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A. Classifying Pairs

1. The setting: Loop Grassmannians and Hilbert schemes of points

Let k be the ground ring. By C we will denote a smooth curve over k and by X an
arbitrary smooth scheme over k.

1.0.1. Curve C. For a smooth point c of a curve C denote O = O(ĉ) and K = O(c̃) for
the formal neighborhood ĉ of c and c̃ = ĉ− c. Then the fiber of the loop Grassmannian
at c is

G(G)c ∼= GK/GO.

1.0.2. Group G. We assume that G is semisimple, split and simply connected algebraic
group over k. We will fix two opposite Borel subgroups B± with unipotent radicals N±

and a common Cartan T = B+ ∩ B−.

For any Borel B⊆G the group H
def
= B/[B,B] is canonically independent of the choice

of B, For a Cartan T , a choice of a Borel B⊇T gives an identification ιB : T
∼=
−→H as

T⊆B։H . The Lie algebras are g, b±, n±, t, h as usual.

Let αi ∈ X∗(H), ii, be the simple roots.

1.1. Hilbert schemes of colored points HC×I . The Hilbert scheme of points of X
is graded by the length of the subscheme HX = ⊔n∈N H

n
X . For a smooth curve C, the

“Hilbert powers” Hn
C = C [n] coincide with the symmetric powers C(n).

For a set I the Hilbert scheme of the multiple X×I decomposes as HX×I
∼= (HX)

I =
(⊔n∈N Hn

X) = ⊔α∈N[I] H
α
X , where for α =

∑
i∈I αii ∈ N[I] we denote by Hα

X = X [α] = Xα

the product
∏

i∈I X [αi]. So, D ∈ HX×I is a system (Di)i∈I of Di ∈ HX , we also denote it
by D =

∑
i∈I Dii.

In particular we denote A[α] def
= (A1)[α].

1.1.1. The loop Grassmannians G(G) → RC . Let RC be the Ran space of the curve C,
i.e., the moduli of finite subsets E of C. The loop Grassmannians GRC

(G) −→RC is the
moduli of triples (T , τ, E) where, T is a right G-torsor over C, E ∈ RC is a finite subset
and τ is a section of T off E, i.e., defined over C −E.

Lemma. For a curve C the fiber of the loop Grassmannian at E ∈ RC is given by maps
of pairs

G(G)E = Map[(C,C −E), (B(G), pt)].

Proof. For X ′⊆X , and a subgroup G′ → G, a map F ∈Map[(X,X ′), (B(G),B(G′))] is a
pair of a G-torsor T over X (i.e., a map f : X → B(G)) and a G′-torsor T ′ over X ′ (i.e.,
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a map f ′ : X ′ → B(G′)), together with a compatibility which is a G′-map T ′ → T |X′,
i.e., a reduction on X ′ of T to the G′-torsor T ′.

So, Map[(X,X ′), (B(G),B(G′))] is the moduli of a G-torsor on X with a G′-reduction on
X ′. The lemma is the case G′ = 1. �

1.1.2. Global loop Grassmannian G̃(G). Here we will restate lemma 1.1.1 so that it de-
scribes the whole space rather than just a single fiber.

One defines the global loop Grasmannian G̃(G) by passing from triples (T , E, τ) ∈ G(G)
to pairs (T , τ), i.e., by omitting a choice E of an estimate on the singularity of the
rational section τ (1), i.e.,

G̃(G)
def
= lim

→ E∈RC

G(G)E.

Then the lemma 1.1.1 says that

G̃(G) = Map[(C, ηC), (B(G), pt)].

1.1.3. Some base changes of G(G) → RC . For any Y −→RC we denote by GY (G) → Y
the corresponding base change of GRC

(G).

Example. The support map supp : HC −→RC gives the pull-back GHC
(G) → HC to HC

with the fiber at D ∈ HC the moduli of all (T , τ) such that the rational section τ of T is
defined off supp(D).

Example. For a smooth curve C, HC is a monoid for the schematic union operation +

which is given by tensoring the ideals ID′+D′′
def
= ID′⊗OC

ID′′ of D′, D′′ ∈ HC . So, for a

set I the schematic union HC×I
+
−→ HC gives a base change GHC×I

(G) −→HC×I . The fiber
at D = (Di)i∈I ∈ HC×I is the moduli of all (T , τ) such that the rational section τ of T is

defined off the support suppI(D)
def
= +i∈I Di.

1.2. Maps into a quotient stack.

1.2.1. Adjunction. The following adjunction relates moduli of torsors and the correspond-
ing classifying spaces. For a left G-torsor P over X , the P-twist of a G-space Y over X
is the space over X

Y
P def

= P−1

Y
def
= P−1×X,G Y = G\(P×XY).

1 Here, “global” refers to dependence on C only, since we have eliminated the local part of the data
E ∈ RC .
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Remark. One can write all formulas here without P−1 using the diagonal quotients YP =
G\(P×XY). However, P−1 is useful for the “tensor product” notation YP = P−1×GY
which may be more intuitive. The two are related by G·(p, y) corresponding to the G-orbit

(p−1, y) ∈ P−1×GY for p ∈ P and y ∈ Y.

Lemma. For a left G-torsor P over X and any G-space Y over X one has

MapX,G(P,Y) ∼= Γ(X,YP).

Proof. Denote P
π
−→ X . The correspondence of G-maps α : P −→Y over X and sections

φ ∈ Γ(X,YP) = Γ(X,G\[P×Y]) is written in terms of x ∈ X and p ∈ P lying above x,
by

φ(x)
def
= G·(p, α(p)) ∈ G\[P×GY].

Conversely, α(p) is the unique y ∈ Y such that (p, y) lies in the G-orbit φ(x) ∈ G\(P×Y).
�

1.2.2. Maps into a quotient stack.

Corollary. For a space X and a G-space Y , the following are the same

• (0) A map f : X → G\Y .

• (1) A G-torsor P over X and a G-map P
α
−→ Y .

• (2) A G-torsor P over X and a section φ of Y P def
= P−1

Y
def
= P−1×G Y .

Proof. (0)⇔(1) is standard. Then (1) and (2) are related by the above adjunction.

Explicitly, the data X
π
←−P

α
−→ Y from (1) can be viewed as a G-map over X

P
(α,π)
−−−→ Y×X.

Then by the above adjunction it is the same as a section φ ∈ Γ(X, (Y×X)P) = Γ(X, Y P)
by (for any x ∈ X and p ∈ P lying above x)

φ(x) = G·(p, α(p)) ∈ G\[P×Y ].

