H). Then the connected components of G(B) are
Go(B) = {divg = a}.

The action of G(T') on G(B) gives identifications

G(T)xG(N) = G(B) hence Go(T)xG(N)=Go(B).
Here, G(N) is reduced and G, (T)cq is the point L.

6.0.3. N,%—orbits and their closures. We denote Soﬂf def N,?La and N = NT, hence S, =
Ni-L,.

The Ni-orbits S, form a stratification of G. We have U, S,CG(G, B)CG(G) and these
are equalities for points over a field. Inside G(G, B) = G(B), S, is given by all x with
TH = Lg

The closures Sy, form a filtration of G. We will only describe the closure S, inside G(G, B),
here Sa N Q(G, B) = Uﬁga Sg.

43S0, Go(G,,) is obtained by stabilizing the Hilbert scheme (#4,4) with respect to a.
44 The divisor map is defined for any torus T as divy : G(T) — X.(T). It indexes the connected
components G, (T) = {divy = a} by a € X(T).



6.0.4. T-fized points in S, i.e., filtration of G(T) by S,. First, G(T) lies inside G(B) =
G(G, B). While G(T)N U,S, is just G(T)* = X, (T), the exhaustive filtration S, of G(G)
induces one on G(T).

6.0.5. Intersections ST N S_ﬁ_ and thewr T-fixed points.

6.1. Loop Grassmannian of G,,. Inside G(G,,) we consider a generating submonoid
(Ha,Uq). and for the center a of d we interpret the submonoid 2 xGy(G,,) CG(G,,) as a
product of HCH, and of the “a-stabilized Hilbert scheme H,,” of the disc.

Lemma. (0) The monoid (H4,Us) embeds into G(G,,) by a closed embedding H} >
D—04(D) € G(G).

(1) The image is the submoduli G(G,,, G,,) consisting of all (S, o, D) € G(G,,) such

that o extends to a section of Sx¢, G,,. The inverse map div : G"(G,,) — Hq is

div(S, o) & 570 € He for (S,0,D) € GL(Gp).

(2) This embedding identifies the submonoid N[a]CH,; with the submonoid

NCg(@,,). [
(3) The connected component Gy(G,,) (viewed as a quotient of G(G,,)), is identified

with the “stable Hilbert scheme” of the disc

Higoy & Tlim H"(d)
—

where inclusions are given by adding a multiple of the center ¢ of the disc.

(4) For G* 9,06 (Gy), the difference map (a, b)—ab™! gives an isomorphism

Grxgr Gt = G.

Proof. (3) The factorization of G(G,,) as 22x K_ for the negative congruence subgroup
K_CG,, k, identifies the connected component Gy(G,,) with K_. In these terms D € Hy
is the same as a monic polynomial xp(z) € k[z] and this corresponds to Yp(z7') € K_ =
L(P' —0,00; Gm) by xp(2) = 2P xp(z71).

(4) A subsemigroup A" of a commutative group A acts freely on AT x AT and the quotient
is the quotient by the equivalence relation generated by (ag,b) ~ (a,gb), a,b,g € AT.
Then the quotient is is the subgroup of A generated by A™.

O

Remark. We define div : G7(G,,) — N as the composition of the Div map defined in the
lemma with the degree div(S, o) oo deg[Div(S,0)] € N.

45 2 € G(G,y) is well defined since local parameters form a torsor for G, o.
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6.2. Loop Grassmannians for parabolic subgroups G(P) = G(G, P)CG(G). Here
we set up the notation. Let PCG be a parabolic subgroup with the unipotent radical U

and Levi group P & P/U.

Let G(G, P)CG(G) be the subfunctor consisting of all (P,7) € G = G(G) such that the

closure of PTCP|4 in P is a P-torsor (i.e., a reduction of P from G to P). We denote this

reduction by P, p. It comes with a meromorphic section 7p and (P, 7)p L (P,,mp) € G(P)

is the unique reduction of (P, 7) to the parabolic P.

For (P,7p) € Gpa (Ppr,7p) € Gpe Composing with the image under P — P gives the

functor G(P,G) — G(P) which sends (P,7p) € Gpe to (P,7)pp ' (Pp.,7p)p. This is a

def

pair of the P-torsor P, pp = Prp/U and the image 7pp of 7p.

Lemma. (a) Ind$ is an embedding of functors G(P)—G(G).E9 The image is G(G, P) and
the inverse map is the above map (P, 7) — (P, 7)p *f (Ppr,7p).

(b) For a Levi subgroup L of P the functor / ndﬂ commutes with the action of Lx. Also,
the functors Ind%, G(G, P) — G(P) and (P — P), commute with the action of Px.

T—Tpp

n G J—
(c¢) The composition of G(L) I, G(G,P) —— G(P) is the isomorphism given by
L=P. For instance, for TCBCG and o € X.(T), we have

LY = Ind$(LY) and (LS)py= LY.

(d) Over any field F, the inclusion of F-points for G(G, P)CG(G) is equality.
Proof. (a) is a case of lemma 2:3.2

Indf

(¢) According to (a) it suffices to prove the same statement for G(L) — G(P)
G(P), but (P — P).Ind}(S,0) = (P — P).(Sx.P,0) = ((Sx.P)/U,0) returns us back

to (S, ) (up to L—P).
(d) holds since G/P is complete. D O

(P—P).
—

6.3. The orbits ST of N,?, their intersections and the 7T-fixed points. We describe
SoNG(G, B) and S, NG(T). For S, itself see B3

6.3.1. The semiinfinite orbits S,CS,, and their closures. For S, def Ni-Lo = (ToNg)-La,

and S, o (Bx)o-Lo. Then S, is the reduced part of S, = Go(T') xS, and the inclusion

S.CS, is equality for points over fields.

46 This embedding is not closed.
4T The difference of G(P)CG(G) is ‘therefore ‘schematic” — it is given by all (T,7) € G(G) such that
lim, ,o P does not exist in Py.
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Lemma. (a) G(B)=G(G, B) = U, S,.

The subfunctors S,CS, of G(G, B) consist of all  such that x5y = LY, resp. such that
xpu € Go(T), ie., that the divisor divy(7s g) of the section 75y is —a. ()

(b) G(T) is a group and it acts on G(B). This gives G(T)xG(N)=G(B). The con-
nected components are the isomorphisms G(7') WX So—=8y, A € X.(T). This extends to
an isomorphism of indschemes G(T')y x Sg—Sy.

(¢) The following are equivalent: (0) S, 3 3, (i) Sa2S;s, (i) S, meets Sy, (iii) a > .

Proof. (a) The map m : Bxxp,Go Gy is an injective immersion (on the level of tangent
spaces this is b +p, go—0x)-

Then Q(G, B) = (BICXBOG(9>/GO = B;C/Bo) = Q(B) and BIC = (BIC)O X X*(T) gives
G(B) = Bx/Bo = X.(T) % (Bx)o/Bo. This is the decomposition G(G, B) = U, Si.

Recall that Ind? commutes with Ty, and (B — H),, Ind%, ?7p commute with (By).
This implies that the points  of S, satisfy xpy € G,(T) and then G(G,B) = U, S,
implies that this precisely describes S,.

Now, (LS)px = L% implies the characterization of S, since Nx commutes with (B —
H)*, I?’Ldg, ?B.

(b) The extension to closures follows because the indscheme G(7'), is indfinite.

(c) is well known. O

Corollary. T, acts freely on Q(G).@)

Proof. T, acts freely on each S\CG(G) by part (b) of the lemma. (S is isomor-
phic to a connected component of G(B) on which 7, acts as G(T), and we have

G(T)xG(N)=G(B),)

So, the restriction of the stabilizer scheme S = {(¢,z) € T, xG(G); t-x = =} to the strata
Sy of G(GG) is trivial. This implies that S is trivial. P O

Remark. The map m : B Xp, G@iG;C is an injective immersion and a bijection on the
level of points over a field. However, m is not an isomorphism — it is a proper embedding
on the level of tangent spaces and m(Bx) = X.(T) is larger the m(Gr).

4880, z € G(G) is in S, (resp. Sg) iff it is induced from (unique) y € G(B). and the connected
component of y in G(B) is Go(B), ie., (B — H).y € Go(T). Also, z is in S, iff it is induced from
(unique) y € G(B) and (B — H).y € Go(T) 2 LT.

49 This is not true for the action of N,_ on G(G) (the stabilizer is nontrivial at S, for o < 0).

%0 The locus X CG(G) where the fiber of S is nontrivial is a closed) subindscheme which is T"R-invaraint.
The same then holds for X,.qCX and this implies that if X # () then X,.q would contain some fixed
point Ly which is impossible.
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6.3.2. The T-fixed part FOT as the Hilbert scheme Hqxr. Recall that for a choice of a local
parameter z we embed Hy into Gy, k¢ by interpreting S € H]; as a degree n monic poly-

nomial ys € k|z], with nilpotent coefficients. This gives Hixs = (Hd)l'i)(Gch)I(:TK.

Also, recall that our convention for X, (T)—G(T)CG(G) is A— Ly e ALL,.

Lemma. (a) The closed embedding Hax; 3 P— «(P)-Lo € G(T') gives the Y-fixed part:
Haxr = (S0)T = SoNG(T).

The connected components for a € N[I] are

SonG-a(T) - Hia = [ #i-
B iel
(b) Equivalently, the filtration of Go(T') induced by S,, a € N[I], is the filtration of the
a-stable Hilbert scheme H (4 q)x; by subschemes Hg, ; o [Ler My

Proof. (a) The factorization
SoNG-o(T) = [[ SoNG-0ulT)

iel
reduces the claim to SLs.
Here, a = n-1 for the simple coroot i = &; — & and n € N. Then L, = L,; is the lattice
generated by two vectors (z"ep, 2z "es).
Let us start with S, = NxL,. For u = (1) T € Ni, we have uL, = u(z"ey, 2z "eqy) =

(z"e1, 27" (e2+zer)). So, S, consists of all lattices £ € Go(SLg) such that LNKe; = 2" Oey
and S, consists of £ € Gy(SLsy) such that £ contains 2"Oe; or equivalently, £ lies in
KeiOz "es.

The k-points of the negative congruence subgroup K_(G,,)CGy, k¢ are the comonic poly-
nomials Q(z7!) =14 a;27 ' + - -+ a,27" in 27! that are invertible in k[z']. Consider
the filtration K_(G,,)<, where powers of z7! in @Q are restricted to < n. Recall that
K_(Gp,)<n identifies by P(z) = 2"Q(z!) with the Hilbert scheme H? which is the mod-
uli of monic polynomials P(z) = z,+a;2" ' +- - -+a, in z, of degree n and with nilpotent
coefficients.

We choose ¢ : K_(G)—=Go(T) by ¢(Q) = i 1(Q)Lo = (Q 'e1, Qes). This lies in S, iff
Qey € Oz ey, ie., iff Qisin K_(G,,)<p. O

Corollary. This identifies the subscheme (ST N S_O_)T%S_;FT with the Hilbert scheme

Heo.o© Hy of the finite colored scheme a-a def Uier aj-ai € HG. The connected compo-
nents are o
HE = (ST NSy)NGs(T).
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__ —

Proof. It St NGs(T) # 0 and Sy NGs(T) # (@ then 0 > —fF and —f5 > —a , ie,
— —T

a > >0. Then Sy NG_3(T) = M5 P Ls. Moreover,a point = € Ho ,-Ls lies in Sy

iff Ni-z contains Ly, i.e., iff Ly € HP-x.

So, points z of (ST N S;) N Gs(T) correspond to pairs A € Ho* and B € H: such that

t(xBXe)La = Lo, ie., AUg B = a-a. This is equivalent to A € HS‘“ which lie inside
D,, ie., to A€ HI,> O

Remarks. (0) We can think of a point of (S NSy )7 as corresponding to a pair of effective
I-divisors a4 with a 4+ a_ = «, or a pair of colored subschemes D* of C with D + D~
equal to the subscheme DCC of type a. Then D* are complementary subschemes of D
so one determines the other by the “complementation” procedure H(D) > D' +— D—D’ €
Hp.

So for a fixed D, the moduli of data (D', D") is identified with Gr(D) (in two ways
corresponding to N*).

(1) Here, we are taking the B*-divisors of a section ¢ of a T-torsor. Notice that this is a
single information, i.e., Divg-(s) = —Divg(s). For T' = G,, the difference is just which
one of positions 0, co € G, is regarded as positive.

6.3.3. Intersections S, N Ss.

Lemma. (a) So NSz = Ni+[Sa NGs(T)] (and it is nonempty iff 8 < a, ie., S,255). In
other words,

SaN G(G,B) = N - Us<a SaNGs(T) < Us<a [SaNGs(T)] x Sp.

Remark. S, N Gs(T) has been calculated above.

Proof. (a) First, S, meets Sg iff S, contains Sg, i.e., iff 8 < a. (If S, meets Sz then it
meets (Sz)req = S and then S,255.) Now,

SaNSs = [Sa Nic:(Tic)o L) = Nie+[Sa N (Tic)o-Lg] = Ni+[Sa N Gs(T)].

In other words, o o
SaN G(G,B) = Ug<a N - SaNGs(T).

Finally, denote by K_(T)g the pull back of S, N Gs(T) under K _ (T)igg(T), then
N]C . S_QDQB(T) = N]C . K_(T)B : Lﬁ = K_(T)B : NIC . LB = K_(T)B cd Sﬁ
and this is isomorphic to K_(T)s x Ss = S, NGs(T) x Ss. O

6.3.4. The closure S—O_ of the non-reduced ind-subscheme S—O_? We would like to know
Sa NS
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Ezample. The reduced part of S_:r N S_O_ is S_f N S_O_ =~ P!. The non-reduced part is a
double point at L.

6.4. Central extensions of reductive groups. We consider the effect of a central
extension of a reductive group on its loop Grassmannian.

Consider an exact sequence of reductive groups 0 = S — G — G 2, 0 such that S is
central in G which is connected.

Lemma. (1) G(S) is a group and it acts on G(G).
(2) If S is a torus then

e (a) G(G) = G(G) is a G(S)-torsor.
e (b) The groups of connected components of loop Grassmannians fit into an exact
(

sequence 0 — m[G(S)] — m[G(Q)] =2 70[G(@)] — 0.

e (c) Certain simplifications of G(G) are covers of G-objects:
G(G)/G(S)o = G(G)Xrm(G) and G(G)rea = G(G)reaXr,c) (G).

m1(8 _
e (') If we denote the map m (G) 1—(»)7r1(G) by z—7 = x + X,(S5) then

G(G)2/G(S) = G(G)r and  [G(G)alrea = [G(G)zlred-
(3) If Z is etale we have 0 — m[G(G)] = m[G(G)] = Z — 0 and G(G),—G(G), for any

x € m(G)Cm(G).

Proof. (1) is obvious.

(2a) First, for X = d or X = d* the maps G(X) — G(X) are surjective since H'(X,G,,) =
0. Now, 0 = S %G 4G =0 gives maps

S/So % G /Go 25 G [Go

Map @ is injective since Gop Ng, Sk = So and B is surjective since G £> G is surjective.

Since SCG is central the subgroup SoCGyc acts trivially on G;C/_G@, hence g(S) acts on
Gx/Go. Then, for v; € Vi, B(v1Vo) = B(v2Ve) means that 5(v1)Go = f(v2)Go, ie., for

v = vy v we have B(v) € Go = B(Vo), i.e., for some z € Vo we have B(v) = B(x), i.e.,

vz~ = a(y) with y € Sk. Now, v1Vo = v2gVo = na(y)zVo = vaa(y)Vo = 2y-1Go is

in G(S)-v2Vo.

(2b) The set of connected components m[G(G)] of the loop Grassmannian of G is 7 (G), so

it is a group. The above exact sequence of groups gives 0 — m1(S) — m(G) = m(G) = 0

since mo(G) = 0 = m(S5).

(2¢’) The first claim follows from (a) and then the description of [G(G),]eq follows because
the reduced part of the connected component of G(5) is trivial.
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Finally, (2c) follows from (2c’) and (2b).

(3) From 7,(Z) = 0 = m(G’) we have 0 — m(G) = mG(G) — m(Z) — 0. So, the first
claim follows from 7o(Z) = Z. O

Corollary. The following spaces are canonically the same for G and G : [G(G)g]rea2S0C S0
and G(G, (G/N)2).

Proof. G(G, (G/N)2T) is the closure of G(G, G/N) = Sy in [G(G)o]rea (since SoC[G(G)o]rea
and [G(G)o)eaCG(G) is closed). O

6.4.1. G(G)reqa as a cover of G(Gss). A reductive group G has the largest central torus Z
and the quotient Gy is semisimple.

Lemma. (a) The map G(G) — G(Gss) is an ismorphism on connected componentsFY
G(Grea = G(Gss) Xy (Gss) ™1 (G)-
(b) G(G)yeq splits the quotient G(G) — G(G)/G(Z)o :
9(G) = G(G)rearG(Z)o 42 G(G)reaxG(Z)o-

So, for any Cartan T'CG one has G(G) = G(G)ea-G(T)o.
Proof. (a) Since G(Gys) is reduced, this is a case of the lemma [6.4l.c.