So, we get data from (2). Conversely, α(p) is the unique y ∈ Y such that (p, y) lies in the
G-orbit φ(x) ∈ G\(P×Y ). �

1.3. The conventions. We will make a choice of positive roots ∆+ in 1.3.2 and of the
embedding X∗(T )→֒G(G), λ 7→Lλ.
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1.3.1. The standard notation. For a Cartan T in a Borel B = TN we will choose the
positive part ∆+

T of the root system ∆T = ∆T (g). This gives the positive coroots

∆̌+
T

def
= (∆+

T )
v

, the simple (co)roots αTi , α̌
T
i , i ∈ I, the positive cones Q+

T⊆QT = Z[∆T ]
and Q̌+

T⊆Q̌T = Z[∆̌T ], as well as the notions of dominant weights X∗(T )+ = ⊕i∈I NωiT
and coweights X∗(T )

+ = ⊕i∈I Nω̌iT . We write α ≤B β in X∗(T ) if β − α ∈ Q̌+ and
similarly in X∗(T ).

The abstract Cartan H
def
= B/[B,B] is canonically independent of the choice of a Borel

B. Now, via the isomorphism ιB : T
∼=
−→H (by T⊆B։H) a choice of ∆+

T gives com-
patible notions for the abstract Cartan H : ∆+ ∋ αi, ∆̌

+ ∋ α̌i, Q
+⊆Q, Q̌+⊆Q̌,X∗(H) ∋

ωi, X∗(H)+ ∋ ω̌i and ≤.

1.3.2. The choice of positive roots. Our choice ∆+ def
= ∆T (n) is traditional in representa-

tion theory (then the highest weight vectors are fixed by N).(2) The reason is that the
semigroup closure H defined as the closure of H = B/N in (G/N)aff will be parameterized
(for simply connected G) by positive coroots (see lemma 1.4.a).

1.3.3. The choice of the embedding X∗(T )→֒G(T ), λ 7→Lλ. Such choice gives a
parameterization of NK-orbits by X∗(T ) ∋ λ 7→ Sλ = NK·Lλ. We will use the choice

λ 7→Lλ
def
= z−λ·GO ∈ G(G). As we will see in 2.2.3, in this case the NK-orbits have closure

relation Sλ⊇Sµ iff λ ≥B µ.(3)

1.4. The semigroup closure H. We define H as the closure of H ∼= B/N⊆G/N in the
affinization (G/N)aff.

Lemma. (a) H is a semigroup closure of H .

(b) O(H)⊆O(H) is the subspace spanned by the dominant characters of H . In particular,
when G is simply connected, the standard description of H extends to

Gm
I

∏
i∈I α̌i

−−−−−→
∼=

Hsc

∏
i∈I ωi

−−−−−→
∼=

Gm
I
.

(c??) For any H orbit O in G/N , the closure in (G/N)aff is described by O ∼= O×
H
H .

Proof. We know how to choose a consistent system frames eλ in V N
λ for all λ in the set

X∗(H)+ = ⊕ Zωi of

2 The opposite choice ∆+
T

def
= ∆T (g/b) agrees with algebraic geometry in the sense that say, the regular

dominant weights correspond to very ample line bundles on G/B.
3 The closure relation is the same for what may be the simplest choices where Lλ

def
= zλ·GO if ∆+

T is
chosen in the geometric way as ∆T (g/b).



11

(b’) Recall the Tannakian description of G/N⊆(G/N)aff. Let X+ = X∗(H)+
def
= X∗(H)∩

⊕ Zωi be all dominant characters of H . We can choose a consistent sytem of realizations
of standard representations Vλ of G, of frames eλ in V N

λ for λ ∈ X+ and of surjections

Vλ⊗Vµ
ζλ,µ
−−→ Vλ+µ for λ, µ ∈ X+ (so, ζ is associative and sends eλ⊗eµ to eλ+µ).

(4)

Then the map ι : G/N → V
def
=

∏
λ∈X+ Vλ by G/N ∋ gN 7→ (geλ)λ∈X+ identifies

G/N with all v = (vλ)λ∈X+ ∈ V that satisfy the corresponding Tannakian equations
ζλ,µ(vλ⊗vµ) = vλ+µ and vλ 6= 0. If we choose a finite system X of generators of the cone
X+ we can use ιX : G/N →֒VX = ⊕λ∈X Vλ. and the corresponding embedding equations
are called Pluecker equations.

Now, (G/N)aff is the closure of G/N in V , i.e., precisely all v = (vλ)κ∈X ∈ V that satisfy
the Tannakian equations ζλ,µ(vλ⊗vµ) = vλ+µ.

(b”) The image ι(H)⊆ι(G/N) consists of all Tannakian systems v with 0 6= vλ ∈ V N
λ for

λ ∈ X+. By definition H is the closure of ι(H) in ι((G/N)aff), i.e., all Tannakian systems

v with vλ ∈ V N
λ . The functions on

∏
i∈I V N

λ are the polynomials in variables λ̃, λ ∈ X+.

The Tannakian equations for H are then λ̃+ µ = λ̃ · µ̃. Therefore, the functions on H
are indeed the span of X+ in X∗(H).

In particular, when G is simply connected then O(H) = ⊕λ ⊕i∈I Nωi
kλ are the polyno-

mials in ωi, i ∈ I.

(c) It follows from (b) by left translations.?? �

Remark. H usually does not act on n nor g/b since the weights need not be dominant.

4 5
� It suffices to make the choice for simply connected G?
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2. Finitely supported maps

The loop Grassmannian G(G) of G is the moduli of finitely supported maps into B(G).
We find that the interesting local moduli of G-torsors (factorization subspaces or local
subspaces of loop Grassmannians G(G)) have classifying spaces in the sense of finitely
supported maps into pointed stacks Y that lie above B(G) (i.e. Y is of the form G\Y ).

We consider the moduli MY(C) = Mapgt[C, (Y , pt)] of “generically trivialized” maps
from a curve C into a given pointed stack (Y .pt). When (Y , pt) has a presentation
(Y, a) with Y = G\Y we define the loop Grassmannian of G with the condition Y to

be G(G, Y )
def
= MG\Y (2.2). This notation contains redundancy but it has the relation to

the usual loop Grassmannian G(G) which is just G(G, pt) and when Y is separated then
G(G, Y ) is a subfunctor of G(G).(6)

In 2.1 we notice that in general the moduliMY has a structure of a (colored) factorization
space over curves (under Drinfeld’s conditions on the pointed stack (Y , pt)).

In the reminder of this section we describe the classifying spaces of standard subspaces
of the loop Grassmannian G(G). These are the closures of Sλ = NK·Lλ (3.3) etc. The
origin of the present point of view is Drinfeld’s description of the zastava space in terms
of classifying spaces (theorem ??).

2.0.1. Moduli G(G, Y ) and orbits in G(G). We will reproduce in the form G(G, Y ) certain
moduli of G-torsors (with extra structures) that are local spaces. For this, the space Y (or
the classifying space Y = G\Y ) will be produced from G. Say, Y could be a semigroup
closure of G or the affinization (G/A)aff of a homogeneous space.

Typically, the connected components of our moduli G(G, Y ) will be certain orbits in G(G),
their closures and intersections of such. In particular, the closure relations on orbits will
be more transparent from the description via classifying spaces.

Example. For a subgroup A⊆G the orbits in G(G) of the subgroup Ä = NG(A)O·AK of
GK are related to homogeneous space Y o = G/A, the closures of orbits are then related to
some partial compactification Y of G/A. So, in some sense “probing a space G\Y o with
curves leads to its partial completion Y ”.

For instance for a parabolic P = U ⋉ L with the unipotent radical U and a Levi factor
L we have Ü = UK ⋉ LO. The extreme cases of this are the disc group GO (here P = G
and Y is the Vinberg semigroup of G) and TONK for a Borel B = NT (the “semi-infinite
orbits”, here P = B and Y = (G/N)aff).

6 In this way we restate the usual theory of moduli of torsors in the more flexible and general terms
of maps into (classifying spaces). In terms of physics this is the slogan that “All quantum field theories
are Σ-models.”
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Example. 7
� ANOTHER example? The connected component of AK for a subgroup

A⊆G.

2.1. Moduli of finitely supported maps. We are interested in various moduli of G-
torsors over a curve C that are local spaces over C. As observed by Beilinson and Drinfeld,
the relevant spaces Y are usually of the formMY(C), the moduli of finitely supported,
i.e., generically trivializedmaps into some pointed stack (Y , pt) built from G. (We usually
omit pt from notation.)

2.1.1. Versions of the moduli. A pointed stack (Y , pt) will give a functor (an algebro-
geometric “sigma model”) that associates to each source space X the moduli of generically
trivialized maps from X to Y . We first define the global version, for the generic point ηX
of X this is the moduli

MX
gl(Y)

def
= Map[(X, ηX), (Y , pt)].

We will now assume that X is a curve and we denote it C. Then “generically trivialized”
is the same as finitely supported. We will consider two versions depending on how one
organizes these finite supports into an algebro-geometric objects. The Ran space RX of
X is the moduli of finite subsets of X .

• (1) Factorization space versionM(Y). To a curve C it associates the spaceMC(Y)→
RC over the Ran space of C. The fiber at E ∈ RC is

MC(Y)E = Map[(C − E), (Y , pt).

• (2) The “filtered” or “local space” version fM(Y) of M(Y). It is only defined under
the Drinfeld condition that the pt → Y is an open inclusion. Then we can define its

boundary ∂(pt)
def
= pt− pt which is closed in pt. So, one has the singularity map

MC
gl(Y)

π
−→HC , π(f)

def
= f−1∂(pt).

(Since f is generically in pt, π(f) is a proper closed subscheme of C, hence it is a finite
subscheme.)

Now, fMC(Y) is the spaceMC
gl(Y) considered with the structure map π, i.e., considered

as a family of spaces indexed by finite subschemes D ∈ HC :

fMC(Y)D
def
= π−1D = {f : (C, ηC)→ (Y , pt); f−1[∂(pt)] = D}.

2.1.2. Properties of the moduliMC(Y).

7 !
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Lemma. (a) For a pointed space (Y , pt) the spaceMC(Y) −→RC is indeed a factorization
space over C.

(b) If the point pt of Y is open in Y then fMC(Y) is a local space over C whose associated
factorization space isMC(Y).

Moreover, if the boundary ∂(pt) = Y − pt is a divisor with irreducible components
Yi, i ∈ I, then fMC(Y) can be defined with a structure fMC(Y) −→ HC×I of an I-
colored local space over C.

Proof. (a) To simplify the notation denoteME =MC(Y)E. The locality structure is a
consistent system of isomorphisms for I-disjoint(8) Ei ∈ HC×I ,

ι : ME1
×ME2

∼=
−→ ME1⊔E2

.

To (f1, f2) in the LHS it associates f in the RHS so that on C − E1 one has f = f2 and
on C −E2 one has f = f1 (on the intersection C − (E1⊔E2) both are equal to y).

(b) The locality structure, i.e., the gluing for fMY(C)D is the same as in (a), one just
needs to observe that π(f) = π(f1)⊔π(f2).

When the boundary divisor ∂(pt) has irreducible components Di we can refine π to a
collection of πi(f) = f−1(Di) ∈ HC so that now π :MC

gl(Y) −→(HC)
I = HC×I .

For a local space Z → HC with a “growth” structure Z ′
D −→ZD for D′⊆D, there is an

associated factorization space Zfac → RC with the fibers

Zfac
E

def
= lim

→ supp(D)⊆E
ZD, E ∈ RC .

In our case this is

([MC(Y)]fac)E = lim
→ supp(D)⊆E

fMC(Y)D = Map[(C,C − E), (Y , pt)] = MC(Y)E.

�

Example. (a) The standard example is Y = B(G) (we will see that then MY = G(G)).
Here, the map pt → Y is not an open inclusion, so the factorization space MBG(C) =
G(G)→HC does not have a filtered version.

(b) The local version appears for Y = G\(G/N)aff (3.3), Y = N\B (??) and Y = G\G
(3.5).

(c) [Ra] For any X , the moduliMX
gl(Gm\A1) (with the point 1 → Gm\A1 is the moduli

of effective Cartier divisors in X .

Proof. For f : X → A1/Gm, the pull back f−10 = X×A1/Gm
0⊆X is a Cartier divisor in

X . �

8 Define I-disjoint.
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2.2. Subfunctor G(G, Y )⊆G(G) given by “condition Y ”. Consider a G-space Y with
a point y(9) It gives a pointed stack (G\Y, pt) where pt is the composition y ∈ Y → G\Y .
For any X We consider the corresponding moduli of fintely supported maps

G(G, Y )
def
= M(G\Y )

(we omit the base point y from the notation). To a curve C it associates the factorization
space GC(G, Y ) =MC(Y) over C with the fiber at E ∈ RC

G(G, Y )E = GC(G, Y )E
def
= Map[(C,C −R), (G\Y, pt)].

Here we study the functor G(G,−) on the category Sp•(G) of G-spaces with a point
(Y, y) By definition, G(Y, pt) is the loop Grassmannian G(G). We will see that when Y is
separated then G(G, Y ) is a subfunctor of G(G) (lemma 2.2.2.b). Actually, the interesting
subfunctors of G(G) are usually of this form.

2.2.1. Loop Grassmannians G(G, Y ) with the “condition Y ”. If Y is a scheme near y then

the stabilizer of y is a subgroup A of G and the orbit Y o def
= G·y⊆Y is a well defined

subscheme of Y isomorphic to G/A.

The Drinfeld setting is the case when the orbit Y o is free, i.e., A = 1, i.e., pt→ G\Y is
an open embedding. Then lemma 2.1.1.b provides a refinement of the factorization space

functor G(G, Y ) has to a local space functor fG(G, Y )
def
= fM(G\Y ) −→ HC with the

fiber at D ∈ HC

fG(G, Y )D = {f : (C, ηC)→ (G\Y, pt); f−1[∂(pt)] = D}.

We start with some formal properties.

Lemma. (a) [Redundancy in the notation G(G, Y ).] For a normal subgroup K⊆G one
has G(G, Y ) ∼= G(K\G,K\Y ).

(b) [Fibered products.] We consider a system of groups Gi −→G0 and a compatible system

Yi
ai−→ Y0 of Gk-spaces Yk.