(b) Observe that the set 7y of connected components is the same for all three object. So,
we need for each x € m[G(G)] that the maps [G(GQ)2]rea XG(2)0—G(G)2lrea:G(Z)0CG(G),
be isomorphisms.

By .C’ we have [g(G)x]red = [g(Gss,)f]red = g(Gss)f and g(G)m/g(Z)O = g(Gss)f NOW,
the map [G(G)zlrea = G(G)2/G(Z)o is the same as [G(G)zrea = G(Gss)z, s0 it is an
isomorphism,

Finally, the last claim follows since any Cartan 7" of G contains Z. U

Remark. The derived subgroup G’ of GG is semisimple and the cocenter C' “a /G is a
torus. Then G/Z = (G/Z)" is the image of G'. So, G/Z = G'/G'NZ, ie, G=G-Z
and therefore Z — C' is surjective and C' = Z/ZNG'.

Notice that G(G')-G(Z) is in general only a union of connected components of G(G).
(Because the same is true for the image of G(G') in G(G)/G(Z) = G(G/Z) = G(G'/Z')
for a finite central subgroup 2’ = G'N Z in G'.)

6.4.2. Torus quotients. Here we consider exact sequences of the form 0 — G; — G —
C — 0 where G, G; are connected reductive and C' is a torus.

51 80, from the point of view of individual connected components, G (@) reaq is itself a loop Grassmannian.
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Lemma. (a) If Gy is simply connected then G(G) — G(C) is an isomorphism on my. In
general one has 0 — mG(G1) = mG(G) — X, (C) — 0.

(b) G(G) — G(C) is a G(G1)-bundle.

(c) If Gy is semisimple then the nonreduced part of G(G) comes from G(C') in the sense
that G(G)red = G(G)*xg()G(C)red-

. Proof. (a) The exact sequence my(C) — m1(G1) — m(G) = m(C) — mo(G1) gives
0— 7T1(G1) — 7T1(G> — 7T1(C> —0

(b)
(c) follows from (b). O

6.4.3. Groups SLCGL—PGL. The m of the sequence 0 — G, — GL(U) - PGL(U) —
0is0—2Z57Z — Z/n — 0 for n = dim(U). We have established

o

GIPGL(U)] = G(Gu)\GIGLU)];
GIGL(U))sed = GIPGL(U)xzmZ and GIGL(U)«=GIGL(U)]rea X G(Gn)o

Remarks. (0) A model for G[GL(U)]. is provided by the space of lattices U in URO-.
Consequently, G[PGL(U)]. is the moduli of P'-bundles P over d with a trivialization
7 € Isom[P(U),P|. This is also a model for G[GL(U)],eq-

A model for G[SL(U)]. are the special finitely supported P*-bundles (the ones that lie in
the connected component of G|[PGL(U)]).

(1) When one is describing G[PGL(U)| from G|GL(U)] one needs to consider one con-
nected component G[PGL(U)]|, at a time, to choose a representative k € Z of = and to
pass to the reduced part (g GL(U )]k)red. This is just a way to describe the quotient
GIPGL(U)] of GI[GL(U)| by G(G1)]. (The quotient by the discrete part Z is given by the
combinatorics of z and k and the quotient by G(G,,)o is performed by modifying lattices
U to U(D — Ipc) for D € Hq. BD)

52 mUnﬁnished
53

4 The usual identification of G[PGL(U)], with G[GL(U)]) is correct only on the reduced parts, say
on the points over a field.
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7. Various
Part 1. Vinberg semigroups and wonderful compactifications
8. Vinberg semigroups

8.0.1. The Vinberg semigroup V.
8.1. Vinberg semigroups V¢ py: ideas.

8.1.1. The relevant mapping spaces. Bung(C)DBunk(G) are Map(C,BG) and
Map[(C,nc), (BG, pt)]. Then G(G) —Hc is a “resolution” (or a more elaborate version)
of Bunl¥(G) with G(G)p = Map[(C,C — D), (BG, pt)], while G(G) —R¢ is in between.

8.1.2. Change the parametrization of Vinberg semigroups. . Data are given by a
subgroup VCG such that G/V is quasiaffine. Then GxNg(V)/V acts on G/V by

(g,uV)x 2V & g-xVuV =1, hence also on (G/V)2. Also, Ng(V) acts on G/VC(G/V)
by conjgation.
Then one can define 2y, as the automorphisms

Zy dof Autg g ovyv(G/V)

and the Vinberg group and semigroup as

def

Vv ¥ Autz, (G/V) CVy & Endz, (G/V)).

Ezample. For a parabolic P any normal subgroup V between U and P’ satisfies the
condition that G /V is quasiaffine and Ng(V) = P.09

AGAIN: For any subgroup VCG we consider the normalizer Ng(V), its quotient My =
Ng(V)/V and its center Zy. Then Gz My maps to Vy o Autz, (G/V). If G/V
is quasiaffine we also get the semigroup Vi = Endz, ((G/V)*) whose invertible part is
Vv = Autz, (G/V) = Autz, ((G/V)).

This construction appears in [?] when V' is related to some parabolic P = U x U. Here,
V is either U or P’, hence its normalized if P and M = P/V. When P is a Borel B and
V = N we get the Vibnerg semigroup V.

55

56 The conditions here on V x P are that P/V is reductive and P/U — P/V is an isomorphism on
commutative quotients (P/U)*P=s(P/V)2b.
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8.1.3. Vinberg semigroups Vg py. For a parabolic P = U x L in a (reductive?) semisim-

ple group G we consider a normal subgroup V of P that lies between the unipotent

radlcal U and the derived subgroup P’. Then GxP/V acts on Y& py oo G/V by (g,pV)*

2V & ng(pV) = gzp~'V and therefore als on its affinizations Y¢ py o (G/V)E We

will use these two spaces to relate G and P/V. Once we pass to mapping spaces (G/V)*
will really be a correspondence between mapping spaces associated to groups G and P/V
(say, the loop Grassmannians G(G) and the moduli of G-bundles Bung(C)).

Remark. T think I have checked that G/V is quasiaffine, hence G/VC(G/V)a, O

The corresponding Vinberg group V = Vg py and Vinberg semigroup V = Vg py are

defined using the double centralizer and the affine closure. First, we conider Z =

ZG PV d_ef AUtGXp/V(G/V) and then

V =Autz(G/V) and V=Endz((G/V)*).
Example. When P = G then V must be G hence G/V =ptand 1 =Z =V = .

8.1.4. When P dos not contain any semisimple normal subgroup of G. Then

Lemma. Pla (a) Z = Z(P/V).
( ) V = GXZ(G)P/V
(c) V is a semigroup closure of V.

(d) When P is a Borel TN and V = N then Vg g is the semigroup introduced by
Vinberg.

8.1.5. The (closures) of orbits of V on G(G). These should be realized as (reduced parts
of) the connected components of the mapping spaces G(V,Y’) for some Y =Yg py.

Remark. Seemingly, in all cases V = Vg gy (rather than say Vg py). At least this is true
for P= B and P =G.

However, Y seems to behave in an unusual way. First, for U = N (the radical of P = B),

the orbits of U = Ny x Tp are related to Y = Yg .y o (G/N)™. On the other hand, for

U =1 (the radical gf P = @), the orbits of U = Gp are related to Y = Endy (Yo ) =
Endy((G/N)*) = Vg v

o7 mConjecture?
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8.1.6. The doubling from (G/N)* to V. We have seen that the “degenerate” case P = G
appears as a “double” of the “substantial” case P = B? (Here, the “doubling” terminology
comes fromdim[End g ((G/N)*)] = 2dim((G/N)*). [So, dimensionwise this is more like
U—T*U than U—End(U) = URU* which squares the dimension.]

Question. Why is this so?

Remarks. (0) “G as a double of B” is standard in g-groups. However, in this classical
version one does not double B but its “dual” G/N.

(1) This “doubling uses H-action on G/N (dual to HCB 7). The doubling of
G/NC(G/N) is yCV.

Questions. Does it work the same for all Y py and VG, pv’?

8.1.7. The structure theory of V. The basic feature is the following stratification V;, JCI,
of V.
The fibers of the stablizer scheme for the H-action on V (or H-action?) are ideals in H, I

guess that they correspond to subsets JCI. This gives a stratification V; of V and gives
varieties X; = V;/(H/H;). When J = (), ie., where H acts freely, Xj is the wondrful
compactification of G,q4.

Possiby, in generall one gets compactifications of adjoint quotients of Levi factors G777
(Seemingly not exactly like that since such object is not canonically defined!)

Question. Ts the structure theory of V some kind of the double of such theory for (G /N)*?
8.2. Vinberg semigroup as End((G/N)T).

Lemma. The action of V(G) on (G/N)*! yields
V(G) = Endy((G/N)™).

Proof. A. The semigroup Endy ((G/N)*) has a zero. First, (G /N ) contains the semi-
group H which has zero, we denote this point z. The action of H contracts (G/N)™ to
z. So,any fe U= EndH((G/N)aH) fixes the point point 2.

Now the constant map 0 : (G/N)* — 2 € (G/N)™ is the zero in U since it lies in U and
for f € U one has Oof = 0 = fo0.

B. The left and right multiplication by HCY now contract U to the point 0. In particular,
U is connected.

C. The action of the Vinberg semigroup V on (G/N)™ identifies V with the invertible
part Auty((G/N)) of Endy ((G/N)) = U.
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C’. The invertible part of U is open hence dense. For this we may want to reduce the
situation where U is clearly a scheme (rather then an ind-scheme). This is accomplished
by replacing (G/N)* by finite infinitesimal neighborhoods of the vertex z. As U fixes z
it preserves each of these neighborhoods.

D. For a Cartan T of G, the group T'x ) H is a the Cartan in V and we know its
closures in V and U coincide.

This proves that V=U since for a Cartan T of the invertible part G of a reductive
semigroup G one knows that G = G-T -G for the closure T of T in G [Kapranov].

8.2.1. Details. Vinberg semigroup has been defined in characteristic zero by describing
its ring of functions. The proof above uses properties of this definition of V.

This provides a geometric definition of the Vinberg semigroup over Z which (as we have
checked) coincides with the usual one in characteristic zero.

One should also check that this notion of Vinberg semigroup is Z-flat. (Again, this should
follow when one establishes certain pieces of the structure theory of reductive semigroups
over Z.)

Question. Is Kapranov’s observation that I use “over Z” for split forms?

8.2.2. Vinberg semigroup “can” be defined via functions over Z. Over Q we can write
O((G/N)M) = O(G/N) = O(G)"N as @rex. (m+ Wh@SY. (I want to choose W and S
so that S = S, () !)

Over Z we have a filtration with Gr[O(G)] = @xex, )+ Wa®Ss.

That gives some estimate on N-invariants which combines with their H-character(?).

8.3. Summary of Vinberg semigroup results and conjectures. Let G be semisim-
ple and G be the wonderful compactification of G 4.

8.3.1. V wvia (G/N)™. The following property seems to be a reasonable definition of V.

Lemma. YCV act on G/NC(G/N)* and

VS Auty(G/N) = Auty(G/N))  and V= Endy((G/N)>).

8.3.2. V and the wonderful compactification G ..
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Lemma.

e (a) The H-free part V’? of the Vinberg semigroup V is an H.-torsor over the
wonderful compactification G,q of Gaq.

e (b) As an H-torsor over [e ) V’ is the product of G,,-torsors that correspond
to the decomposition of G,y = G — G.q into irreducible G-invariant divisors
D;, i€l

e (c) V is the affinization of V°.

Proof. (a) The free part V’ of V contains V, so VO/HSC contains V/H,. = Gq. ... O

Remark. G4 is the geometric invariant theory quotient V//H,. of V by H,, in the sense
that it is the quotient of the free part of the space. So, G4 is open in the G,q-stack V/H.

8.3.3. V via a semigrouoid S over B. We consider a certain groupoid S over B with a
semigroupoid closure S (see [9.9.4)). The notion of sections I'(B,S) of a groupoid means
the sections of S — B> 22 B. The sections form a semigroup I'(B,S) and its invertible
part I'*(B,S) is a group.

Define the stable sections of S as the Hilbert scheme closure of T*(B,S) in all sections

['(B,S) of S.
Lemma. V is the group of invertible sections ['*(B, S) of S.
Conjecture. The stable sections of S form precisely the Vinberg semigroup V.

8.3.4. Groupoid S over B and its semigroupoid closure S. The action groupoid for the
G-action on B is Gy = BxG — B? by (b, g)—(9b',b'). (We will also think of it as Gx pG
for the conjugation action of B on G.)

Its vertical part Qg = G|a, is the group bundle Gx g B (for the conjugation action of B

on B). It contains a normal group subbundle G_ ' ax g N. Our groupoid over B will

be ot
S = Go/G-.
So, the fiber at (B”, B') € B? is
SB//7B/ — {gN/ 6 G/]\/'/7 gB/ — B//} — {N//g 6 G/]\/'/7 gB/ — BN}.

Also, the total space of S is GxgG/N and the second projection map pro : & — B is
GxpG/N —G/B =B by (g,2N)— (g,zN)— g.

We define S as the relative affinization of S over B

S & s = Gxy (G/N)M

Lemma. S is a semigroupoid closure of the groupoid S.
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8.3.5. The canonical resolution i of V.

e (a) V has a canonical resolution V.

e (b)V and V. are stable sections of certain groupoids over B.

8.3.6. More on semigroupoids. (a) I'(G) = I'*(G) is the Vinberg group Gp &G x Hp.
Z2(G)

(b) The closure I'(G) of I'*(G) in T'(G) is a semigroup.
(b’) If P = B this is an extension of the wonderful compactification G/Z(G) by Hp.

(b”) An open part F(Q)O is an extension by Hp and I'(G) = F(Q)O X Hp. As an Hp-torsor
Hp

over G/Z (@), this open part F(g)o corresponds to the I-colored divisor which is minus

the boundary of bolshaya yacheyka in G/Z(G).

(c) The affinization of I'(G) is a semigroup which we call the Vinberg semigroup
Gp associated to the partial flag variety P. In turn, I'(G) is a resolution of Gp. In
particular when P is the flag variety B and G is simply connected, we get the usual

Vinberg semigroup.

Add the formulation for general P.

(d) There should be another statement concerning the action of 57; on G/P' x Hp.
Hp

Proof. (a) is known for P = B, and all is known for SL,.

8.4. | SL(3) |. Let G = SL(V) with dim(V) = 3. Then (G/N)*! embedds into V =
VeV* by gN—(ge, ge*) where e € VN and e* € (V*)V are bases of these lines. (G/N)2
is given in V@V* as the quadric (v,v*) = 0. The G-orbits in (G/N)2T are given by
G/N = {v,v* # 0} and G/P/ = {v =0 # v*}, G/P/ = {v #0 = v*} and G/F}; =
G/G =={v=0=0v*}.

The Vinberg group V is Gx H acting on V by the diagonal action of G and H CH = G—ml
acting by (z;, z;) (v, v;) = (2v4, zjv;). The Vinberg semigroup V is the closure in End(V)
of G-H (or the algebraic subgroup generated by?).

The Cartan T'H is parameterized by &? : G,, — TC and &; : G,, — H (here &;(2) =
aB(Z)-N), realized via H—G,," as &; being the identity map Gy, — (G )".

(3

The standard basis e1, es, e3 of V; = V' has weights ¢; so that for a = diag(ay, as,a3) € T,
gi(a) = a;; in the dual basis €’ of V* we have weights —e¢;.

The Cartan TH acts on e; € V; by az; and on €' € V; by al_lzj.
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A cocharacter x = (pu, \) of TH cabe written by a; = s* and z, = s, where u =
(ft1, -y p13) € Z2 and X = Ni&v; + \j;. It acts on ex by s#*** and on on €' by s,

We are interested in y = (), i) such that it extends from G,, — GL(V) to G, — End(V),
i.e., such that

A <o <O
Now, if u = x;&P + ;&P = (2, 7; — x;, —x;)then the conditions are that
N < oz, —xj, xi—x; <N
This involves 6 inequalities:

>\Z—|—SL’ZZO >\j—SL’Z’ZO )\Z’—LL’]‘ZO >\j+l’j20 )\Z—FLL’Z—SL’jZO >\j+l’j—l’i20.

Say, if \; = A\; = p then the conditions are that |z;|, |z;| and |z; — x;| are all <p.

Say, in the chamber where z;,x; > 0 the conditions are that |z;|, |z;|, |z; — z; < 1.
However, the conditions are W-invariant in p as o;(z;&; + x;0; = —x;&4; + (& + &;) =
&;(z; — x;) + chojxy, ie., sj(x;,x;) = (v; — x;,2;). So, the conditions in all chambers
are of the same kind as in the dominant chamber, i.e., the conditions that wu < .

When p = 1 we get weights p with |p;| < 1. If say, z; = 0 then we get three coweights
—&;,0,&;. If 2; =0 we get —;,0,&;. When z;, z; # 0 then the last inquality says that
x; = x; so we also get £(d&s + &;). These are the 7 weights of § = L(p).

8.5. The “determinant” map det : (V,V) = (Huq, H.q)-

Lemma. (a) The largest commutative quotients of V and V are H,4 and H,q. So, there
is a canonical map of pairsPy

det,

(V, V) — (Fada Had)-
(b) The following square is Cartesian:

det
y =<5 H,,

| |

)% —e> Had-

l_Dmof._(a) The claim for V is obvious since H,q = V/G,. and G, is semisimple. The map
YV — Hyis [@. still to be constructed.