(b1) The general formula for two factors is

G(G1, Y1)×G(G0,Y0)G(G2, Y2) ∼= G[G0, (G0×G1
Y1) ×Y0 (G0×G2

Y2)]

∼= G[G1, Y1×Y0 (G0×G2
Y2)] ∼= G[G2, (G0×G1

Y1)×Y0 Y2].

(b2) If G0 = Gi/Ki is a quotient of Gi for 1 ≤ i < n, then
n∏

1

[G(Gi, Yi)→ G(G0, Y0)] ∼= G[
n∏

1

Gi/G0,

n∏

1

Y1/Y0].

(b3) [Products.] G(G1, Y1)×G(G2, Y2)
∼=
−→G(G1×G2, Y1×Y2).

9 y is a point of the underlying space of the G-space Y , i.e., y ∈ Y need not be a G-map.
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Proof. (a) is obvious since (K\G)\(K\Y ) ∼= G\Y .

(b) holds because Map(X,−) preserves fibered products. For instance when in (b1) one
calculates the first component of objects in the moduli G(G1, Y1)×G(G0,Y0)G(G2, Y2) one
gets

Map(C,G1\Y1)×Map(C,G0\Y0)Map(C,G2\Y2) = Map[C, G1\Y1 ×G0\Y0 G2\Y2].

By 12.1 the target is

G1\Y1 ×G0\Y0 G2\Y2 = G0\[(G0×G1
Y1) ×Y0 (G0×G2

Y2)

= G1\[Y1×Y0 (G0×G2
Y2) ∼= G2\[(G0×G1

Y1)×Y0 Y2.

The claim (b2) follows by induction from its case n = 2. For n = 2 we use (b1) and
G0 = G1/K1 to identify

G(G1, Y1)×G(G0,Y0)G(G2, Y2) = G[G2, (G0×G1
Y1) ×Y0 Y2]

∼= G[G2, K1\Y1 ×Y0 Y2].

Since K1 acts trivially on Y0 this is

∼= G[G1, (K1×1)\
(
Y1×Y0 Y2

)
]

and since (K1×1)\(G1×G0
G2) = K1\G1×G0

G2 = G2, by (a) we get

∼= G[G1×G0
G2, Y1×Y0Y2].

Finally, (b3) is a special case of (b2) when G0 = 1 and Y0 = pt. �

2.2.2. G(G, Y ) when Y is a separated scheme. Under this assumption one has the follow-
ing lemma.

Lemma. (a) In terms of torsors, the fiber G(G, Y )D is the moduli of all (T , τ) ∈ G(G)D
such that the A-reduction A·τ ∈ Γ(U,A\T ) of T over C −D, extends to a section of Y T

over C,(10) in the sense of the embedding (that is given by the choice of y ∈ Y o):

A\T = G\(T ×G/A) = (G/A)T ∼= (Y o)T ⊆ Y T .

(b) G(G, Y ) is a subfunctor of G(G) and it carries the induced structure of a factorization
space.

(c) If Y is affine then G(G, Y ) is a closed subfunctor of G(G).(11) If Y is quasiaffine and
Y aff is separated then the subfunctor G(G, Y )⊆G(G, Y aff) is open,

10 The inverse map from the above submoduli of G(G) to G(G, Y ) = Mapgt(C,G\Y ) sends (T , τ) to
a triple (T , φ, τ) consisting of a map (T , φ) : C → G\Y and the trivialization τ of the map on U . Here,
φ ∈ Γ(C, Y T ) is the unique extension of τ ∈ Γ(C − D,A\T ). In the opposite direction we have the
projection (T , φ, τ)7→(T , τ).

11 This is not true for arbitrary Y , For a counterexample let Y = G/A so that G(G,G/A) ∼= G(A)
according to the corollary 2.3.2. When A is a proper parabolic P 6= G, then G(P ) is not closed in G(G).

As one can see in the proof of (a), the problem arises because Map(d∗,Y) is not local in Y for nonaffine
Y. So, when Y = G/A is not affine then there is a difficulty in defining Map(d∗,Y) as a geometric object.
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(d) If Y is a scheme near a then the map G(G,G·a)→ G(G, Y ) is an isomorphism.

Proof. (a) (1) A map (C,C − D)
F
−→ (G\Y, pt) is a map C

f
−→ G\Y together with the

commutativity constraint for the square

C
f

−−−→ G\Yx⊆ i

x

U
q

−−−→ pt,

where the map i is the composition [pt = a ∈ Y → G\Y ] and f is a pair of a G-torsor T
on X and φ ∈ Γ(X, Y T ).

We will see that for f : C → G\Y a completion to the above diagram, i.e., a factorization
of f |U through the point pt, is the same as a U -trivialization τ ∈ Γ(U, T ) of T whose
image in Γ(U,A\T ) extends to a section of Y T on C.

(2) The map pt
i
−→G\Y is defined as (pt

a
−→ Y

i′

։G\Y ). Here, i′ is represented by the
trivialized G-torsor G×Y over Y and the trivial Y -section of the (trivial twist) Y G×Y =
G×Y , i.e., the map idY .

So, iq = i′aq is represented by the trivial G-torsor (aq)∗(G×Y ) = G×U over U and the
U -section of the trivial twist Y G×U = Y×U , i.e., a map a′ : U → Y , which is the
constant map with value a ∈ Y .

(3) Now, the commutativity constraint is an isomorphism of G-torsors τ : G×U → T |U ,
i.e., a section τ ∈ Γ(U, T ), such that the corresponding trivialization of the T -twist
τ̃ : Y×U → Y T |U takes the constant section a′ of Y×U to the section φ|U of Y T |U .

The twist is Y T |U = G\(T ×Y ) and τ̃ (a′) = G·(τ, a′). So, the data for a map F are
a G-torsor T over Y , a section τ ∈ Γ(U, T ) and a section φ ∈ Γ(C, Y T ) such that
τ̃−1[φ(u)] = G·(τ(u), a), u ∈ U .

(4) φ is an extension of τ . Since τ̃−1φ is representable with a pair (τ, a) ∈ Γ(U, T ×Y o) we
know that φ(U) lies in (Y o)T . Moreover, as we identify (Y o)T with G\(T ×G/A) ∼= A\T
we see that φ|U ∈ Γ[U, (Y o)T ] identifies with the image τ ∈ Γ[U,A\T ] of τ ∈ Γ(U,GT ).
So, φ is an extension of τ to a C-section of Y T .

(5) Since U is dense, such extension is unique provided that Y is separated. Therefore,
the data reduce to a G-torsor T over C and a section τ ∈ Γ(U, T ) such that the image
τ ∈ Γ(U,A\T ) = Γ(U, (Y o)T ) extends to a C-section of Y T . (12)

(b-c) We now know that G(G, Y ) is the submoduli of G(G), given by the property of the
existence of an extension of the image τ ∈ Γ(U,A\T ) ∼= Γ(U, (G/A)T ) of the section τ

12 If we only know that Y is a scheme near a then the steps (1-4) of this argument are still valid. This
only tells us that there is a map G(G, Y )→ G(G) by (T , φ, τ)7→(T , τ) such that φ|U is A·τ .
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to an X-section of Y T . The factorization claim is known (lemma 2.1.1). So, we only need
to show that G(G, Y ) is closed.

The “extension” condition on maps is closed when the target is affine; for any affine
scheme Y, the functor Map(ηC ,Y) has a canonical structure of an indscheme such that
Map(C,Y) is a closed subscheme.

This claim follows from its local version. It says that Map(d∗,Y) is canonically an ind-
scheme such that Map(d,Y) is a closed subscheme.

The first example of this is when Y = A1, here Map(d∗,A1) = k((z)) and the functions
that extend to the formal disc d are O = k[[z]]. The general case follows by embedding
Y into An.

(d) Moduli G(G, Y ) consists of all (T , τ) ∈ G(G) and φ ∈ Γ(d, Y T ) such that φ extends
the section A·τ ∈ Γ(C −D,A\T ) = Γ(C −D, (Y o)T ). Since φ|C−D has values in (Y o)T ,

all values of φ are in (Y o)T = (Y o)T . �

Remarks. (0) In terms of the global Grassmannians one states the inclusion in (b) as

G̃(G) ⊇ G̃(G, Y )
def
= Map[(C, ηC), (G\Y, pt)].

(1) The inclusion map G(G, Y ) −→ G(G) is realized on the level of moduli of maps
Map[(C, ηC), (G\Y, pt)] −→Map[(C, ηC), (G\pt, pt)] by the G-map Y −→pt.

(2) Algebraic structure on G(G, Y ). When Y is a quasiaffine scheme the the part(c) of the
lemma provides sucg structure, Here, we will only define the algebraic structure in some
additional special cases.

Corollary. (a) At a point c ∈ C, G(G, Y )c⊆G(G, c) is the quotient ˜G(G, Y )c/GO ⊆GK/GO

where

˜G(G, Y )c
def
= {g ∈ GK; ga : d∗ → Y o extends to d→ Y }/GO.

(b) The functor G(G,−) in (Y, a) preserves fibered products. Moreover, on separated
schemes Y the functor G(G,−) takes all morphisms into inclusions. and the fibered
products are taken to intersections in G(G):

G(G, Y1×Y Y2) ∼= G(G, Y1)×G(G,Y ) G(G, Y2) = G(G, Y1) ∩G(G) G(G, Y2).

Proof. (a) The fiber G(G, Y )c consists of all G-torsors T over d = â, with a section τ over
d∗ = ã such that Aτ ∈ Γ(d∗, A\T ) exends to a section of Y T over d.

Since we are working locally near c the torsor T is trivial and we can assume that T =
G×d. Then τ : d∗ → G is an element g of GK. The condition on g is that Aτ ∈ Γ(d∗, Y ),
i.e., ga ∈Map(d∗, Y o) extends to a d-section of Y T = Y×d.
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(b) The first claim is a special case of the lemma 2.2.1.b2, when n = 2 and all Gi equal
G, so that G1×G0

G2 = G. The rest follows since G(G, Y ) is a submoduli of G(G) for
separated schemes Y (lemma 2.2.2.b). �

2.2.3. Examples. Because of the lemma 2.2.1.b we will usually consider (Y, a) such that
the G-orbit G·a⊆Y is dense, hence open. Then the stack G\Y will have an open dense
part G\Y o ∼= B(A).

(0) When Y is a semigroup closure G then G(G,G) can be thought of as the “loop
Grassmannian of G”. This gives extension of Langlands duality to reductive semigroups
on the level of the geometric Satake mechanism.

(1) The other class of Y ’s are the affinizations of homogeneous spaces G/V which are
quasiaffine. Examples come from parabolic subgroups P = U ⋉ L, then V is a normal
subgroup of P such that P ′⊇V⊇U . The interesting cases V = U and V = P ′.

Corollary. The moduli of line bundles with a nonvanishing section is G(Gm,A1) (with the
base point a = 1 ∈ A1). This is preceisely the punctual Hilbert scheme:

G̃(Gm,A
1) = HC .

Proof. Here, G̃(Gm,A1) = Map[(C, ηC), (Gm\A1, pt)] is the moduli of Gm-torsors L on C
with a section φ of (A1)L which is generically in Gm)

L. These are precisely the pairs of a
line bundle L (= (A1)L) with a generically nonvanishing section φ.

The pair (L, φ) gives an effective divisor φ−10 ∈ HC . Conversely, for any D ∈ HC we get
a pair of a line bundle OC(D) with a section 1. �

2.2.4. When is G(G, Y ) (quasi)projective. The following conjecture is I believe actually a
result of Drinfeld.

Conjecture. The connected components of G(G, Y ) are quasiprojective iff Y o is a G-torsor,
i.e., pt → Y = G\Y is open, i.e., dim(Y) = 0. Then they are projective iff Y is also
affine.

Example. [Zhijie] The connected components of G(N,B) = G(N×H, (G/N)aff) =

⊔λ S0 ∩ S−
λ are not projective.

Question. Possibly the claim is only correct for a reductive group G? Say, if we rewrite
the formula by induction to replace N by G then

G(N,B) = G(G×H,G×N(G/N)aff)

is (I guess) included into

G(G×H, [G×NG/N ]aff) ∼= G(G×H, [G/N×G/N ]aff) = G(G×H, (G/N)aff×(G/N)aff) = ⊔ S0∩S−λ
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which does have projective connected components. �

Remark. The assumption that Y o is a G-torsor, i.e., that A = 1, is exactly the Drinfeld
setting, i.e., the case when the factorization space G(G, Y ) has a local space filtration.

2.2.5. A case when G(G, Y o)⊆G(G, Y ) is dense. 13
�

Lemma. If ∂Y o is in codimension 2 then the subfunctor G(G, Y o)⊆G(G, Y ) is dense.

In particular we have a surjection π1(A) = π0[G(G, Y o)] ։ π0[G(G, Y )].

Proof. G(G, Y )c consists of all (T , τ) ∈ G(G)c such that the section Aτ ∈ Γ(d∗, (Y o)T )
extends to a section (call it φ) in Γ(d, Y T ). Actually, we can assume that T is trivialized
on d, and then we can think of φ as a map d −→Y which is generically in Y o.

So, the claim reduces to

When Z = ∂Y o⊆Y is in codimension 2 then in Map(d, Y )
the maps that meet Z are in codimension one.

14
�

15
� Actually, if dim(Σ) = d and Z⊆Y is in codimension c, then in Map(Σ, Y )

the maps that meet Z are in codimension c− d.(16)

The reason is that for s ∈ Σ, Map(Σ, Y )s = {f : f(s) ∈ Z} is in codimension c, hence
∪s∈Σ Map(Σ, Y )s is in codimension c− d. �

Remark. Claim fails in codimension one, say for G(Gm,A1) = Hd. Here, φ ∈ Hd is a

monic polynomial zd +
∑d

1 siz
d−i with si nilpotent. Now, φ(0) lies in Y o = Gm iff d = 0.