% When G SL(U) = SLy then (V,V) ety (Hua, Hag) is really the determinnat map

(End(U),GL(U)): (AY,Gyn) (seeBI2).

59 |I|7
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(b) The claim is that if v € V has det(b) € H invertible then v itself is invertible. [@.
0J

8.6. Appendix: History of Vinberg semigroups. Definitions

8.6.1. The current data. To a parabolic P = U x L and its normal subgroup V' (between
U and [P, P]) we associate

e (G,(P/V))-spaces G/VC(G/V)a:

e groupoid S = Spy over P = (/P and its semigroupoid closure Spy;

e the Vinberg group V = Vpy &f (GXz@) Z(P/V) and its semigroup closure Vpy.

8.6.2. The definitions and realizations of Vp,v.

e The original definition of a Vinberg semigroup was in tems of its ring of functions.
It was only valid in characteristic zero (and the data were the standard ones
(G, B, N) with G simply connected).

e Alvaro Rittatore defined Vinberg semigroups over an arbitrary field. He considers
the category FM(Go) of “very flat” reductive monoids M (irreducible, normal
and with a nice abelianization map), such that the derived subgroup (M*)" of its
ivertible part M* is a given semisimple group Gj.

Rittatore’s abstract machinery is his classification of objects in F'M(Gy) from
the point of view of the classiphication of spherical varities.
Then certain data produce the Vinberg semigroup Ug,, However he also
(1) proves the universal property of Ug, (so he calls it the envelope of the semisim-
ple group Go);
(2) and he constructs it geometrically from a torsor over the wonderful
compactiﬁcation.@])
e My definition/construction should be

Vory & Endz . [(G/V)"].

e A conjectural realization/definition via sections of semigroupoids: V is the
(affinization of?) stable sections of a certain semigroupoid over B.

e My original notes used a complicated and conjectural definition (conjecture
RT.1.2ld). via semigroupoids.

e Pluecker definition/realization?

InV=aV (G/N) is given by Pluecker equations. The semigroup End(V)

contains G = Gy, and H. Then it should also contain V as the subsemigroup of
End(V) generated by the two.?

60 | |7

61 T noticed this at some point. Did I claim or conjecture this before 20057
62 This may be in Kapranov’s paper on hypergeometric function on reductive groups (at least in some
sense)?
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Remarks. (0) The universal property of ¥V was formulated and proved by Vinberg (in
caracteristic zero) and by Rittatore (over a field). This should be the definition of the
Vinberg semigroup of a semisimple (or reductive?) group. Then one can choose his own
favorite existence proof or construction.

These so far involve Endg((G/N)*), wonderful compatification, Pluecker, classification
of nice reductive monods.

(1) Definition over integers. Rittatore does not seem to mention that his construction is
over integers (he does not in this paper). (The universal property has not been considered
over integers, however this should follow from the result over fields, i.e., I think that
flatness statements are checked over geometric points?.)

(2) The endomorphism construction seems philosophically intriguing. (One may think of
it as some kind of induction?) That’s the interesting part of my approaches.

It ihas been written so far for the standard Vinberg semigroup V(G) = Vg pnB(G)
(theorem [8.2)).

This seems closer to a reasonable definition of Vinberg semigroups.

8.6.3. Sections below. In the section 20 We calculate the invertible sections of the groupoid
S = Spy as the Vinberg group Vp ¢ and show that the sections of § are controlled by
the T-fixed points.

In the next section 21 we introduce the Vinberg semigroups Vpy2Vpy and give a con-
jectural comparison with the stable sections of I'*(P,S)C I'(P,S) of the semigroupoid
S.

8.7. Appendix. The “correspondence” idea. Let C be a central quotient (AxB)/Z
of AxB. A semigroup closure S of C'is a kind of correspondence between A and B. The
effect is that

G(C,8) CG(C) - G(A/Z)xG(B/Z)
is indeed a correspondence beetween G(A/Z) abd G(B/Z).

Remarks. (0) If A is semisimple and B is a torus then the disconnectedness of G(B) may
pass onto G(C,S) where it has the effect of separating certain pieces of G(A).

(1) The price for this separation is that the newely separated pieces of G(A) acquire in
G(C,S) some nonreduced directions from G(B).

So, what wet is a description of the said pieces of A as being the reduced part of the
connected components of G(C, 5).

8.7.1. Step 0. The central torus in G. The semigroup closures of a reductive group G are
related to the maximal central torus Z. Group G is an extension 0 = Z — G —— Gg —
0 with Gg¢ semisimple. Then
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e G(9) acts freely on G(G) and the quotient is G(G).
e This splits in the sense that
G(8)oxG(G)rea = G(G)

and G(G),eq —G(G) is etale and an isomorphism ofconnected components

G(@)alred —/G (@)

8.8. Dennis: The Deconcini-Procesi Vinberg semi-group. 4.2.1. Consider the

group

Genh d:ef V= GXZ(G)T.

Let us recall Vinberg’s construction of the semi- group G
ibility coincides with Gpp.

+

oo =V, whose locus of invert-

Defining such a semi-group is equivalent to specifying which representations of extend to
it. Any representation of V is a direct sum of ones of the form V® Ap the weights of
representation V' of G are in A + (). For V we require that the weights of V' are < \.

XXX
Lemma. By construction, we have a canonical map s :V — H with Vxz H = V. O]

8.8.1. 4.2.3. For a parabolic P with Levi quotient M let cp € H be the point defined by
the condition that

<047 CP> = OaecM

for simple roots . Consider the preimage
s Hep) C V.
It contains an open subset isomorphic to

G/UXM G/U_

Lemma. 4.2.4. There exists a unique Vx V-invariant open subscheme V°CV such that for
every parabolic P, the intersection

s Hep) NV
equals G/Uxy G/U_.
9. The wonderful compactification W of G/Z(G)

9.1. The wonderful compactification G and the Vinberg semigroup V.
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9.1.1. The stratification of the wonderful compactification. The wonderful compactifica-
tion G of G,q has a stratification parameterized by subsets JCI. The open stratum
Wy is the subgroup G/Z(G). In general one has W;-WxC W, k. So the closures
W; = Ugos Wk, are ideals in the semigroup W, i.e., W-W,CW,;DW;-W. In partic-
ular, W; = Bx B is a monoid for (a, b)-(c,d) = (a,d).

For SLs the wonderful compactification is the same as the quasimap compactification
of automorphisms of P!. The standard point of view on the wonderful compactification
interprets G/Z(G) as maps from g to g. In general, there should be a point of view on the
wunderbar compactification that interprets G/Z(G) as stable maps from B to B. [This
has been done by Brion!]

9.1.2. Remember that there should be a resolution W of the Vinberg semigroup that is
an extension of W by the semigroup closure of the Cartan.

I proposed to describe W as sections of a semigroupoid, in order to make the semigroup
structure manifest.

9.2. Wonderful compactification as a Hilbert scheme.

9.2.1. Lemma. (a) The closed stratum BxBC W is interpreted in terms of the Hilbert
scheme of subvarieties of Bx B by: point (p, q) € B? corresponds to the cross pxB U Bxg.

(b) Let ¢ € b € B be a regular nilpotent and consider the line €% in GC W. Its
boundary is the unique B-fixed point in the closed stratum W.

(c) All subschemes of B? that lie in W are reduced.
Proof. (b) The boundary point is the subscheme Y = lim (1,e*®)- Ag of B2 Since for

S—00

any b’ € B one has lim (1,e°)- b’ = b (the only e-fixed point in B), Y contains all

§—00
lim (1,e%)- (b/,b6) = (b/,b), i.e., Bxb. Since e Ag is invariant under the switch of
§—00
coordinates, so is Y. So Y contains the cross bxB U Bxb. Since both Y and the cross
are in the same Hilbert scheme they are equal. So Y is the unique B-fixed point (b, b) in
the closed stratum BxB of W.

(c) follows from (a) since the most degenerate schemes in W are reduced.

9.2.2. Ezample: SLy. Here W is P? = P(M,) and Wy = G/Z(G) = PGL, is the pro-
jectivization rank two operators, while W; = P!xP! is the projectivization of rank one
operators. Its extension w I'(G)— is the line bundle Opi(—1). The zero-section is
an ideal with the above semigroup structure. The remaining torsor for H = C* consists
of the Vinberg group Wy = GLs, and over W} one has W; = rank one operators. The
semigroup structure is just the multiplication of matrices except in the case of two rank
one matrices A, B with the composition of rank zero. Arguing by continuity, the product
AoB lies in the zero section and equals the pair of lines (Im(A), Ker(B)).



72

Affinization map from W to the Vinberg semigroup Ms is the blow up.

Observe that W(: blow up of M) acts on G /N x H (= blow-up of C?), this is the blow-up
H

(continuous extension) of the action of matrices on vectors.

Makes you wonder about all other examples.

9.3. Singularities of stable maps from P to P. W seems to be the closure of Aut(P)
in "stable maps” from P to itself.

9.3.1. Ezample: projective space. If P is the projective space P(V) for G = SL(V), the
semigroup is End(V) and 0 # A € End(V) defines a rational map from P(V') to itself,
which is not defined on Ker(A). I guess that it is defined on the blow-up along Ker(A).

There is no singularity if the kernel is a hyperplane, i.e., for the rank 1 operators, since the
blow up does not change the space. However, one still remembers the kernel, i.e., while

the associated map for P to itself is the constant map Im(A), the stable map associated
to A is in this case the pair (Im(A), Ker(A)) € P(V)xP(V*) = P(rank 1 operators).

In general, one should hopefully have singularities on the embedded partial flag varieties
of Levi factors. It may be interesting to see what reductive generalization of the blow up
will be needed to make the maps defined.

9.4. The strata of W are groupoids?

9.4.1. General “wonderful compactifications” Wpy ¢ For a parabolic P there isa Vinberg

semigroup Vp with the invertible part Vp G G x P, The corresponding wonder-
(@)

ful compactification is the invariant theory quotient

WP d:erP//Pab d:ef )
9.4.2. Orbits in (G/N) and in V.

Question. The number of G-orbits in the affine closure of G/N is 279" and their mutual
position is “toric”, the same as for the G-orbits in the wonderful compactification of G.
(See remark 24.3.71)

10. Reductive semigroup closures

10.1. Semigroup closures and normality. Let L be a reductive group. A “partial
toric” compactification of L is an open dense inclusion LCL of L x L-spaces.
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10.1.1. Lemma. If L is affine and normal it is a semigroup closure of L.
Proof. Lx L-inclusion means that Lx L — L extends to both
LxL —L and LxL —L,

hence to LxL — OLXOL — L. Now, the codimension of OLx0L is > 2, and LxL is
normal while the target L is affine.

open dense

10.1.2. Sublemma. It X D ULy and

e codimy (0U) > 2,
e X is normal,

e Y is affine

then f extends to X.

Proof. Y is closed in some A", so we can assume that Y = A", and then that n = 1.

10.1.3. Remark. (1) One needs X to be normal. Say X is the crossing of two A%’s called
X; at a point p, then U = X — {p} = U X; — {p} and a function f on U consists of two
functions f; on X; — {p}, which extend to X;. Now f extends to X iff fi(p) = fa(p).

(2) One needs Y to be affine: Wonderful compactification W of an adjoint group G is
not a semigroup, so extension fails for X = WxW (normal) and U = X — 0GxIG (of
codimension 2).

10.2. The Grothendieck resolution of a semigroup closure G of G.

10.2.1. Lemma. (a) T is an affine toric variety.
(b) N is closed in G.
Proof. (a) by definitions. (b) N is an orbit of N in an affine variety G, hence closed!

10.2.2. The incidence subvariety
ME {(z,B) € GxB; = € B}

projects to B as GxB. It maps , to H o B//N, and the most interesting map is
B

M LEX@//G:F//WF'

10.2.3. Remark. NxT — B is not injective if G has a zero. It need not be surjective
because of T4.1.5
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10.2.4. Lemma. m is proper, surjective and generically an isomorphism.

Proof. Even the map M = @Xé//Gﬁ — @G is proper since it factors as MCGxB —G.
Next, over G'X g /wH this is the usual Grothendieck resolution, so it is an isomorphism
over G,sx g//w H,. Finally, map is surjective since it is proper and generically an isomor-
phism.

10.2.5. Question. Let T be a torus. In an irreducible affine T-variety X, is the fixed point
set X7 connected?

10.2.6. Question. (No) Is the map of sets of orbits T/T — G\(G/V) surjective?

10.2.7. Conjecture. G'x L-orbits in (G/U)*, and G'x L-orbits in (G/U)*, are both pa-
rameterized by the W-orbits in Ap(u®”), i.e., the minimal roots in u.

11. Langlands duality of reductive semigroups
11.1. Tori.
11.2. Reductive groups.

Remark. In order that for a torus extension V of G and Y2Y° = V/A G(V,Y) is Go-
equivariant, we need A = 1 so that A = Vp. So, Y must be a partial compactification
of V. In order to have a convolution on G(V,Y) we then need the group structure on
Y? =1V to extend to a monoid structure on Y 777

11.3. Semigroups with zero. Let VV be a normal subgroup of P that contains U, so
that M = M is reductive.

11.3.1. Lemma. For the irreducible L%(\) and the coWeyl module W (), one has
LENY = LM(\) and W)Y = WM (\)
if A is orthogonal to the T-roots in ¥, and otherwise it is zero.

Proof. Representation L))V of M is an extension of irreducible representations LM (1).
Each p is dominant for B/V N B, hence also for B. So there is at most one term in
the socle and it is LM ()). It appears iff the B-highest weight space \ is V-fixed, i.e., iff
A L Ap (D).

11.3.2. Lemma. G/V is quasiaffine.

Proof. The image of the G-map G/V = (G/V)*! is a homogeneous space G/ K for some
VCKCG.

7 is an embedding on M of P/V since
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Part 2. Pieces
12. Technical pieces

12.1. Fibered products of quotient stacks G1\Y; Xy, G2\Y2. We consider a sys-

tem of groups G; — Gy < G- and a compatible system Y; — Yy <& Vs of Gy-spaces
Y.

Lemmoa. The fibered products of quotient stacks simplifies to
G1\Y1 Xgo\v, G2\Y2 = Go\[(Gox, Y1) Xy, (Gox,Y2)]
= Gl\[}/lXYo (GOXG2}/2)] = G2\[(G0X01}/1)XY0 }/2]

Proof. Gi\Y1 Xgg\v, G2\Y2 can be written as
Go\(Gox, Y1) Xy, Go\(Goxga,Y2)
where a; extends tp Goxa,Y; —5 Yy by a4[(go, us)] = go- as(y:). This is isomorphic to
Go\[(Goxa, Y1) Xy, (Goxa,Y2)]
where G acts diagonally. Then the last two nonsymmetric formulas follow. O
f € Map[S,G1\Y1 Xa\v, G2\Y2] consists of maps f; : S — G;\Y; with compatibility of

aof; for a; : G;\Y; — G\Y. These are the diagrams S Fida P i Y; with an identification
of the diagrams

S & Gxe, Py, By

S <% Gxg P -y

1 e

S 2 Gxg, Py 22y
0

12.2. Describing the nonreduced directions. It seems more difficult to me since the
traditional tools like Bialnicky-Bitula are now unclear to me!

12.3. Colored divisors of meromorphic sections of H-torsors. For a simply con-
nected G we have Hie[ w; © HOG,'. So, an H-torsor S is a system of G,,-torsors
S;, i € I, i.e., of the corresponding line bundles L; = Al x4, S;. A meromorphic section
o of S is locally a system of I meromorphic functions s;. So, we can define its I-colored
divisor div(o) € Z[I].
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For a Cartan subgroup T'CG, a choice of a Borel BDT' defines TS H as TCB—H. This
moves T-torsors to H-torsors S—Sp and similarly for sections s—sg. So, a section s of

a T-torsor S acquires an [-colored divisor Divp(s) o Div(sp).

12.4. The closure of a subindscheme. The closure of a subindscheme Y = lim Y; in

_>
the indscheme X = lim X; can be described as the ind system of closures of subschemes:
%

Y limY, cX.
—

Question. Does the passage from indschemes to schemes, i.e., commute with closures?

12.5. Stratifications of schemes. The interest here is in a definition.

Remark. However the goal of the present text seems to be to construct for X — S a
stratification of X and maube S whose strata are flat (?) or the map is stratified flat?
(“Flattening stratifications”). This stratification is preferably canonical.

12.5.1. Functor. Let f : X — S be a morphism of schemes. Let F be a quasi-coherent
Ox-module. For any scheme T over S we will denote F7 the base change of F to T, in
other words, F7 is the pullback of F via the projection morphism X = X xgT — X.
Since the base change of a flat module is flat we obtain a functor

{x} if Fr is flat over T,

Fiiar - (Sch)S)PP — Sets, T — { 0 olse. (1)

12.5.2. Flattening stratifications. Just the definitions and an important baby case.

Let X — S be a morphism of schemes. Let F be a quasi-coherent Oy-module. We
say that the universal flattening of F exists if the functor Fy, defined in Situation 7is
representable by a scheme S’ over S. We say that the universal flattening of X exists if
the universal flattening of Oy exists.