However, the connected components of Hd are given by the degree d of φ. �

13 ! The following does not make sense until algebaic structure on G(G, Y ) is defined? Is there a

notion of a dense subfunctor of a functor?
14 ! Still needs a proof
15 ! This reformulation only works when the moduli is connected!!!
The claim could be that (?)

(1) The closure of the subfunctor G(G, Y o)⊆G(G, Y ) is open and closed in G(G, Y o)⊆G(G, Y ), i.e.,
a union of connected components.
This would agree with the strange expectation that the connected components of G(G, Y ) are
locally closed in G(G).

(2) Another way is to require that in each connected component of Map(d, Y ) the maps that meet

Z are in codimension one.

The original calim is obviously false when G(G, Y o) = G(A) is connected, i.e., π1(A) = 0, but G(G, Y )
is not connected.

16 This explains why, for Σ = d, we needed codimension 2.



21

Question. For any Y we have inclusions

G(G, Y ) ⊆ G(G, Y aff)
closed
⊆ G(G).

When is the first inclusion always dense?

We know this when Y is quasiaffine and G(G, Y ) is connected 17
� . However, denseness

also holds when Y = Y o is a partial flag variety G/P since then the map G(G,G/P ) −→
G(G, (G/P )aff) = G(G, pt) is G(P )→֒ = G(G) which is known to be dense.

Question. Suppose that (Y1, a1)→ (Y2, a2) is proper and that the generic fiber A2/A− 1
is connected. Is G(G, Y1)⊆G(G, Y2)) dense?

(18)

2.3. Restriction, induction and symmetries of G(G, Y ). Here we study the functo-
riality of G(G, Y ) in the group G.

A. Restriction of the condition (Y, y) to a subgroup. We consider a subgroup
K⊆G.

2.3.1. Loop Grassmannians embedd.

Lemma. (a) For any subgroup K⊆G, its loop Grassmannian G(K) embeds into
G(G) as a subfunctor by the induction functor that takes (S, σ) ∈ G(K) to

IndGK(S, σ)
def
= (G×K S, σ).

(b) The image of G(K)→֒G(G) is the submoduli G(G;K)⊆G(G) consisting of all (T , τ) ∈
G(G) that satisfy the equivalent conditions that

• the image of the section τ ∈ Γ(C−D, T ) in Γ(C−D,K\T ) extends to a C-section
of K\T ;
• the closure TK,τ of K·τ in T is a K-subtorsor (i.e., a reduction of T from G to K).

(c) The inverse map G(G,K)→ G(K) sends (T , τ) to the pair (TK,τ , τ).

Proof. In (c) one observes that TK,τ has a meromorphic section τ . �

Corollary. When Y is a single G-orbit G/A then G(G,G/A) ∼= G(A) and G(G,G/A) is
exactly the above G(G;A). In particular, G(G, pt) = G(G) and G(G,G) = G(1) = pt.

Proof. The main claim is clear from the lemma. Then G(G, pt) = G(G,G/G) = G(G)
and G(G,G) = G(G,G/1) = G(1) = pt. �

17 ! ?
18 The question requires a natural algebraic structure on G(G, Y2).
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2.3.2. Restriction to subgroups and the T -fixed points in G(G, Y ). For a subgroup K⊆G
denote the K-orbit through y ∈ Y and its closure in Y by

ResGK(Y
o) = Y o

K
def
= K·a ∼= K/(K ∩ A) and ResGCY = YK

def
= Y o

K .

If Y is affine then so is YK .

Example. When K is a torus T in G the T -orbit Y o
T is canonically identified with the

torus T = T/(T ∩ A) and its closure YT in Y is then a toric variety for the torus T.

Proposition. For a subgroup K⊆G the intersection G(G, Y )∩G(K) of subfunctors of G(G)
is G(K, YK).

Proof. We know that the fiber at D ∈ HC of

G(G, Y ) ∩G(G) G(K) = G(G, Y ) ∩G(G,pt) G(G,G/K) = G(G, Y×ptG/K)

is
Map[(C,C −D),

(
G\(Y×G/K), pt)] ∼= Map[(C,C −D),

(
sC\Y ), pt])

and this is G(K, Y )D which is the same as G(K, YK)D.

Example. The inclusion G(G′)⊆G(G) need not be closed. For instance this fails when G′

is a proper parabolic P in a reductive G.

2.3.3. Fixed points in G(G).

Lemma. (a) For the centralizer Z
def
= ZG(K), we have G(G)K⊇G(Z) and

G(G, Y )K ⊇ G(Z, YZ).

(b) When K is reductive the inclusions in (a) are equalities. For instance, when K is a
Cartan T⊆G, then Z = T and YZ = YT is a toric variety for the torus T/(A ∩ T ). So,

G(G)T⊇G(T ) and G(G, Y )T ⊇ G(T, YT ).

(c) [Conj.] If s ∈ G is semisimple then G(G)s = G[ZG(s).

Proof. (a) Since K acts trivially on Z we have G(G)K⊇G(Z). Then

G(G, Y )K ⊇ G(G, Y ) ∩ G(Z) ∼= G(Z, YZ).

In (b) we just need to see that when K is reductive then G(G)K = G[ZG(K)]. This follows
from (c) since the semisimple elements are dense in a reductive K, hence

G(G)K = ∩s∈KG(G)s = ∩s∈KG[ZG(s)] = G[∩s∈KZG(s)] = G(ZG(K)).

(c) �

B. Orbits of Ä in G(G, Y )
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2.3.4. Orbits of Ä⊆NG(A)O·AK in G(G, Y )⊆G(G). The automorphism group of the G-
space G/A is NG(A)/A acting by right multiplication. In particular, the normalizer NG(A)
acts on Y o = G/A by conjugation. Let Ȧ⊆NG(A) consist of all elements g ∈ NG(A) such
that the actions of g, g−1 on Y o = G/A by right multiplication extends to an action on Y .

When Y is separated the extensions are unique, Ȧ is a group and its conjugation action

on Y o extends to an action on Y . In GK we will consider the subgroup Ä
def
= ȦOAK

∼=
ȦO ⋊AO

AK.

Example. (0) When Y is obtained from Y o by some canonical construction then the sym-
metries extend automatically hence Ȧ = NG(A). For instance, when G/A is quasiaffine
we can take Y = (G/A)aff.

(1) When Y is not a canonical construct from Y o then Ȧ can be A small part ofNG(A). An
example is G(G×H, (G/N+)aff×(G/N−)aff with a = (N+, N−)). Here, (G×H)a is a torsor

for V = (G×H)/Z(G), so A = ∆Z(G). Hence, Ȧ is the part of NG×H(Z(G)) = G×H whose

right action on V⊆(G/N+)aff×(G/N−)aff extends to an action on (G/N+)aff×(G/N−)aff.
This is small and indeed G(G×H, (G/N+)aff×(G/N−)aff has little symmetry. �

Remark. For a torus T in Ȧ the closure YT
def
= T ·a in Y is a toric variety for the torus

T = T/(T ∩ A). So, YT is a semigroup closure T of T iff YT is affine.

Lemma. (a) Ä acts on G(G, Y )⊆G(G).

(b) Suppose that a Cartan T of G lies in Ȧ⊆NG(A) and that YT is affine so that it is
a semigroup closure T of the torus T = T/(T ∩ A). Then for µ ∈ X∗(T ), the point

Lµ ∈ G(G)T lies in G(G, Y ) iff the morphism of groups Gm
−λ
−→ T։T extends to a

morphism of semigroups (A1, ·)→ T.

(c) If each Ä-orbit in G(G) defined over the ground field contains a point in X∗(T ) then
G(G) has a stratification by orbits Ä·Lλ and this restricts to a stratification of G(G, Y )
over all Lλ ∈ G(G, Y ).(19)

Proof. (a) GK acts on G(G) by changing the d∗-trivializations τ ∈ Γ(d∗, T ) by τ 7→ g·τ .
The submoduli G(G, Y )c is given by the condition that Aτ ∈ Γ(d∗, A\T ) = Γ(d∗, (Y o)T )
extends to a d-section of Y T . Clearly, g ∈ AK does not change the coset A·τ = A·gτ , so
it preserves G(G, Y )⊆G(G).

On the other hand, the action of G on T induces an action of NG(A) on A\T ∼=
G\(T ×G/A) = Y oT so that g ∈ NG(A) acts in the first realization by g·At = A·gt for

t ∈ T . The second realization is related by At ↔ (t, A). Therefore, g·(t, xA) corresponds
to g·A(x−1t) = A(gx−1t), hence

g·(t, xA) = (gx−1t, A)) = (t, xg−1A)) = (gt, gxAg−1)) =
(
gt, g(xA)

)
.

19 This has versions for Äred-orbits in G(G, Y )red⊆G(G)red.
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This uses the conjugation action so it extends to an action of Ȧ on Y T . Therefore,
the action of ȦO on sections τ ∈ Γ(d∗, T ) preserves the property that Aτ extends to a
d-section of Y T .

(b) We know that G(G, Y )T = G(T, YT ) where YT = T ·a⊆Y is a toric variety for T =
T/T ∩A.

For λ ∈ X∗(T ), the point Lλ in G(T )c is the trivial T -torsor T = T×d over d with
the section τ = z−λ : d∗ → T over d∗ which is the composition of a local parameter
z : d∗ −→Gm with −λ ∈ Hom(Gm, T ).

Now, Lλ lies in G(T, YT )c iff the function A ∩ T ·z−λ : d∗ → A ∩ T\T = T extends to a
section of (YT )

T . Since T is trivial this means extending to a function d→ YT = T. This

is equivalent to Gm
−λ
−→ T → T extending to A1 → T. �

2.3.5. Parabolic ∞
2

orbits SPλ
def
= Ü ·Lλ for Ü = UK ⋉ LO. Let P⊇B⊇T be a parabolic,

Borel and Cartan subgroups. For the unipotent radical U of P we have Ü
def
= UK·PO =

UK⋉LO for any Levi subgroup P⊇L⊇T . The orbits of Ü in the loop Grassmannian are pa-

rameterized by the orbits in X∗(T ) of the the Weyl group WT (L) of L via SPλ
def
= LOUK·Lλ.

Remarks. (0) One source of interest in these orbits is that the sets of irreducible compo-
nents of intersections appear as canonical bases in the representation theory of the dual
group Ǧ. For instance Irr[Gλ ∩ Sν ] functions as a natural basis of the ν weight space of

the standard finite dimensional representations W Ǧ
λ (ν) and SǦλ (ν) (over integers).

(1) We will eventually describe these orbits and their closures as moduli. This will give a
transparent proof of their closure relations. Here we just recall the notation.

C. Induction of pairs (Y, a). For a map of groups φ : G′ → G we have the pull-back
φ∗ : Sp•(G) → Sp•(G

′) where φ∗(Y, a) = (Y, a) with the G′-action on Y via φ. We also
have the direct image

φ∗(Y
′, a′)

def
= G×G′ Y ′, (1, a′)).

We will also use the affinization operation Sp•(G) → Sp•(G) by (Y, a)aff = (Y aff, a).
While affinization can enlarge or diminish the space Y , any map Y → Y ′ gives inclusion of
functors G(G, Y )⊆G(G, Y ′)). Moreover, when Y is quasiaffine then G(G, Y aff)) = G(G, Y .

2.3.6. Induction. For a subgroup K
ι
→֒G the direct image is called induction indGK :

Sp•(K)→ Sp•(G). We can also compose it with affinization for the “affine induction”

AindGK(Y)
def
= (G×K Y)aff.

So, lemmas ... say that in

G(G, indGK(Y))
(1)

⊆ G(G,AIndGK(Y))
(2)closed

⊆ G(G)
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inclusion (2) is closed and inclusion (1) is dense if IndGK(Y)) is quasiaffine.

Lemma. (a) G(G, IndG
sc
(Y)) ∼= G(K,Y).

(b) Ind and Res are adjoint.(?)

xxx
G(L,Y) −→ G(P,Y) = G(G,G×PY) −→ G[G, (G×PY)

aff]

Really, this is

G(L,Y, a) −→ G(P,Y, a) = G(G,G×PY, P×P a) −→ G[G, (G×PY)
aff, P×Pa]

Lemma. (?) For the maximal central torus ZL in L,

G[G,G×PY]
Z = G(L,Y) and G[G, (G×PY)

aff]Z = G(L,Yaff).

2.3.7. How do A, Ȧ, Ä induce? Consider AL⊆L. Going from L to P one does not change
the spaces Y o⊆Y , therefore P/AP

∼= L/AL says that AP = (P։L)−1A = U ⋉ A.

In the opposite direction by fixed points, one can consider G(L) as G(P )ZL. Then

G(P, YP )
ZL = G(P, YP ) ∩ G(L) = G(L, (YP )L).

Next, from P to G.

2.3.8. The parabolic induction. For a parabolic P = U ⋉L we have G
i
←֓P

q
։P/U

def
= P ∼=

L/ The “parabolic induction” from P/U ∼= L to G is i∗q
∗ and its affine enlargement.

20
� the group Ü = UK ⋉ LO seems to come from the “induction” of G(VL,VL) to

G(VG, [VG×PHVL]aff).

One starts with AVL
= 1 hence ȦVL

= NVL
(AVL

) = VL and ÄL = (VL)O.

20 !
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3. Closures of orbits

3.1. Is S0 ∩ S−α dense in S0 ∩ S−α?

3.2. Summary.

3.2.1. KK orbits in G(G).

Lemma. (a) For a subgroup K of G the “trivial” orbit KK·L0 in G(G) is G(K) =

G(G,G/C). If G/K is quasiaffine then its closure is G(K) = G[G, (G/K)aff].