Note that if the universal flattening S’ 69 of 7 exists, then the morphism S’ — S is a
monomorphism of schemes such that Fs: is flat over S” and such that a morphism 7" — S
factors through S’ if and only if F7 is flat over T.

We define (compare with Topology, Remark ?a (locally finite, scheme theoretic) strati-
fication of a scheme S to be given by closed subschemes Z; C S indexed by a partially

63The scheme S’ is sometimes called the universal flatificator. In [?] it is called the platificateur
universel. Existence of the universal flattening should not be confused with the type of results discussed
in More on Algebra, Section ?
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ordered set I such that S = | Z; (set theoretically), such that every point of S has a
neighbourhood meeting only a finite number of Z;, and such that

ZinZ; = ngm Z.

Setting S; = Z; \ U i Zj the actual stratification is the decomposition S = []S; into lo-
cally closed subschemes. We often only indicate the strata S; and leave the construction of
the closed subschemes Z; to the reader. Given a stratification we obtain a monomorphism

s=1[_8—=s

We will call this the monomorphism associated to the stratification. With this terminology
we can define what it means to have a flattening stratification.

12.5.3. Let X — S be a morphism of schemes. Let F be a quasi-coherent Oy-module.
We say that F has a flattening stratification if the functor Fyq: defined in Situation 7is
representable by a monomorphism S’ — S associated to a stratification of S by locally
closed subschemes. We say that X has a flattening stratification if Oy has a flattening
stratification.

When a flattening stratification exists, it is often important to understand the index set
labeling the strata and its partial ordering. This often has to do with ranks of modules,
as in the baby case below.

Lemma. Let S be a scheme. Let F be a finite type, quasi-coherent Og-module. The
closed subschemes

S=7Z1DZyD7Z1DZy...
defined by the fitting ideals of F have the following properties

(1) The intersection [ Z, is empty.
(2) The functor (Sch/S)°P? — Sets defined by the rule

{x} if Fr is locally generated by < V sections
= { 0 otherwise

is representable by the open subscheme S\ Z,.
(3) The functor F, : (Sch/S)? — Sets defined by the rule

T {x} if Fr locally free rank V
0 otherwise

is representable by the locally closed subscheme Z,_; \ Z, of S.

If F is of finite presentation, then Z. — S, S\ Z, — S, and Z,_; \ Z, — S are of finite
presentation.
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Proof. We refer to More on Algebra, Section ?for the construction of the fitting ideals in
the algebraic setting. Here we will construct the sequence

0=Z_CIL CI,C...CQOg

of fitting ideals of F as an Og-module. Namely, if U C X is open, and
D, Cu— 05 = Flu—

is a presentation of F over U, then Zy |y is generated by the (n—7) X (n —7)-minors of the
matrix defining the first arrow of the presentation. In particular, Zy is locally generated
by sections, whence quasi-coherent. If U = Spec(A) and Fly = M, then Zg|y, is the
ideal sheaf associated to the fitting ideal Fit,.(M) as in More on Algebra, Definition ?Let
Z, C S be the closed subscheme corresponding to Zy .

For any morphism ¢g : T' — S we see from More on Algebra, Lemma ?that F7 is locally
generated by < r sections if and only if Zg - O = OF. This proves (2).

For any morphism ¢ : T — S we see from More on Algebra, Lemma 7that F7 is free of
rank r if and only if Zy - Oy = OF and Zy_o, - O7 = /. This proves (3).

The final statement of the lemma follows from the fact that if F is of finite presentation,
then each of the morphisms Z, — S is of finite presentation as Zy is locally generated by
finitely many minors. This implies that Z,_; \ Z, is a retrocompact open in Z, and hence
the morphism Z,_; \ Z, — Z, is of finite presentation as well. O

Lemma ?notwithstanding the following lemma does not hold if F is a finite type quasi-
coherent module. Namely, the stratification still exists but it isn’t true that it represents
the functor Fl, in general.

Lemma. Let S be a scheme. Let F be a quasi-coherent Og-module of finite presentation.
There exists a flattening stratification 8" =[], 5, for F (relative to ids : S — ) such
that F|s, is locally free of rank r. Moreover, each S, — S is of finite presentation.

Proof. Suppose that g : T — S is a morphism of schemes such that the pullback Fr = }*F
is flat. Then F7 is a flat O7-module of finite presentation. Hence JF7 is finite locally free,
see Properties, Lemma ?Thus 7' = [[,., T, where Fr|r, is locally free of rank r. This

implies that
Fflat = Hr>0 F,

in the category of Zariski sheaves on Sch/S where F; is as in Lemma ?It follows that Fyq
is represented by [[,¢(Z--1\ Z,) where Z, is as in Lemma 7 O

We end this section showing that if we do not insist on a canonical stratification, then we
can use generic flatness to construct some stratification such that our sheaf is flat over
the strata.
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Lemma. [Generic flatness stratification] Let f : X — S be a morphism of finite presen-
tation between quasi-compact and quasi-separated schemes. Let F be an Oy-module of
finite presentation. Then there exists a t > 0 and closed subschemes

SO8D>5D...08 =10

such that S; — S is defined by a finite type ideal sheaf, Sy C S is a thickening, and F
pulled back to X xg (S; \ Siy1) is flat over S; \ Siy1.

Proof. We can find a cartesian diagram
X L5 X, L5 5,

and a finitely presented Ox,-module F, which pulls back to F such that X, and Sy are of
finite type over Z. See Limits, Proposition 7and Lemmas 7and ?Thus we may assume X
and S are of finite type over Z and F is a coherent Oy-module.

Assume X and S are of finite type over Z and F is a coherent Oy-module. In this case
every quasi-coherent ideal is of finite type, hence we do not have to check the condition
that S; is cut out by a finite type ideal. Set Sy = S,.s equal to the reduction of S.
By generic flatness as stated in Morphisms, Proposition ?there is a dense open U, C Sy
such that F pulled back to X xg Uy is flat over Uy. Let S; C Sy be the reduced closed
subscheme whose underlying closed subset is S\ Uy. We continue in this way, provided
S1 # 0, to find Sy D S; D .... Because S is Noetherian any descending chain of closed
subsets stabilizes hence we see that S; = () for some t > 0. O

12.6. Partial closures of the group. Any partial compactification L of a group L
defines a submoduli G(L)r«CG(L) consisting of all (S, o, D) in G(L) such that o extends

to a section ore of the L*-bundle Sye def SxrL*.

Example. For a parabolic P let LCP be a Levi factor, i.e., a subgroup section of P —
P. A partial compactification L® of L defines G(P)p» o G(P)xgm)G(L)r CG(P). (It
consists of all (Sp,op) € G(P) such that (Sp/U,op) € GP) lies in G(L)., i.e., such

that op extends to a section ops of S/Ux pP*.)

12.7. General parabolic zastava spaces. More generally, one can associate a zastava
space

GG, (G/V) ' x(G/v )/ H_]

to any choice of opposite parabolic subgroups P* of G and their normal subgroups V*,
such that the spaces G/V¥ are quasiaffine. (Here P = P* etc.) . 3

64
65 Tnstead of H_ may use PT N P~?
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13. Example: G = SLy (Versions)

There are three parts below from three different sources:

o A. Present text. This is above in B.12
e B. From the original writing on Drinfeld’s classifying formulation
e C. From Vinberg text This is reapeated below in 20.4]

Part A. deals with G(V,Y) for V = GL(U) and Y = (G/N)* or V = End(U).

Part B. deals with the zastava space for SLs. One first describes End(U)2 (U — 0)22 GL(U). Then the
standard description of fibers of zastava space (as certain z-Grassmannians) is recondtrcted from ? point
of view.

Part C. deals with reconstructing the Vinberg semigroup )V as sections of the semigroupoid
S = Gxp(G/N)? over P = P(U). The sections are described as the realization End(U) of V.

13.1. B. From the original writing on Drinfeld’s classifying formulation.

13.1.1. Realization of End(U) as (G/NT)Ex(G/N=)2. Here, G = SL(U) acts on the vector space
U = (es,e_) (we also denote e; = e, and ez = e_). Let e® be the dual basis of U*.

We choose N1, N~ as stabilizers of e4, e_ or equivalently of vectors e™,e™ in U*. (In the basis (e4,e_)
we have e; = (§), e- =(9), hence ey =(10), e =(01)and N=Nt=({1)and N~ =(19))

This gives identifications
G/N* S U -0, gN*— ger, hence (G/N¥PR =1

The sum of two copies UE of U identified with (G/N*) can be identified with two columns of the
matrix algebra End(U) :

(G/NHRE(G/NHMS Ut = End(U) = UsU™

13.1.2. The open cell NTTN_ in G. It consists of all (‘; g) € G = SLy such that d # 0. 9 This cell
can also be described as all g € G such that the e_-component [ge_ : e_] of ge_ is nonzero. Its boundary
in G is therefore given by d = 0 or by ge_ € ke,.

Lemma. There are canonical identifications

(G/NHa(g/Nfl = G/NtXG/N- D +=— (G/N*xG/N-)°

y d J

EndU = (U —0)? = GL(U)

Proof. We know the identifications in the first two columns. , i.e., the columns are not zero. The open
subset (G/NTxG/N™)°CG/N*TxG/N~ is given by all (vy,v_) = (greqr.g-e_) € UDU for g+ € G
such that g, ~1g_ lies in the open cell NTTN_. This means that (g.,9_) € G(1xNTB~). Since,
(IXNTB™)(eq,e—) = (§ &) lies in GL(U) and contains (§ %), its G-image is precisely GL(U). |

13.1.3. The divisor in Vg is given by det = 0.

66 (1ay.(* 0 )= (steyas?
01 y1l/s y st )"
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Corollary. The divisor 0Y&CYs is given by the equation det = 0 in the GxH-torsor
(G/NTE (G/N=RE =~ End(U) over Ve 0

13.1.4. Modular description of fibers of the zastava spaces as a certain Grassmannian. A map ¢ =
(6T, ¢7) from (C,a) to (G/NT)Mx(G/N=2EZ, U+@U- = End(U) defines two subsheaves £ =
Oc f* of the trivial rank two bundle V = U®0O¢ over C.

Lemma. This identifies the fiber Z(G)p of Zc(G) at D = na € He with the space of O(D)-submodules
of Up = U8O(D) = Up/2"Uo of rank n.[D

Proof. The condition that f is generically in (G/NTxG/N~)° = GL(U) means that f*, f~ is generically
a frame of V, i.e., that LT 4 L% 1CV is generically an equality. In particular, £* are locally free sheaves
subsheaves of V of rank one. Let £L¥CLECV be their extensions to line subbundles of V.

We can assume that L~ is Oce_ or more precisely that f_ = z%_ where d is the order of vanishing of
f— at @ = 0 in C. This reduces the symmetry from (GxH)(C) to the stabilizer (?77) (N~ xH)(C) of
2% _.

O

13.2. C. From Vinberg text. Let U = {(e4,e_) and G = SL(U).

It deals with reconstructing the Vinberg semigroup V as sections of the semigroupoid S = Gx g(G/N )af'f
over P! = P(U). The sections are described as the realization End(U) of V.

13.2.1. For G = SLs, the semigroupoid 3 ' (G/N)°—B can be identified with the vector bundle 0% (1)
over P! (which appears in various settings), and the sections T'(B,S) with 2x2 matrices Ma.

13.2.2. Corollary to the lemma[TI1Z3

Corollary. (a) Gx H-equivariant bundle S Lof (G/N)°— Bis isomorphic to the G x G,,-equivariant vector

bundle (g/n)°—B. Here G,, acts on the vector bundle in the standard way and we use identification
p: H=G,,.

(b) (g/n)? =
sections of (g/n)? =
2x2 matrices.

O(1)®0(1) = Ty (the twistor space of the hyperkéhler manifold H). In particular, the
T*B (the unlversal twisted cotangent bundle), can be identified with the set My of

13.2.3. Identification of T'(P',S) with GLs. In this case it is simpler to think of S first. With the
conjugation action of B, G/N has been identified with U(1), and this induces G/N = U(1) — {0}.
Therefore, sections of S— B can be identified with My. A bases ej,es of U gives I[P, U(1)] =
I[P, O(1)]er® I[P, O(1)]es, with each summand of dimension two and giving one row of My (or a
column?).

Sections of S— B are the non-vanishing sections of U(1) = O(1)®O(1). A non-zero section s of O(1)
vanishes precisely once, its divisor is a point 2 in P! and s is determined by x up to a scalar. A section
s = (s1,82) of U(1), vanishes iff one of s;’s is zero, or if they have the same divisor; but this is the same
as saying that one is a multiple of the other, i.e., that the matrix with rows s; is not invertible.

67 In terms of the a local parameter z at a we consider the nilpotent operator z on the vector space Up =
UpUz 1@ - Uz" L. and we consider of its Springer fiber Gr,,(p)* in the Grassmannian Gr, (Up)Z.
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13.3. (Intersection) Homology of moduli. The question is that I H (M) of a moduli
M should itself be some kind of a moduli. The same for H, and H*

13.3.1. Anq for a moduli of maps M = Map(3, X).

Question. As functors we seems to have
Arapz,x) = Map(3, Ax).

13.4. Standard MC questions.

13.4.1. Relation of moduli interpretation of H*(X) (Kontsevich) and the geometric inter-
pretation Ax of relative motivic homology.

13.4.2. Question. How does the moduli interpretation of H*(X) as the moduli of defor-
mations of Coh(X) relate to the H''(X,Z) = Ax?

13.4.3. Absolute and relative motivic homology. Seemingly there should be a map from
Hs to H'® since any traditional (absolute) finite correspondence gives a relative one,
i.e., there is a map

13.4.4. The fundamental class in motivic cohomolgy? 1t is of the diagoanal Hodge type?

Check the sources.
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Part 3. Kapranov: Reductive semigroups
14. Reductive semigroups

14.0.1. Setting. G is a reductive group with a central torus Z. Fix TCBCG. Let G be a
semigroup closure of G with zero. The closures T', B in G are affine semigroups.

14.1. G in Tannakian terms. Rep(G)CRep(G) is a full-subcategory of representations
that extend to G, in particular Irr(G)CIrr(G). The Grothendieck semi-rings lead to an
inclusion of based semirings Z, [Ir77(G)|CZ.[Irr(G)]. In particular, O(T) = k[X*(T)]
lies in O(T) = k[X*(T")].

If we think of Ir77(G) as the dominant cone X*(T'),, then Irr(G) is a subsemigroup we
denote X*(T),.

14.1.1. Lemma. [Kapranov, Vinberg] G = G-T-G.
14.1.2. Corollary. A representation of G extends to G iff its T-weights extend to 7.

14.1.3. Corollary. (a) For x € X*(T), if ny € X*(T) for some n > 0 then y € X*(T).
(b) X*(T) is convex inside X*(T):

conv[X*(T)|NX*(T) = X*(T).
Proof. (a) For U open and dense in X, if some power of fO(U) extends to X then f also
extends to X.
(b) follows since for ACZ", conv(A) N Z" lies in Q-A.

14.1.4. Questions. (a) When is conv[Irr(G)] N Irr(G)C Irr(G) an equality?
(b) Does any G-orbit in the semisimple part of G (a constructible subset), meet T°?
(¢) Is B-W-T-BCG an equality? (Yes for GLyCM,.)

14.1.5. Remark. (1) B-TCB is a dense constructible subset. (2) B-T and T-B need not
be the same. (In SL,, products (§3)-(g2%) with a,b # 0 give all matrices A with
Ay = 0=A;, = 0, while BT is described by A = 0=A4;5 = 0.)

14.1.6. Conjecture. The following are the same

(1) Semigroup closures G of G,

(2) W-invariant cones C' in X*(T')r, generated by finitely many integral weights,

(3) Full abelian subcategories R of Rep(G) stable under ® and subqouotients and
extensions (7).
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Proof. (G)—Rep(G) is a bijection by Tannakian formalism. They give C' = X*(T") and
conversely R consists of representations of G with weights in C'.

14.2. Stratifications of G.

14.2.1. Questions. (a) Adjoint quotients of semigroups:

G/|G — G//G

ET ET? .

T/|W —— T]/W
(b) Do all G*orbits meet T, i.e., is the map of finite sets T/W,;; — G\G/G surjective?
14.2.2. Conjecture. The stratification of G by G?-orbits should be encoded in a stratifi-
cation of T'//W by T-orbits.
True for G = GL,CM,, = G.

14.2.3. Define G & T, G, ¥ {2 € G, Zo(z) = dim(T)}. Then G,y & G, N Ge

consists of elements of G that lie in the closure of one Cartan T of G.
14.2.4. Questions.

14.2.5. Lemma. A representation of G extends to G iff its T-weights extend to T'.
Proof. for p > 0.

14.3. Functions on G.

14.3.1. Lemma. GrO(G) = @rerm(@) LOL* contains GrO(G) = ©peppn@ LOL .
Proof.

14.3.2. Observe that

14.3.3. Lemma. (?) G//Z is a projective variety and it is a compactification of the
reductive group G e /Z.

15. Semigroup closures

15.0.1. Data. We start with a reductive group G and a finite subset ACIrr(G). It defines
a semigroup G, & the closure of the image of G in the semigroup End(L.).

If the representation (L. e g rea L is faithful then G, is a semigroup closure of G.
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15.1. Projective variety X.. Under the
e Homogeneity assumption: the image of G in GL(L.) contains scalars

the semigroup G, has a zero, and it is a cone. Then

def

X, & P(G.)P[End(L,)]

is a projective variety.
15.2. Classification of reductive semigroups.

15.2.1. Lemma. Isomorphism classes of semigroup closures G<=G are the same as ...

16. G-spherical varieties
A G-space X is said to be spherical if there is a dense B-orbit . Then X contains a
(unique) spherical G-orbit G-O.

One also says that a subgroup H of G is spherical if the G-space G/H is spherical. Such
pairs (G, H) are called Gelfand pairs.

The rank of a spherical space X is defined as rank(G) — rank(H) if the open spherical
orbit in X is of the form G/H.

16.0.1. Lemma. Subgroup H is spherical iff G/H has no multiplicities (i.e. O(G/H) has
none).

16.0.2. Ezamples. (a) G/N_ is spherical — the open B-orbit is the big cell BB_/N. (b)
Symmetric subgroups are spherical. (c) AgCG? is spherical.

17. Newton polytope . of a finite subset ACIrr(G)

The “Newton polytope” Q. of a finite subset ACIrr(G) is defined as the convex closure
of the union of weights in A.

17.0.1. Ezamples. (a) In SL,, let A be the basic representation, then @), is the standard
(n — 1)-simplex: W-wy = S,-e1 = {1, ...,€n}-

The facets of Q). are the subsets of {1,...,n}, and the W-orbits in the set of facets of Q.
are indexed by the size 0 < k < n.

(b) In SL,, let A be the fundamental representation L(w,) = AK”. Since Wy = €1+ - -+&p,
the vertices of Q. are the (p — 1)-dimensional facets of Q(Ly,).
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17.0.2. Theorem. (a) GxG-orbits in the semigroup G. associated to a finite subset
ACIrr(G), are the same as the W-orbits in facets of the polytope Q..

(b) Let us associate to each face I' of (), an idempotent operator er on L. — the projector
to the sum of all weight spaces in I'. Then er is in the image of the G-action on L., i.e.,
in G, and it defines a G%-orbit

def

G-eqa-G = G.(I')C G..

17.0.3. Lemma. G, is a spherical G-variety.

18. Tannakian approach (“monoidal set approach”)
19. Appendix. Vinberg semigroup V(G) = V5(G) via algebras of functions

Here we recall Vinberg’s original definition of the (absolute) Vinberg semigroup (from “On

reductive Algebraic Semigroups”). There Vinberg has defined V = V(G) by describing

its algebra of functions O(V) as a certain subalgebra of functions on V G x H. These
e

formulas are only valid in characteristic zero.

Vinberg’s formula for functions on V(G) is

oW E @ LWSLM)eCe CO[G x HIY o LA@LA)eCe"

AEX 4, PEAMQ+ (@) AEXy, peEAQ

The only thing we do in this section is fix a choice of the matrix coefficient map.

19.1. Groups G, V(G) and the semigroup H.

19.1.1. Groups G, G and H. Let G be a semi-simple simply connected algebraic group.

Denote by AC X & X*(H) the abstract roots and let A* correspond to g/b. Then X

contains the the AT-dominant weights X, and also X O @ ©7zAD Q+ o /ARVANS

19.1.2. The Vinberg group G of G. This is the group ¥ G x H.
2(Q)

19.1.3. Semigroup closure H of the Cartan group. Abstract Cartan group

g« Spec(C[X]) lies in a semigroup Y Spec(C[X,]), corresponding to a

cone X, in the lattice X. Observe that the lattice () dual to X has a basis of simple

coroots II, such that the cone it generates ) o Z. 11 is dual to X . We decompose H
according to II: H = X,(H)®G,, = ( ® Z&) @G, = [[ &(Gn) = (G)™. Cocharacters
a€ll

acll
A of Q4C Q = X, (H) extend to semigroup maps A : C— H and H = [[&(C)=C™

acll
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19.2. Functions on G,é and H.

19.2.1. Functions on G. For a representation V of G matrix coefficient map ¢ = ¢¥ :

VeV*—O|G] defined by ¢, . (x) &f (v,zu) for x € G, v € V and u € V*, is GxG-

equivariant:
[(g,h) coul() = coulg™ ah) = (v, g7 wh-u) = (gv, x-hu) = gy ().

For a dominant weight A € X, we denote by L(\) the irreducible representation of G with
the highest weight A. This means that for any Borel subgroup B the action of H = B/N
on Hy[N, L(\)] is by a character A\g € X*(B/N), dominant for (A*)z = A(g/b); while
the action on L(A)Y is by (wo\)p dominant for A(n).

We will use the identification ,\@ L(A)®L(N)* = O|G] given over Q by the above
eXt

matrix coefficient maps.

To describe the algebra structure on O|G] in this realization, we use decompositions
LIN)QL(N") = ©L(y;). For o' € LX), v" € L(\'"), v € L\N)*, u" € L(\")*, the
decomposition above gives v'®v" = @v; and v'®u” = @u;. Therefore,

L) L) LV)QLW) L)

Ul7ul C'U”7ul/ - 'U/®'U”7ul®u// - Vi, U .
%

19.2.2. Functions on H. Characters u € X = X*(H), give a basis of functions on H:
O[H| = C[X]. Moreover, C-p is an H x H-submodule of C[H| isomorphic to L(—u)®L(u),
since for a,b, h € H one has

[(a,b)-ul(h) = p(a™"Tes) = pu(a) " u(b) - p(h).

19.2.3. Functions on G. We start with
O[GxH] = O[GI®O[H] = ® LA\)® L\)'® Cpu.

AeX peX
Next, G is the quotient of GxH by the action of Z(G) embedded into GxGxHxH by
z +— (1,2,2,1). The summand corresponding to (A, u), factors to G iff the actions of
Z(G) on L(A)* (by —A) and on C-p (by —p) cancel, i.e., iff Z(G) acts the same via A and
. This means that A — p € Z(G)*+ = QCX, hence
O@G) = OG)ROH)= @  L\® L)@ Cet.

AEX L, pHEAQ

19.3. The Vinberg semigroup V = V(G) of G. The space V is defined in terms of the

subalgebra O(V)CO(G) :
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Lemma. The following subspace O(V)CO(G) is a subalgebra:
oy ¢ & LON®L(A)*®C-e”,
AEX 4, nEX, A<u
(Here, A < p is defined using the cone QT CX.)
Proof. To check that this is a subalgebra we notice that for N, \" € X, and /', p” € X
with ) < g/ and A" < 4", one has [L(N)® e”|@[L(\") e*'] =2 @L(v;)® e+, and

Vig)\/_l_)\//gﬂ/_l_ﬂ//- |:|

19.4. The canonical map V— (G/N)*T, We will describe the map from the Vinberg
semigroup into the affinization of G/N.

19.4.1. The quotients by free actions. We will denote by A\ X the quotient under a free

action of an affine group A. Here “free” means that there is a G-bundle X £+ B which is
locally isomorphic to AxB—B, i.e., X—B is an A-torsor in the Zariski topology. Then
A\X = B is also an invariant theory quotient, i.e., Ogp— (p,Ox)* is an isomorphism.

19.4.2. Functions on G/N.

Lemma. (a) The functions on G/N are
O[G/N] = O[G]"N = [ & LNQLW"Y = & LNQ[LO)TY.

)\EX+ )\EX+
(b) A description of G/N as G EB /N gives
O[GEB/N] = @ LAR[LNT"eCC @ LR [LWTeCe = O[GxH].

Xy AEXy, peX

Proof. O[G;B/N] = (O[G]®0O[B/N))? = (O[G)"*N®O|B/N])B/N equals

B/N
:( ®  LNQLWNTVe® C~e“) = ®  LNS([LN N Cet)BN,

reXq, peX reX, peX

The (A, p)-summand is zero unless —p is the N-highest weight of L(\)*, i.e., the lowest
weight A of L(\).

19.4.3. The canonical map V—)(G/N)af. By our algebraic definition of V, O(V) lies in
O(GxH). Moreover, by [9.4.2(a), O(V) contains the subalgebra O[G//N] of O[Gx H].
This gives a map of affine varieties V—(G/N)*. Actually, one has

GxH 2~ % —— s Y

_ l lsmﬁ

GxH 5 GxH =GN — (G/N)*t
B
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Remark. Is V(G) hyperkéhler? (Yes in SLs and the dimensions are always even, but this
may be all of the relation there is).

Part 4. Schubert polynomials via semigroups [Knutson—Miller|

Here the double Schubert polynomials are exaplined in terms of the Vinberg semigroup.
(Hence no triple Schubert polynomials.)

19.4.4. Let B be the flag variety of a simply connected semisimple group A. Let G be a
reductive group containing A and G its semigroup closure (a semigroup with open dense
part G). Consider the map

H*(B) = Hi,3(G) «Hj,5(G) = Hy
for a Cartan T of a Borel B of G. The last step requires that G have a zero, hence be
equivariantly contractible.

19.4.5. For a cycle C in B let C be its inverse in G. The fundamental class of [C] €
Hi, 5(G) = Hi maps to [C] € H*(B), so it is a “refinement” of C.

19.5. Positivity. Suppose that G is A x T for a torus TC Endg(W) for a “faithful”
Z(G)

representation W of G, and G is the closure of G in linear operators on W,

Choose a basis B of W in which the Cartan T = T.-TCG diagonalizes, and use a
cocharacter ¢ of the torus (G,,)® to degenerate in the Hilbert scheme the subvariety
CC GC End(W) (it is Gp,-invariant, so the degeneration happens in the projective space)
to a (G,,)B-invariant subscheme EC, i.e., a union of coordinate planes.

This should show that [C] is a Z-combination of monomials in the polynomial ring H7.

19.6. The case of the semigroup of matrices G = M,, [Knutson-Miller|. This was
done by Knutson and Miller for A = SL,, and matrices G = M, to get a construction
of the Schubert polynomial &, [z1, ..., z,|, w € S, with manifest positivity and stability
(under N > n). They also prove nice properties of C and EC, Cohen-Macaulay and
reduced, which may be interesting in a larger generality.

19.7. Double Schubert polynomials and the Vinberg semigroup. If G is the Vin-
berg semigroup (W is the sum of fundamental representations), and C is a Schubert cycle,
one should get the double Schubert polynomials.



90

B. Vinberg semigroups, semigroupoids and affinization

These are the elements of an old study if these topics. In particular this is not up to date.
19.8. Definitions of Vinberg semigroups.

19.8.1. The data. To a parabolic P = U x L and its normal subgroup V (between U and
[P, P]) we associate

o (G, (P/V)°)-spaces G/VC(G/V)2; B
e groupoid § = Spy over P = (/P and its semigroupoid closure Spy;

e the Vinberg group V = Vpy oo (GX 7 Z(P/V) and its semigroup closure Vpy .

19.8.2. The definitions and realizations of Vpy .

e The original definition of a Vinberg semigroup was in tems of its ring of functions.
It was only valid in characteristic zero (and the data were the standard ones
(G,B,N)).

e The “up to date” definition/construction should be

= EndZG,P,v (G/V)
e More conjectural realizations/definitions:
(1) affinization of a certain torsor over the wonderful compactification;
(2) (affinization of?) stable sections of a certain semigroupoid over B.
The text below, uses a complicated and conjectural definition (conjecture 2L.T.2.d).
along the lines of (2).

Vary

The endomorphism construction is known for the standard Vinberg semigroup V(G) =
VeapnB(G), ie., it has a realization as endomorphisms End g ((G/N)2T) (theorem B.2).

This seems closer to a reasonable definition of Vinberg semigroups.

19.8.3. Sections below. In the section We calculate the invertible sections of the
groupoid & = Spy as the Vinberg group Vp and show that the sections of & are
controlled by the T-fixed points.

In the next section 21 we introduce the Vinberg semigroups Vpy2Vp 1 and give a con-
jectural comparison with the stable sections of I'*(P,S)C I'(P,S) of the semigroupoid
S.

19.9. Summary: Vinberg semigroup and wonderful compactification. . Let
G be semisimple and GG be the wonderful compactification of G 4.

68 m his material appaears in 8.3
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19.9.1. V wvia (G/N). The following property seems to be a reasonable definition of V.

Lemma. VCV act on G/NC(G/N) and
VS Auty (G/N) = Auty((G/N)*)  and V= Endy((G/N)*).

19.9.2. V and the wonderful compactification G,q.

Lemma.

e (a) The H-free part VY’ of the Vinberg semigroup V is an H.-torsor over the
wonderful compactification G,q of Gaq.

e (b) As an H-torsor over G, V’ is the product of G,,-torsors that correspond
to the decomposition of G,y = G — G.q into irreducible G-invariant divisors
D;, i€l

e (c) V is the affinization of V°.

Proof. (a) The free part V’ of V contains V, so VO/HSC contains V/H,. = Goq. ... O

Remark. G4 is the geometric invariant theory quotient V//H,. of V by H,, in the sense
that it is the quotient of the free part of the space. So, G4 is open in the G,q-stack V/H.

19.9.3. V via a semigrouoid S over B. We consider a certain groupoid S over B with a
semigroupoid closure S (see [19.9.4]). The notion of sections I'(B,S) of a groupoid means

the sections of S — B> £2 B. The sections form a semigroup I'(B,S) and its invertible
part I'*(B,S) is a group.

Define the stable sections of S as the Hilbert scheme closure of T*(B,S) in all sections

I'(B,S) of S.
Lemma. V is the group of invertible sections ['*(B,S) of S.
Conjecture. The stable sections of S form precisely the Vinberg semigroup V.

19.9.4. Groupoid S over B and its semigroupoid closure S. The action groupoid for the
G-action on B is Gy = BxG — B? by (b, g)—(b',b"). (We will also think of it as Gx gG
for the conjugation action of B on G.)

Its vertical part Gi = G|a, is the group bundle Gx 5 B (for the conjugation action of B

on B). It contains a normal group subbundle G_ “ax 5 N. Our groupoid over B will
be

S < Go/g-.
So, the fiber at (B”, B') € B? is

SB”,B’ _ {gN/ c G/N/7 gB/ — B//} — {N//g c G/N/7 gB/ — B”}.
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Also, the total space of S is GxgG/N and the second projection map pro : S — B is
GxpG/N —G/B =B by (g,zN)— (g,zN)— g.

We define S as the relative affinization of S over B
def

S € sil = Gxp (G/N)M.
Lemma. S is a semigroupoid closure of the groupoid S.

19.9.5. The canonical resolution i of V.

e (a) V has a canonical resolution V.

e (b)V and V. are stable sections of certain groupoids over B.
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Part 5. Vinberg semigroups and sections of semigroupoids
Ezample. For G = G,q = PGLy we have V = GxH. If G = PGL, then (G/N)™ is the
nilpotent cone N and G/N = N,.,.

In particular, one of its orbits provides a canonical map V(G) — (G/N).

20. Sections of the semigroupoid S associated to [P, P|]D2V2U

To a parabolic P = U x L and its normal subgroup V' (between U and [P, P]) we associate
a groupoid § = Sp v, its semigroupoid closure & and the Vinberg group

def

V=Vrv = (GxXze) Z(M)
for M = P/V.
We calculate the invertible sections of the groupoid & = Sp v as the Vinberg group
I'(P,S) = Vpo
(under some technical assumptions on P, see 20.2.1] which hold for the full flag variety).

Next, we are interested in the closure of T*(P,8) in all sections I'(P,S) of the semi-
groupoid S. Here we only notice that for P = B the sections of S are controlled by the
T-fixed points.

In the next section 21l we introduce the where Vinberg semigroups Vpy2Vpy and we
attempt to compare them with T'*(P,S).

20.0. Data (P,V). Here, P is a parabolic subgroup with the unipotent radical U. V is
a normal subgroup of P that lies between U and [P, P]. Then M &0 M s reductive as a
quotient of the Levi group P & P/U by V/U.

On the level of Lie algebras, [ = Z(I)® @;e,1; for simple factors [;. Then v = vgBBje s [
for vg = vNZ () and some J'CJ while m = my@®® e v [; for mg = Z(I)/vg and J" = J—J".

Ezample. The interesting choices are V = U and V = [P, P]. Then M is the Levi group
P = P/U of P or the commutative quotient P*" of P.

20.0.1. Ezample P = B: sections of semigroupoids SCS over B. Here the only choice is
V = N = [B, B]. We will only formulate the key objects.

For a semi-simple algebraic group G we consider a G-equivariant bundle

S Gx G/N— G/B = B. Here, the B-action on G/N is by conjugation. P
B

69 The translation action extends to a G-action and then the G-bundle is trivial.
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We will see that S is a groupoid over B and the above map & — B is its first projection.
We are interested in global sections S over B. This gives the space

SxG/N

over B which is the first projection map for a semigroupoid S over B. Here we denote the
global sections by S =T'(B,S.

20.1. Groupoid § = Spy over G/P.

20.1.1. The group bundles 0 — Vp — Pp — Mp — 0 over P. For a reductive group G
we consider the data (P, V) as above.

Let P be the partial flag variety that contains P. It carries several G-equivariant bundles,
the tautological group bundle TPP = G xp with a normal subgroup Vp e Gx pV and

the the quotient group Mp = Gxp M df Mp (here we use the conjugation actions of P).

20.1.2. The groupoid Spy over P.

o Let G = Gpy = GxP be the action groupoid for the G-action on P.
e Its vertical part G|a, is the stabilizer group bundle Pp. We define the groupoid
S=8(P,V)=8(P,V) over P as the quotient G/Vp.

The fibers of G are
Gprpr={g€G; 9P = P"} C Isom(P,P') = Isom(Tp, Tp').

So, one can think of G as the “groupoid G — Aut(Pp) of G-automorphisms” of the group
bundle Pp. Then S would be the groupoid G — Aut(Mp) of “G-automorphisms” of the
group bundle Mp over P.

Lemma. (a) The restriction S|py¢py is a bitorsor for (Mp, M xP). It consists of all
trivializations of the group bundle Mp.

(b) The restriction S|pypy is G/V. So, S can be written as Gx p G/V (for the conjugation
action on the second factor). 0J

Ezample. When V is the derived group [P, P], the group bundle S|Ap = P*x P is
trivial.

20.2. Sections of S. For the notion of sections of (semi)groupoids see the appendix 23]
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20.2.1. Assumptions. We will assume that

(1) p does not contain any simple summands of g. Otherwise, we could consider the
same P from the point of view of a smaller group G.

(2) G—Aut(G/P).

Here, (1) implies that the map G/Z(G)—Aut(P) is injective.
Requirement (2) can probably be avoided by replacing in formulations G' sometimes with

the possibly larger group Aut(P) & Gxq,, Aut(P) (an extension of Aut(P) by Z(G)).
See remark [20.2.4

20.2.2. Sections of Mp.

Lemma. If V € {U, P'} then the global sections of Mp are given by the center of M :

D(P,Mp) = Z(M) and T(P.mp)2 Z(m)].

Proof. (1) Lie algebras. For the Lie algebra claim we have m = m/®Z(m). Here, Z(m)
gives a summand of mp which is a trivial G-bundle. We will see that I'(P, mp’) is the
sum of all simple factors of g contained in p, ie., I'(P,Gxp m') =0.

If m’ is non-trivial then V' = U and M is the Levi factor P. Its Lie algebra is a sum

of simple Lie algebras m; corresponding to connected subsets J; of the set I of simple

coroots. Let ¢; be the highest root of m;, the vector bundle Gx m’ is the direct image
P

from the full flag variety of the sum of line bundles & Op(¢;).

It remains to see that if ¢; is dominant then m; is a simple summand of g. Since ¢; =
> ey, Mo with all n,, > 0, and for simple roots a € J; and 3 ¢ J; one has (¢;, ) < 0,
the dominance implies that any simple roots o € J; and 8 ¢ J; have to be orthogonal.

(2) Groups. The group I'(P ) is finite since its Lie algebra I' (P, mp’) is zero.

’ Z[M

A section of Mp (or ][\1/\[4 ])) stays in the closure of one “conjugacy class”. For that observe

that Mp maps to the invariant theory quotient M//M for the conjugation action, hence
any section of Mp gives a map from P to the affine space M//M, which has to be a
constant.

in

Now we see that the evaluation of sections at P € P is injective. If a section ¢ o ZIio]

has value 1 at P then o stays in the unipotent cone, but it also has finite order.

Finally, group G acts on the bundle Z[ 7 T and on its global sections. The orbit of a Levi

factor LC P through a section o is isomorphic to the conjugacy class of o(P). Since it is
finite o(P) is central and so is o. O
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20.2.3. The direct image of (Ax, 7" Ay)-bitorsors for a map X = Y. We consider a group
Ax on X and a group Ay over Y, where X and Y are related by a map X = Y.

We consider a bitorsor T for the pair of groups (Ax,7*Ay) on X. We define its “direct

image in spaces” 75P(7) —Y as the total space of T, considered as a variety over Y.

Lemma. The group Ay acts on 75PT on the right and
Aut o, (T5PT) = 9" Ax.

(Here, 751 is the direct image in sheaves, i.e., a fiber [T5"Ax], is the space I'(X,, Ax) of

*

sections of Ax on the fiber at y.)

Example. Consider the case of the map P — pt, the group Mp on P and its fiber
[Mp]p = M as a group on the point pt. We know that the total space of the restriction
S|pxipy of the groupoid S = Sp i to a copy of P is the map G/V = — G/P = P and
that this is a bitorsor on P for (Mp, M xP) (lemma 20.1.2).

The direct 5P image of this bitorsor S|pyx(py — P is its total space G/V. The lemma
now says that

Corollary. For the action of M on G/V on the right
Auty (G/V) = Z(M).

Proof. Auty(G/V) is Auty (a3P(G/V — P)) and by the lemma this is (P —pt)y"Mp =
['(P, Mp). However, this was calculated in lemma as Z(M) O

20.2.4. M-automorphisms of G/V'.

Corollary. If G — Aut(P) is surjective then

AutM (S|7>><{p}) = AutM(G/V) = Gzé}) Z(M)

Proof. Recall that the fiber (G/V), of G/V — G/P at a point x = gP € P is gP/V, and
this is a bitorsor for (YP/g", M) where the first group is the fiber of Mp at x = gP.
(1) Let 7: G/V — G/P =P. The maps ¢ and ¢ in the sequence
0— [(P, Mp) - Auty(G/V) L Aut(G/P)—0

are defined by

. def def

(D) = v(7(y))y and [g(a)l(z) = wla(y)] for y € G/V, z=mn(y) € G/P.
This sequence is exact. First, the map ¢ is surjective by the canonical map

G x Z(M) S Auty(G/V)
Z(G)
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and by our assumption that G—Aut(G/P).

The map i is injective since for v € Ker(i)CI'(P, Mp) and any x,y as above we have
y = [v(@)|(y) = y(x)y, ie., ~(z) € (Mp), acts trivially on the torsor (G/V),. So,
v(z) =1 and v = 1.

Now, elements o of Ker[Aut (G/V) < Auty (G/P)]) preserve each fiber (G/V), and act
on it by automorphisms of the right M-torsor structure. So, such a acts on (G/V), as a
unique element a(z) € (Mp),, hence o acts on G/V as a section a € I'(P, Mp)

(2) By the lemma T'(P,Mp) = Z(M). 0

Remark. In order to extend the lemma to the general situation in the for-
mulation Auty (G/V) = Aut(P) x Z(M), we would need surjectivity of
2(Q)

Auty (G/V) — Aut(G/P).
20.2.5. Invertible sections of the groupoid Spy .

Lemma. Under the assumptions 20.2.1]

F*('P,Sp,v) = GXZ(G) Z(M)
Proof. A section s € I'(P,S) —P) of the groupoid S LLIN P2, is a pair s = (f, o) of
amap f : P—P and a section o of G—X? over the graph of f, ie., o0 : X—G and
o(x) € Sp)z- Subgroup I'*(P,S) is the invertible part of the semigroup I'(P,S), it
consists of all f € Aut(P).

Croup G x Z(M) acts on S %+ P and on sections I'*(P,S). The translations of the
Z(G)

canonical section 1 give an embedding G x Z(M) <= T*(P,S). There is an exact
Z(G)

sequence 0—T' (P, S|Ap)— T*(P,S) = Aut(P)—0, since (1) by assumption, G surjects
onto Aut(P), and (2) the kernel of 7 consists of sections s = (1,0), with o a section of
S|Ap = Mp. Now ¢ is also surjective since by lemmaR20.22, T'(P,S|Ap) = (P, Mp) =
Z(M).

20.2.6. The case of the flag variety. For the flag variety B the only choice of VC B is the
unipotent radical N. Now, Sgr g = {g € G, 9B' = B"} is a bitorsor for (B”/N", B'/N’).
Group bundle Bg/Ng = Gx B/N is the trivial bundle Bx H for the abstract Cartan
B
B and the group of sections is H (by its definition). Finally,
Auty(G/N)= G x H= T'"(B,S).
Z(G)

20.3. Semigroupoid Spy = Gxp (G/V)™ and its sections. We define S as the
affinization of S relative to a projection to a single copy of P.
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Conjecture. S is a semigroupoid over P

The only things established here are certain injectivity results for the restriction of sections
to BT = W and the case of SLs.

20.3.1. FEwaluation of sections at points of B. We will see in 0.4 that for G = SLy the
evaluation at opposite Borels b yields an isomorphism

I'(B,8)— G/N,.xG/N_.

In general we have

Lemma. Restriction of sections to B, yields an embedding I'(B,S)— [] G/“N.
weWw

Proof. Image of 1 € GxH is the collection 1 of unit cosets. Since the map is equivariant
under G'x H it suffices to find the fiber at 1. It consists of all (g,h) € Gx H such that g
lies in all B, w € W, i.e., g € H; and for each w € W, hp equals gup = “(gg). So the
conditions are that g € HY = Z(G) and then also h = g lies in Z(G)CH.

Remarks. (a) In general, the evaluation at by is not injective. [ Let p be the composition
GxH—S—G/N.xG/N_, then p(g,s) = (1,1) implies that g € B_ N By = H and then
it is equivalent to h = gp,. So the conditions are that h = g = “Ogp, = “°h, ie,
g € Hbwo} and h = gp, ]

(b) The fact that a section of S—B is determined by the values at W points *b, w € W
seems to be a generalization of the fact that in the case of SL,, for S = C?(1), any
section is determined by the values at two points. [However, considerably fewer points
may suffice?]

20.4. The case G = SL,. In this case, S & (G/N)°—B can be identified with the vector
bundle

OOZ (1) over P! (which appears in various settings), and the sections I'(B,S) with 2 by
2 matrices Ms.

20.4.1. Lemma. (a) The affine closure of G/N is W & C2
(b) The action of G on G/N becomes the standard G-action on W and the H-action

becomes via p: H iGm the standard action of (G, on a vector space.

(c) The conjugation action of B on G/N gives a new structure of a B-module on W,
isomorphic to the B-module g/n.

Proof. We fix the notation. Let G = SLyD B = (i) = N-H for H = (39) and
N = (}1). Let AT = {a} and p = a/2, so that Ax(g/b) = {ap}. Denote W = C? and
fix the basis (e1,e2) = (e, f).
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(a) The stabilizer of e = (}) is Go = N, so ¢ : G/NSW — {0}, gN — g is an
identification of homogeneous spaces of G.

For (b) observe that s = (§,% ) € H acts on e by a = (—pp)(s). So for h € H and
g€,

uh gN) =u(gN-(hg)™") = (g (hg)"" N) =g (hg)""-e = pp(hp)-ge = p(h)-1(g).

(c) For b€ B and v € W one has b - v = pg(b)-bv, since for g € G and v = ge

new

b ge= (*g)e= bgbte= (pp(b)d)-ge.

new

So with the new action this B-module is W(1) oo W®pp, and this is non-canonically

isomorphic to g/n (both are indecomposable B-modules with the same weights 2, 0).

20.4.2. Corollary. (a) Gx H-equivariant bundle S oo (G/N)°— B is isomorphic to the

G X G ,-equivariant vector bundle (g/n)’—B. Here G,, acts on the vector bundle in the
standard way and we use identification p : H—G,,.

(b) (g/n)? = O(1)@0O(1) = Ty (the twistor space of the hyperkihler manifold H). In
particular, the sections of (g/n)? = T*B (the universal twisted cotangent bundle), can
be identified with the set Ms of 2x2 matrices.

20.4.3. Identification of I'(P',S) with GL,. In this case it is simpler to think of S first.
With the conjugation action of B, G/N has been identified with W(1), and this induces
G/N = W(1)—{0}. Therefore, sections of S— B can be identified with M,. A bases e}, e,
of W gives I[P, W(1)] = TP, O(1)]e:® '[P, O(1)]eq, with each summand of dimension
two and giving one row of M, (or a column?).

Sections of S— B are the non-vanishing sections of W(1) = O(1)®O(1). A non-zero
section s of O(1) vanishes precisely once, its divisor is a point x in P! and s is determined
by = up to a scalar. A section s = (s1,$2) of W(1), vanishes iff one of s;’s is zero, or if
they have the same divisor; but this is the same as saying that one is a multiple of the
other, i.e., that the matrix with rows s; is not invertible.

Odds

20.5. Action groupoid G. The action of G on a partial flag variety P defines the action

groupoid G P, P2 with fibers Gprpr = {g € G, 9P = P"}. Its restriction to the
diagonal G" = G|, is the stabilizer group bundle Pp with the fiber at P € P equal P.
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20.5.1. A base point P € P. For any choice of P € P, the restriction G|p(py is a bitorsor
for (Pp, PxP) since the fiber Gp p is a (P, P)-bitorsor. Its total space is G (for any action

groupoid, gi P is identified with Gx P). Also, Pp can be written as Gx P for the
P

conjugation action on the second factor.

20.5.2. Normal subgroup V of P. Fix P € ‘P and its normal subgroup V which will
be either the derived subgroup P’ or the unipotent radical U of P. It defines a normal
subgroup Vp of Pp, hence for each P € P a normal subgroup V = VpC P.

IfP= BthenV = B = U.

20.6. Groupoid S = Spy. Since Vp is also a normal subgroupoid of G, we also get a
groupoid

S g/, 22, p2
Wlth ﬁbel”s SP//’P’ - VP//\gP//7P/ = gP”,P’/VP,‘

The restriction S|pyypy is a bitorsor for (Mp, M xP), and its total space is G/V. So, S
can be written as Gx G/V for the conjugation action on the second factor.
P

20.7. Use of quasimaps for g-cohomology of flag varieties? [19.9.3

Givental’s used quasimaps for the g-cohomology of flag varieties. In our paper [FFKM],
there is only a map in one direction and this is also what is expected here: V(G) mapping
to “Hilbert maps”.

Here, V is conjecturally constructed in terms of “stable maps” whic we defined as “Hilbert
maps”, i.e., the Hilbert space closure of the space of graphs of maps. Prsumably the
stable curves of Kontsevich have the same AG interpretation.

Is the present construction related to Giventhal’s mystery?
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21. Vinberg semigroups as sections of semigroupoids (Conjectures)

My old proposal to construct these as “stable sections” (a la Kontsevich’s stable curves),
has been partially accomplished by Brion — he does wunderbar compactifications as the
stable automorphisms of the (partial) flag variety. My problem was that I did not have a
definition of stable maps in general, but of course these are just closures of maps in the
Hilbert scheme. With this definition everything should be clear.

We will describe the Vinberg semigroup as

e (i) stable sections of a bundle over the flag variety and
e (ii) affinization of a torsor over the very wonderful compactification.

Let m(G) = 0 and let the subset JC I of simple coroots correspond to Levi factors of
parabolic subgroups in a partial flag variety P. For a Cartan subgroup T'of P = UL € P
one has X,(T) = Z[I| and X.(P*) = Z[I — J]. The cone Z[I — J] corresponds to a

semigroup closure Pab.

21.1. Conjectures on Vinberg semigroups. For a parabolic flag variety P consider

def

the torsor P = G/P'— G/P = P for Hp = P2. Its automorphism groupoid

G ¥ Aut(P/P) (@), P2, has fibers Gyry = Isomp, (Py, Py).
It lies in a semigroupoid G o G x Hp, for the canonical semigroup closure Hp of Hp.

Hp

Let us also consider the relative affinization (Gp)2T oo [Gr &P Tt is a non-symmetric
object, i.e., it maps to only to the second copy of P.

21.1.1. Lemma. (Gp)™ is the affinization of 57; and @; is a resolution of Gp.

XXX [@. The following is also in [R.3.6] at least in part.

21.1.2. Congectures. (a) I'(G) = I'*(G) is the Vinberg group Gp G x Hp.
7(G)

(b) The closure I'(G) of I'*(G) in T'(G) is a semigroup.
(b’) If P = B this is an extension of the wonderful compactification G/Z(G) by Hp.

(b”) An open part F(Q)O is an extension by Hp and I'(G) = F(Q)O X Hp. As an Hp-torsor
H

P

over G/Z (@), this open part F(g)o corresponds to the I-colored divisor which is minus
the boundary of bolshaya yacheyka in G/Z(G).

g
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(c) The affinization of I'(G) is a semigroup which we call the Vinberg semigroup
Gp associated to the partial flag variety P. In turn, I'(G) is a resolution of Gp. In
particular when P is the flag variety B and G is simply connected, we get the usual

Vinberg semigroup.
Add the formulation for general P.

. : Gr ' Ty,
(d) There should be another statement concerning the action of Gp on G/P’' x H
Hp

Proof. (a) is known for P = B, and all is known for SL,.
YYY
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Example. For G = G,q = PGLy we have YV = GxH. If G = PGL, then (G/N)aﬁ is the
nilpotent cone N and G/N = N,.,.

21.1.3. The absolute Vinberg semigroup V(G) = Vg(G) as endomorphisms of (G/N)™.

To a simply connected semisimple group G one attaches the Vinberg group V “aexH
Z(@)

and its semigroup closure, the Vinberg semigroup V = V(G). Some of its features:

(1) Vinberg semigroup V(G) acts on (G/N)*! by H-endomorphisms and actually it
is precisely the semigroup of H-endomorphisms of (G/N)*T (82).

(2) In particular, one of its orbits provides a canonical map V(G) — (G/N)

(3) In characteristic zero, V(G) has been introduced by describing its algebra of func-
tions (a subalgebra of O(V)).

aff
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22. Semigroupoid Z over P

22.1. Version one: Z. A groupoid § 9P D2 Jofines a space over P §' & S &P)

and its affinization

(&)= (L Pyt
One can extend the structure map (g, p) to a correspondence
ZC 87{ Iy p2?
which is the closure of the graph of (¢,p). So, (572ff)c = (Spxa)™ need not map to P,

and Zpy, =

22.1.1. Lemma. Z is a semigroupoid.

Proof. We need to extend the multiplication SxS— S i.e., gci,x gbﬂ_) gc,w
P
SpxpX Spa)— Spxa gives
— ﬁ' —
SpxvX Spa) = (SpxpX S(b,a))a = (Spxa) = Spra.

Because of the G-equivariance one has Z = Gx Zp for the fiber Zp at P € P, and the
P
fiber is a partial compactification of the group (G/V)p = M.

22.1.2. Conjecture. Affinization ¢ : Z*%— (G/V)2 is an isomorphism.

“ Proof. 7 Map q is proper and generically it is the isomorphism Fwi G/N. In particular,
q is surjective. Since G/N is irreducible, so is Z.

22.1.3. Semigroup P2P. Let m1(G) = 0 and let P correspond to a subset J of the set
I of simple coroots. For a Cartan subgroup T of a Levi factor L of P = U-L, one has

X,(T) = Z[I] and X, (P)= Z[I —J]. The cone Z.[I — J] consists of cocharacters that

extend to maps from G,, = (G,,-) to the semigroup closure P2P. We identify Pab with
G~/ by cocharacters I — J.

To JC I — J one can associate a subsemigroup P}bg P with degeneracy J: P}b =
{(Zi)[_J € Gé_‘], 2z =0 for 7 € J}

22.2. Version two: Z. The extension of the map G/V > G/P to the affinization
(G/V)™ is the correspondence Zqép (G/V)x P — the closure of the graph of 7.
Because of the G-equivariance one has Z = Gx Zp for the fiber Zp at P € P, and the
fiber is a partial compactification of the group (PG /V)p= M.
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22.2.1. Conjecture. Affinization ¢ : 71— (G/V)* is an isomorphism.

“ Proof. 7 Map q is proper and generically it is the isomorphism Fwi G/N. In particular,
q is surjective. Since G/N is irreducible, so is Z.

922.2.2. Semigroup PaP. Let m,(G) = 0 and let P correspond to a subset .J of the set
I of simple coroots. For a Cartan subgroup 7T of a Levi factor L of P = U-L, one has

X,(T) = Z[I] and X, (P)= Z[I —J]. The cone Z[I — J] consists of cocharacters that

extend to maps from G,, = (G,,-) to the semigroup closure P2P. We identify Pab with
G~/ by cocharacters [ — J.

To JC I — J one can associate a subsemigroup P}bg P?P with degeneracy J: Pfj‘b =
{(Zi)[_J S Gg_‘], zi=0forie J}

22.3. Y. Let Y & Gx I for a certain semigroup closure M of the reductive group M.
P

23. Appendix. Sections of (semi)groupoids

23.0.1. Sections. The space of sections of a semigroupoid G ﬂ) X? is defined as

I'G)=T(X,6) ¥ rgax).

Lemma. (a) I'(X,G) consists of pairs s = (f,0) of a map f : X—X and a section ¢ of
G—X? over the graph I'y, i.e., 0 : X—=G and o(x) € Qf(x)@.)

(b) I'(X, S) is a semigroup for
(f".0")(f. o) £ (f'of',0), for o(x) € o"(f'(x))d'(x).

(c) A semigroupoid G over X also defines a semigroup G' &g |ay, over X, and the
corresponding semigroup I'(X, G"). There is an exact sequence of pointed sets

0— I'(X,G") — I'(G)— End(X).

Proof. (b) Here, 0'(z) € Gp(a). and " (f'(2)) € Gpr(s/(2)).f/(a)> hence o(x) € Gpr(pr(a)).a-
O

Remark. 1f G is a groupoid, then G and its sections are groups and so is I'*(X, G)CI'(X, G)
defined as the inverse of Aut(X) in I'(G). Then one has an exact sequence of groups

0— I'(X,G") — I'(G)— Aut(X).

1 (One can say that s(z) = (f(z),0(z),z) for z € X.)
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23.0.2. Semigroup closures from semigroupoid closures. We see that any groupoid G gen-
erates a group ['*(G). If a groupoid G lies in a semigroupoid G, then the group I'*(G)
naturally extends to a semigroup I'*(G) — the closure of I'*(G) in T'(G).

Ql

The “closure” here means the closure of the space of graphs of sections v;, = o(X) C
t

in the Hilbert scheme of the total space of G. I will informally call elements of I'*(G)
“stable” sections of G.

h

@

23.0.3. A framework for constructing extensions of groups: Extensions of automorphism
groups of objects over a given space. Suppose that our groupoid G is of the form Aut(X),
the groupoid of symmetries of an object X over X. Then, (f,v) € I'*[Aut(X)] that lies
above some f € Aut(X) is a family of v, € Isom(X,, Xf()), i.e., an isomorphism of X
and f*X.

The image of the projection I''[Aut(X)]|— Aut(X), (f,o)— f, is the stabilizer subgroup
Aut(X)x of the isomorphism class [X] of X, i.e., all f € ut( ) such that f*X is iso-
morphic to X. So we get an exact sequence

0— Aut(X) — I'"[Aut(X)]— Aut(X)x —0.

def

Therefore, Zﬁft(X) = I"[Aut(X)] is an extension of Aut(X ) by Aut(X).

Remark. Such extensions come with semigroup closures Kvut(X, [X]) from the
semigroupoid closure End(X/X)2 Aut(X, [X])).

Ezxample.
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Part 6. Affinization of G/V for V=Up or V = P’

Here we use the affinization of quasiaffine schemes as a construction tool.

23.0.4. Notation. Here we assume that G is simply connected semisimple group over a
closed field k. Fix a Borel subgroup B = N x T and let H = B/N. For a dominant

weight A let W()) be the corresponding coWeyl module. Let W; = W(w;), i € I, and

144 o DBicr Wi-

24. Affinization of (G/P’)*!

24.1. Subgroups VCG with G/V quasiaffine.

Question. Is G/V is quasiaffine for any unipotent subgroup VCG?

Is G/V not quasiaffine precisely when V' meets some subgroup S with Lie(S) = sl in a
Borel subgroup Bg? (In that case G/V contains S/Bg = P!.) If not then there should
be a representation V' and a vector v such that G, is V7

Example. For an affine G-space X and any point z € X, the stabilizer G, has the property
that G/G, is quasiaffine (since G/G, = ¢CX). This in particular applies to centralizers
in GG of elements of g or G.

24.2. Summary. Each (G/P')* has a resolution which is obtained by extending the
map G/P'— G/P (a P*-torsor), to the affinization (G/P")*. The resolution is a Pab-

torsor over G/ P. The appearance of P2P in the resolution is just a fancy way of saying
that P2b is the closure of P in (G/P")2f,

. —ab . . .
The semigroup structure on P" is the same problem as the construction of the semi-
groupoid structure on S.

G-orbits in the resolution and in (G/P)™ are in a bijection. For instance, G-orbits in
(G/N) are of the form G/P} for all JC I. In this way (G/P})* embeds into (G/N)af
as the closure of G/P.

24.3. Affinization ) of G//N. For convenience we choose a frame y; of W¥. This gives

y = (y;)ier € W and a G-orbit Y, o G-yCW. Moreover, for any JCI there is a version
with degeneracy J:

def y; ifiel—J,
< G- .=
Yy yy for (?/J) {O fieJ

Let P; = LjUj be the standard parabolic obtained by adding J to B (and to 7).
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be the subvariety of W = [Lc, W; given by all systems of vectors v = (v;);e; that satisfy
Pliicker equations. It is stratified by degeneracy JCI:

def

V= Uicr Yy, Yy= {ved, v=0iff i € J}.

24.3.1. Lemma. (a) For JCI, the stabilizer of y; in G is P}, hence G/Pf,iyj.
(b) Vector bundle Gxp, [[[;¢, W] is a resolution of Y;.

(2

(c) The closure of Y in W is the union of all Vi with JCK (the orbits more degenerate
then );). Moreover, the resolution from (b) is a bijection on G-orbits.

Proof. (a) is standard.
(b) Since [T,c;wi : T—(G)", one has T-y; = le W — {0}, hence Y,;OTy; =

)

Hz¢ 7 WN. Therefore the map Gx P, ng 7 W — Yy is well defined. It is proper since

2

its composition with V,CW factors into Gxp, H W - GXPJW G/PJXW —W.
Above Y, the map is an isomorphism Gxp, [le - {O}]% Gxp, P;/P, = G/P).

i

(c) G-orbits in Gxp, [ [, W] are the same as the orbits in [Tigs WX of Py, ie., of P3P
which is identified by [ [ ; wi with (Gy, )=/, So they are given premsely by the degeneracy
JCKCI.

Since Gxp, ([ 1,4, WN] — Y is surjective, the same is true for the map of sets of orbits.

However, orbits Vi = G-y are clearly distinct.

def

24.3.2.  We will denote G/P) = Y.

24.3.3. Corollary. Let P be a parabolic subgroup P;.
(a) Space G/P' is quasi affine.
(b) The affine closure of G/P" is the normalization of the closure G/P/ of Y; in W.

(c) The lift of the generic stratum to the resolution G/ P'+Gx p (], W/¥) is an isomor-
phism on affinizations.

Proof. Y; is affine and if for JCK CI there is some i € K — J,
= dim[(px)'/(ps)] > dim(g;k1) = 2.
So, we see that the affine closure of ) is the normalization of J; by 7111
!~ VN iI7N
(C) G/P - GXP (HJO V[/Z {O}) g GXP (HJO WZ ) Here? OGXP (HJO WZN)/G/P)
of line bundles O(>" ;, riw; on G/P over all r € ZJ". It lies in O

1S a sum

Gxp (HJO WiN)/G/P) which

is such sum over all r € Z7°. But a line bundle O(}" ;, r;w; has sections only for r € Z".
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24.3.4. Conjecture. G/ P} (d:ef Y;) is normal. So it is the affine closure (G/P})2 of

G/P).

24.3.5. Remark. The number of G-orbits in the affine closure of G/N is 2" and their
mutual position is “toric”, the same as for the G-orbits in the wonderful compactification
of G.

24.3.6. Corollary. The restriction of the the resolution of G/N to G/P) factors into a

bundle over the resolution of G/ P}, with fibers isomorphic to the flag variety of the Levi
factor L.

Proof. Let JCK, the fiber at yx € Yk = G/ Py of the the resolutions of G/N is the set
of all Borels B such that B’ lies in the stabilizer Pj of vg, i.e., BCPg; while the fiber
of the the resolutions of G/ P is the set of all parabolics P € P; such that P'CPy, i.e.,
PCPyg

24.3.7. Congecture. The fibers of the above resolutions of all G/P’ are reduced.

24.3.8. Remarks. Denote by X the resolutions of X = G/P). The resolution factors

through the affinization as X L xaft X Now p is the normalization and ¢ is surjective
since it is proper and generically an isomorphism. Maps p and ¢ are bijections of sets of
G-orbits (both maps are surjective hence surjective on G-orbits and the composition is a
bijection of orbits).

Moreover, for any orbit o in X, map g(a) — p(«) is an isomorphism. To start with,
a — p(q(a)) has reduced and connected fibers (it can be written as G/P'N B — G/P’
and the fibers P’/ P’ N B are partial flag varieties). Since g|a is surjective and flat, p|g(«)
also has reduced and connected fibers. However the fibers are also finite since p is a
normalization.

It seems that

(1) The scheme theoretic inverse of the K-stratum G/Pj in the resolution is the K-
stratum of the resolution: G/ Py N B. (Above yx € Yk one has a point (B, yx)
in the K-stratum of the resolution, and the map of the K-strata is G/Pj;, N B —
G/Pg).

(2) The scheme-theoretic fiber at the vertex 0 of the cone G/ P/ is the zero section of
the resolutions as a vector bundle over G/ Py,

This would imply the conjecture: since ¢ has connected reduced fibers and p is proper
and surjective, then p also has connected reduced fibers. Since p is finite (affine proper
and surjective), it is an isomorphism.

One can also argue that p is an isomorphism on strata and that the fibers can be calculated
on the strata.
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24.4. Resolution of (G/P")*f,

24.4.1. Corollary. Let P, be the partial flag variety that contains P = Pj.

(a) A resolution of G/P’ is given by the correspondence

G/P' < {(v,P) € G/P'xP,, P fixes v}
between G/ P’ and P;.

(b) Above a G-orbit Vi = G/Pk’, the fibers are isomorphic to the partial flag variety
P (L), of all parabolics of type J in the Levi factor L of Pk.

(c) Over Py, the resolution is the sum @;¢; O_,,, of all duals of fundamental line bundles,
that make sense on P;.

Proof. (a) is clear form the definition of the resolution.

(b) The fiber of the resolution at vy consists of all parabolics P € P, such that P’ lies in
the stabilizer G,,, = P’, i.e., PCPg. These are the same as the parabolics of type J in
the Levi factor of Pg.

(c) The fiber of the resolution at Py € Py is ®j¢; VVZ-N = Digr k_,. O

24.4.2. Remark. These resolution are usually not minimal models, even for (G//N)af,
(1) For G = SLo, 37—>y is the blow-up of J = C2.

(2) Also, for each partial flag variety P we have an analogous space ;)77;@ Y xP, and some
of these spaces are smooth.

(3) For G = SLz and W = L,, = A%, Y = {(v,\) € WxW*, (\,v) =0 }, has a small
resolution {(v,\, L) € WxW*xP(W), A L L > v }. This is rank three vector bundle
over P(W) and the fiber at (\,v) € Y is: P? at (v,\) = (0,0) (codimension 5), P! if
just one of v and A vanishes (codimension 3). (In general I do not expect the existence of
semi-small resolutions.)

24.5. Semigroup Pab_ In honor of the normality conjecture 24.3.4above, we denote here
G/P} by (G/P")T.

24.5.1. Lemma. Let P = LU be P; = L,;U;.
(a) Let Pab be the closure of P*» = P/P" in [G/P']*, the identification (w;)ics :

o

P35 GI=T | extends to PP GI7Y.

(b) Pab ig canonically a semigroup with an open subgroup P?P. The action of P2 on
G/P' extends to an action of PP on [G/P']*.
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(c) For any right P*-orbit O in G/P’, the closure in [G/P']* is described by
O x P 5 0.

pab
Proof. In (a), [G/P']* consists of all v = (v;)ie;r € W = @ie; Wi, that satisfy Pliicker
equations and v; = 0, ¢ € J. Here G/P’ is given by: v; = 0 iff i € J.
Observe that P?» = P/P’ embeds into G/P' as the fixed point set for the left multipli-
cation by P’. So in the Pliicker model

P/P" = {ve®Wr v;#0iff i € I — J & Pliicker condition}.
This is [[,c; ; (WY —0), since (i) (W;)"" is W/ for i € I — J and 0 otherwise, and (ii)

1
Pliicker condition is automatic in @W;¥. Therefore the closure of P/P’is @®e;_y WH.

In terms of functions this description becomes

O(P™) = C[@jer—sZuwi] 2 Cl®ics—sZ1w;] = O(P?),

and puts a semigroup structure on P2b. This semigroup acts on G'xP2b_ hence also on
P
its affinization [G/P']*.

Now (c) follows from (a) by left translations.

24.6. Pliicker model G/N of G/N. We denote by G/N the G-orbit V, = G-y in W.
“Pluecker equations” means any set of generators of the ideal of the closure of G/N = G-y

in . We will recall the standard choice of Pluecker equations in characteristic zero. In
general Pluecker equations seem only known in characteristic zero.

24.6.1. I-data. We say that a system of vectors v; € L(w;), i € I, satisfies Pluecker
equations if for any multiplicities A; > 0, the projection of ®;c; W (w;)®* to the unique
G-invariant complement of W (3", ; \iw;), kills ®;¢; v;g”\i.

24.6.2. X*(T),-data. Recall that for dominant \;’s, the space

Hom[W (A\)@- - - @W (A), WAL + - - -+ \,)]

is one dimensional. Let us supply each W(\) with a frame yy of W()\),. Then
the above space of homomorphisms has a canonical frame my, ., characterized by

y>\1®' : '®y>\s = Udi+t s

.....

Now, equivalently, we say that a system of vectors vy € W()\), A dominant, satisfies
Pluecker equations if for any dominant A and u,

hd (1) m)\7u(y)\®yu) = Yn+p 5 3
e (ii) the projection of W (A)@W () to the unique G-complement of W (A + p), kills
VARV,
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24.6.3. Identification data. A particular identification of G /N with this Pluecker model,
requires fixing in each fundamental representation W; of G' a frame y; of W}¥. Then

G/NL> 11 VVZ by gN—(9y:)icr-

24.6.4. The open cell and its boundary divisors. The complement of the open cell:
B_—B_-N/NCG/N, is a divisor in G/N. Its irreducible components Y;,i € I, are given
by the conditions v; L (W;)V.

25. Affinization of G/U

25.1. (G/V)™. We consider a normal subgroups V of a parabolic P = U x L. We assume
that M = M is reductive, i.e., that V contains U. Then

25.1.1. Conjecture. G/V is quasiaffine.

We will usually only cover the cases V = P’ (24]) and V = U. Then the above conjecture
is in Corollary 25.3.2

25.2. Stratifications of (G/N)™ and (G/N)*x(G/N)™. Let GxH? act on
G/NxG/N by (g, NO"N)-(xN,yN) = (gaxb'N, gyb”"N).

25.2.1. Lemma. (a) G-orbits in (G/N)*! are indexed by subsets JCI, J—Y;.

(a) B-orbits in (G/N)*! are indexed by pairs (J, w) of a subset JCI an a coset w € W/W,
(J,w)—=Yy.

(¢) The orbits of Gx H? in (G/N)¥x (G/N)21 are indexed by triples (J, K, w) of subsets
J, KCI and a coset w € W \W/W;, (J, K,w)—=Y7 .

Proof. (a) is in the lemma P43l The orbit associated to JCI is isomorphic to G/ P,
hence the B-orbits in it are the same as for B\G/Pj, and therefore indexed by W/W; 5
—B-wyy.

(¢) A GxG-orbit in (G/N)Mx (G/N)* is by (a) associated to two subsets J, KCI and of
the form G/P)xG/Pj;. The orbits of Gx H? in G/P}xG/P};. are the same as the orbits

of G in G/ P xG /Py, but G\[G/P¥xG/Px]| =P, \G/Px = W, \W/W. Let w e W
define a coset w € W;\W/Wk, the corresponding G'x H?-orbit passes through (y;, wyx).

25.2.2. Question. Describe the closure relations in the stratifications above,

25.2.3. Question. (KL-exercise) Find the IC-stalks for these three stratifications.
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25.2.4. Remarks. (1) Case (a) should be doable from the above resolutions of G-orbits in
(G/N)™.

(2) Cases (b) and (c) should be combinations of the standard KL-theory and (a).

(3) Hopefully, settings (b) and (c) give more symmetries (of the Fourier type), then the

standard KL-theory. For instance the Kazhdan-Laumon extension of intertwining functors
to (G/N)t,

25.3. G-orbits in (G/N)¥x(G/N)?,

25.3.1. Stratification of (G/N)x (G /N according to the G-action. The stratification
of (G/N)*x (G /N )™ given by the action of G is the stratification by the orbits of G'x H?,
so any G-orbit is of one of the types

@ def ~ w
Yik = Gyrwyx) = GGy uy = G/P;N" Py

Conversely, for any two parabolic subgroups P, @ of G, G/P'N @’ is isomorphic to one of
Y

For fixed J and K, the union of all GxH?-orbits Y% is a G%*orbit YV;xYVx =
GxG/P)xPl. Tt is a P3®x P2 torsor over a partial flag variety G/P;xG/Pk. So, the
mutual position of all G x H?-orbits Y%, w € W;,\W/Wk.

25.3.2. Corollary. (a) For any two parabolic subgroups P and @), G/P'NQ)’ is quasiaffine.
In particular:

(b) G/N N "N is quasiaffine for w € W.
(c) [Grosshans| For any parabolic P, G/U is quasiaffine.

Proof. Clearly (b) is a case of (a), also (c) is a case of (b) with w = w{. Finally, (a) is
seen by embedding the orbits V7 into (G/N)Mx (G /N,

25.3.3. Question. Describe the G-orbits in the closure of a single G orbit Y}5. = G/P;n"
Pl in (G/N)™x(G/N)™ and their closure relations.

25.3.4. Remarks. (1) In the special case when the orbit G/P'NQ" has P'NQ" =¥ NNN =
U for w = w{, G-orbits in the closure are parameterized by the Wp-orbits in the set of
T-roots in u?P.

So there may be a generalization of the action of Wz, on A(u?) involving Ap([n N n]2P).

(2) In some sense the largest G-orbit is Y 2 = G-(y, wo'y) = G/N N N = G. However,
this orbit is closed.
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The corresponding GxH?-orbit is V39 = Ag(T-y, Twoy) = Ao (T-y,woey) =
Ag(y,woy)-Hx1 (so it is an orbit of Gx(H x1) but not of the Vinberg group since the
center acts from the left in a diagonal fashion, but not from the right).

25.4. Semigroup M. If M M embeds into (G/V) | say, when G/V is quasiaffine,
we define M = M as the closure of M in (G/V)a,

25.4.1. Question. When is M (a) normal, (b) smooth?

25.4.2. Lemma. M is a semigroup closure of M and G'xM acts on (G/V )M,

Proof. The claim is that the action (G/V)xM — (G/V)*E extends to_(G/V)aﬁxH —
(G/V)*. Then in particular the multiplication on M extends to M so M is a semigroup.

We start with the G-action on (G/V)*: Gx(G/V)M — (G/V) and we restrict it to
GxM —(G/V)2,
Since the left multiplication action of V on M is trivial, this factors to
G/VxM —(G/V)M,
and now we just take affinizations
(G/V)MXD =[GV x MM — (G/V),

(M is affine since V' is normal in P.) To see that this is compatible with (G/V)Mx M —
(G/V)™ repeat the above procedure with M instead of M.

25.5. G'x L-orbits in (G/U)f.

25.5.1. Theorem. (Conjecture.) G x L-orbits on (G/U)* and Lx L-orbits on L (a gener-
alization of the rank stratification of matrices), are both parameterized by the W-orbits
in AT(uab).

25.6. Examples of affinizations (G /U)*.

25.6.1. Vector spaces. Let G = SL(A) and A = E®F with dim £ = n and dim F' = 1.
Let P and P_ be the stabilizers of E and F', they have Levi decompositions Py = Uy X L
where L = P N P_ is the stabilizer of {E, F'}.

Let YV, be the set of all v € A" which are independent.
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Lemma. (a) A choice of a basis e = (ey, ..., e,) of E gives G/Ui)@ by gU—ge.
(b) This induces (G, L)-identifications with G acting on A and P on F,

(G/U)M —= Homy(E,4) (G/P)M = A

<] | | <

G/U — Inju(E,A) G/P — A—{0}

25.6.2. Corollary. (a) P_-CG/U is now described as all (3) € Hom(E, A) =
End(E)®Hom(E, F'), such that « is invertible.

(b) L = GL(F) and L = End(E) is a matrix semigroup.

25.6.3. Mazimal parabolics in type A. Let G = SL(A) and A = EGF with dim F = e and
dim F' = f. The stabilizers P and P_ of E and F have Levi decompositions Py = Uy X L

with a common Levi subgroup L % PN P_ which is the stabilizer of {E,F}.

Let Ay be the set of all pairs (v,u) € A°x(A*)! such that v; L u; and that v;’s and u;’s
are independent.

These data are the same as a basis of a subspace WCA of dimension e = dim(E) plus a
basis of A/W, so GL(A) acts transitively on such pairs. If v and u are bases of E and
E*, then the stabilizer GL(A),,, is the unipotent radical U of the parabolic P = G (for
G =GL(A) or G = SL(A)).

Therefore,
[GL(A)/UM = A°@(A*)! = Hom(E, A)@Hom(A, F).
(GL(A)/U is open dense in the RHS which is affine and normal.) Also, one can describe

[SL(A) /UM by fixing a frame ¢ in the line Hom(t/o\pF, t/o\pE), then [SL(A)/UM is the
closure in A°@(A*)! of all (v,u) € A°®(A*)/ such that viA- - AV QUIA: - -Auy = .

25.7. Functions on M: a mess. The difficulties appear in positive characteristic. Here,
the asymptotic cone is much simpler to understand then the group itself.

25.7.1. Lemma. (a) O(M) = Im[O(G/V) —O(M).

(b) GT[O(M) = D M-dominant I LM(_M)®LM(,U) contains
GT[O(M)] = @D¢G-dominant A LM(_)‘)®LM()\)

Proof. (a) follows from the conjecture (b) follows from (a).

Proof. Denote \* - woA and by W (u) denote the coWeyl module with an extremal
weight .
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Recall that O(G) has an increasing filtration F), A € X,(T')y; such that
GT[O(G)] = DG-dominant A W()\*)@)W()\)
Since the modules W(\)Y = L( 277

25.7.2. Two-sided quotients of G.

25.7.3. Lemma. L— U_\\G//U. and L*»= P'\\G//P".

26. Partial affine closures of G/P’ (A dull and aching pain)

A dull and empty section on nothing (instead of nothingness). The idea was to list
systematically all partial affinizations of G/P’. Should be skipped.

26.1. Notation. We will denote by H' the derived subgroup of H and H?" o H/H'

26.1.1. Lemma. (a) Let P be a partial flag variety, let P € P be a parabolic subgroup

with a Levi decomposition U-L and denote P oo P/U.

(i) L' is connected and semi-simple and P’ = L'-U.

(ii) L=L"Z(L)y and P = P"-Z(L)y.

(iii) Groups Zp ey (L)-U/USZ(P) and Hp &l pab =, pab are canonically independent
of the choice of P € P. The canonical map Zp— Hp is a finite cover and it factors into
Zp‘—)H—»Hp[} In particular Zr=H = Hpg.

(b) Let QCP be another parabolic subgroup, then
(i) L' N Q is a Levi subgroup in L, and
(i) ('NnQ)=L'NnQ".
26.2. Partial affine closures of G/N. Instead of G/N one can consider its affine closure
G/N and then S L exae /N—B is the affine closure of the B-variety S.
B

More generally, for a pair of parabolic subgroups P2(@, consider the G-bundle

G/Q'—G /P with the fiber P'/Q' = L'/L'NQ" = L'/(L' N Q)". Denote its relative affine
closure by Ya(QCP) o (G/Q'—=G/P)™. This is a G-bundle over G/ P’ with the fiber

[L/(L' N Q)M = Y (L' nQCL).

Actually, in general, Yo(PCP) = (G/P'—=G/P)* = G/P' lies in Yg(PCG) =
(G/P'—=G/G")M = (G/P")*. This is a special case of the following functoriality

(1) @1 CQ2CP gives a map Va(Q1CSP)—YVa(Q2:CP),
(2) QTP CP, gives a map Vo (QCP,)—=YVa(QCh).
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Here, if Q1CQ2CP there is a G/P-map G/Q)—~G/Q),, and it induces a map
(G/Q,—~G /P — (G/Qy,~G/P)M.  Also, if QCPICP,, there is a G/Psymap
G/Q'—G /P!, and it induces (G/Q'—-G/P)M — (G/Q -G /Py,

In the basic case Q = B € B, one has Ys(BCB) = G/NC (G/N)* = Yo(BCG). The

G-bundle G/N = G/B'—G/P' has fibers P'/N = L'-U/Np-U = L'/Ny for N, & N0

L'. So the fibers of the relative affine closure (G/N—G/P")* -G /P’ are isomorphic to
(L//NL,>aff'

26.3. Partial closures of S. If QC P then @ acts by conjugation on G/Q'—G/P’, so
there is a G-bundle over G/Q),

Sa(QCP) = G x (G/Q—~G/P)" = G x Ya(QCP)
The relations of S’s is the same as for Y’s. In particular S(P,G,G) =
G;(G/P’—»G/G’)a“ff = CJ;(G/P’);’Lff is the affine closure of the G/P-variety

Sq(PCP) = Gx(G/P'-G/P) = GxG /P
P P

def

Over G/B = B we have S ¥ S4(BCB) € 8 & S4(BCq).

26.4. Global sections. We are interested in the spaces Sg(QCP) oo IQ/Q,S(QCP)]

and in the inclusion Sg(PCP) = T'[G/P,GxG/P'|C Sq(PCG) = T[G/P,Gx(G/P"*].
P P

26.4.1. Symmetries. For a parabolic subgroup P € P, group Gx P* = GxHp acts on

G/P'—-G/P LD For a pair QCP, via H—»Q*—P? we get an action of GXxH on

G/Q'—G /P, hence also on S CS(Q, P,G)C S and the corresponding sections.

27. Appendix, Affinization

27.1. Affinization functor. Affinization of a scheme X —B with a base B is
X — (X B o Spec 7, Ox.

Lemma. (a) Affinization with a base is a functor.

(b) Affinization is the right adjoint of the inclusion of affine B-varieties into all B-varieties.
This includes a canonical map (X/B) — (X/B)T.

Proof. (a) For X Ly 2B =X % B one has a map a,Ox = b, f,.Ox < 0.0y, ie.,
simply the pull back of functions f,Ox < Oy.

(b) For any B-variety X — B there is a canonical B-map X —X?! such that any B-map
XY with Y a B-affine variety factors through X —XT: Hom[X,Y] = Hom(X?T V).
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(c) [Dependence on the base.] Composable maps X Lp B give a diagram

«

X —— (x/p)M 2 (X/B)

g J /|

/ - B s ( B’ / B)aff
x -1y x
(d) [Functoriality in pairs.] In general, any map of pairs l l gives a map of
B —Y B,

afinizations of pairs which is a combination of the maps of the types a (changes base) and
S (changes the scheme itself) above:

(x'/BY = (x/By E(x/B & (x/B)t D (x/B)M.
O

27.1.1. Quasiaffine spaces, resolutions and normality. We say that X/B is quasiaffine if
it is open in some affine map Y/B.

Recall that the normalization of an affine variety is affine ([Ha] Exc. 3.17), and if X is of
finite type over a field then the normalization is a finite map ([Ha] Exc. 3.8).

Lemma. (a) If X is quasiaffine(?), X— X* is an open dense embedding.
(b) For a normal quasiaffine X, the affinization X*¥ is again normal.

(c) X* as a normalization.] If a normal variety X is open and dense in an affine variety
Y and the boundary is in codimension 2, then X2 is the normalization of Y.

(d) Let Y5 Y be a “resolution” of an affine variety Y (in the sense that it is proper and
generically an isomorphism), If the fibers are connected then 7 is a Y-affinization.

Proof. (a) Let X be open in an affine scheme Y. Then XC Y factors through X — X2,
hence X — X is also an embedding. Since the closure X of X in X2 is affine, it equals
X2 (b) Since the normalization Xaff— X3 ig affine and an isomorphism over X it is
an isomorphism.

(¢) X is also open and dense in the normalization Y of Y. Since Y=Y is finite, the
boundary of X in Y is again in codimension 2. Together with the normality of Y it
implies that the functions on X extend uniquely to Y. So Y is affine and O(X) = O(Y).

(d) Under these conditions W*O?: o).
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27.1.2. Ezamples of affinization of varieties.

(1) For G = SL(U) and P the maximal parabolic such that P’ is the stabilizer of
0#ecU, (G/P)M =U is smooth.

(2) For G = SL(U) = SLs, (G/N)* = {(v,u*) € UsU*, v L u*}.

(3) [Nilpotent orbits.] The affinization of O € G/N is the normalization of O.

(4) 0" == gxg//6h
Proof. (2) One embeds G/N into UdU* as the orbit of the B-highest vectors (vg, uf).
The only singularity is the vertex (the differential d, \(—, —) = (v,—) + (—, A) vanishes
only for v =\ =0).

(3) is by the lemma 27.1.Tlc.
(4) Use lemma 27.1.11d. O

Remark. An example of “resolutions” that are not affinizations are normalizations. (Nor-
malizations are affine so they can be affinizations.)

Question. If Y is normal, is any resolution an affinization?

27.1.3. Affinization of the map G/N — G/P’ for G = SLjz. For a maximal parabolic
subgroup P = P32B and U = C? one has

G/N —— (G/N=G/P —— (G/N)M = {(v,u) € UpU*, v L u}
| | |
G/P' = U~ {0} — G/P' SESEN (G/Paf = .

The fiber of f is P'/N = A% — {0}, so ¢ is an A%.-bundle. The fiber of pr; at the single
boundary point 0 in (G/P")* — G /P’ jumps to A%,

27.2. Resolutions from correspondence extensions of maps to affinizations. We
are looking for a resolution of X for smooth X, that maps into a convenient complete
variety Y. If X is open in some X, any B-map f : X—Y extends to a correspondence
Y + F—X, with F the closure of the graph 'C X xY in XxY.

If Y is complete then F'— X is (a) proper (as a composition F'C XxY — X), (b) generically
an isomorphism (over X it is T—X) and (c) surjective (by (a) and (b)). So if Y is complete
and F' is smooth then F'is a resolution of X.

Finally, we consider a quasiaffine X open in X = X2 and a map f from X to a proper Y.
The affinization F*— X ig a finite map — it is proper and the fiber at y € X embeds
into mo([F— X1)~1y). So if X2 is normal, the affinizations of X and F coincide.
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27.2.1. Ezamples. (1) Let V be a vector space and X = V — {0}i> P(V) = Y. The
correspondence X < F—Y is the blow up V + V—=P(V).

(2) P*-torsor X = G/P'— Y = G/P gives correspondence (G/P")* « F—G/P. Here,
F is a resolution of (G/P")* and it is a Pab-torsor over G/ P (see 2A3.1]).

(These examples coincide for G = SLy in (2) and V = C? in (1).)
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