3.3. The closure of a semi-infinite orbit S0 and the G-space (G/N)aff. The closures
of the so called semi-infinite orbits

Sλ
def
= NK·Lλ, (λ ∈ X∗(T )),

will be given a modular description. This modular description will be used to extend
the semi-infinite filtration to the relative Grassmannian G(G) → RC . For λ = 0 the
classifying space of the closure will be described in terms of G but for general λ we will
use the the Vinberg group V = V(G).

3.3.1. The closure of S0. Let a be a smooth point of a curve C and denote d
def
= â⊇ d∗

def
= ã.

Proposition. The closure S0 is the loop Grassmannian G[G, (G/N)aff]c with the condition
(G/N)aff. 21

� So it has equivalent descriptions as

(1) (Torsors.) The moduli of all (T , τ) in G(G)c, such that the image in N\T of the
section τ of T extends from d∗ to d as a section of the relative affinization (N\T )aff

of N\T over C.
(2) (Classifying spaces.) The moduli of maps of pairs Map[(d, d∗), (G\(G/N)aff, pt)].

Proof. We know that G(G, (G/N)aff) is closed in G(G) since (G/N)aff is affine (lemma
2.2.1.b). Also, S0 = G(N) = G(G,G/N) is dense in G(G, (G/N)aff) by the lemma 2.2.5,
so G(G, (G/N)aff) = S0.

The moduli G(G, (G/N)aff)c is defined as in (2). The lemma 2.2.1.b provides a reformula-
tion as the moduli of all (T , τ) ∈ G(G)c such that the N -reduction Nτ ∈ Γ(U,N\T ) of T
over U , extends to a section of [(G/N)aff]T over C.(22) This is the same as the formulation
in (1) since [(G/N)aff]T = [(G/N)T ]aff = (N\T )aff. �

21 ! Is G[G, (G/N)aff]c connected?
22 The last requirement is in terms of the embedding N\T = (G/N)T ⊆ [(G/N)aff]T .
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Corollary. (a) The reduced part [G(G)0]red of the trivial connected component G(G)0, as

well as S0 and S0 are the same for G and Gad
def
= G/Z(G).

(b) The T -fixed part S0
T
is isomorphic to the Hilbert scheme Hd×I and the TR-fixed part

S0
TR

= S0 ∩X∗(T ) is −Q̌+.

(c) S0 has a stratification by orbits Sα with α ≤ 0.

Proof. (a) S0 and S0 are formed inside the reduced paart [G(G)0]red of the trivial connected
component G(G)0 which is equal to G[(Gad)sc].

23
�

(b) The fixed points S0
T
= G(G, (G/N)aff)T = G(G, (G/N)aff)∩G(T ) have been identified

in 2.3.2.c with G(T,H) ∼= G(H,H) where H is the closure of H = B/N in (G/N)aff. We
know that G(Gm, Gm) is Hd (lemma 2.2.3). When G is adjoint then H is described as

Gm
I
in the lemma 1.4 so we get identification S0

T ∼= Hd×I in this case. According to (a)
this gives an identification for any G.

According to the lemma 2.3.4.b, the point Lλ in G(T )c (for λ ∈ X∗(T )), lies
in G(G, (G/N)aff)c iff −λ : Gm → T extends to Gm → H. When G is simply
connected 24

� then O(H) = k[ωi, i ∈ I] (lemma 1.4.b), so the condition is that
ωi◦(−λ) : Gm → Gm⊆A1 extends across 0 ∈ Gm. In other words, that 〈ωi,−λ〉 ≥ 0, i.e.,
−λ ∈ Q̌+ = ⊕i∈I Nα̌i.

(c) S0 only depends on Gad (corollary 6.4)), so we can assume that G is semisimple. Then
G(G)is reduced and has a stratification by NK-orbits Sλ, λ ∈ X∗(T ). Now, S0 has a

stratification by Sλ such that Lλ lies in S0
T
, so one can use part (b) of the lemma. �

Remark. The proposition shows that we can extend the spaces S0⊆ S0⊆ G(G)c to factor-
ization spaces over RC given by G(G,G/N)⊆G(G, (G/N)aff)⊆G(G).

3.4. The semi-infinite filtrations Sλ⊆Sλ of G(G) and the V(G)-space (G/N)aff.

3.4.1. The Vinberg group V = V(G). For a reductive group G we define its Vinberg group

V = V(G)
def
= G×Z(G)H.

The map V → V/Z(G) ∼= Gad×Had is V → V/H×V/G.

We also denote by Gad
def
= G/Z(G) its adjoint form and by Gsc the simply connecred cover

of Gad. Similarly, we move the data T⊆B։H for G to the same kind of data T ad, Bad, Had

for Gad and T sc, Bsc, H sc for Gsc.
(25)

23 ! reference for “[G(G)0]red equal to G([Gad]sc)”? Take quotients by the largest central torus Z and

then by the finite Z(G).
24 ! When not?
25 So, X∗(Had) = Q̌ and X∗(Had) = ⊕i∈I Zω̌i while X∗(Hsc) = ⊕i∈I Zωi and X∗(Hsc) = Q̌.
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We denote by ∆ : B → V the diagonal map ∆b
def
= (b, bN)·Z(G). So, ∆B

∼= B/Z(G) =

Bad and for B = N ⋉ T we have N
∼=
−→∆N and ∆T

∼= T ad.

The Vinberg group acts on G/N by (g, h)·xN = gxNh−1, hence also on (G/N)aff. The
stabilizer in V of the origin in G/N is ∆B hence, as a V-space G/N is V/∆B.

(26)

27
� We have defined V as (G×H)/De−Z(G). Then ∆ should be ∆− in order to agree!

3.4.2. Loop Grasmannians of Gsc,V sc, Had. Here Gwill usually be simply connected.

Lemma. (a) The map G(V sc) → G(Had) is an isomorphism on π0. It is a G(Gsc)-bundle
and

G(V sc)red = G(V sc)×G(Had)X∗(Had).

(b) For any semisimple G the map G(V) −→G[V/Z(G)] ∼= G(Gad)×G(Had) is an open and
closed embeding.

(c) Also, the embedding G(V, G/N)→֒G(V)→֒G[V/Z(G)] is the diagonal map

G(Bad)
δ
→֒G(Gad)×G(Had).

(d) G[V sc, Gsc/N ] is open and dense in G[V sc, (Gsc/N)aff] which is in turn closed in G(V sc).

Proof. (a) is the lemma 6.4.2 applied to the exact sequence 0→ Gsc → V sc → Had → 0.

(b) Since Z(G) is finite and V is connected, G(V) is open and closed in G[V/Z(G)] by the

lemma 6.4. Also, V/Z(G)
∼=
−→Gad×Had, gives G[V/Z(G)] ∼= G(Gad)×G)Had).

(c) First, G(V, G/N) is indeed G(Bad) since

G(V, G/N) = G(V/H,G/N/H) = G(Gad, Gad/Bad) = G(Bad).

Now, the following diagram commutes because all maps are canonical

G(V,V/∆B)
⊆
−−−→ G(V)

⊆
−−−→ G(V/Z(G))

∼=

y =

y

G(∆B)
=
−−−→ G(Bad)

⊆
−−−→ G(Gad)×G(Had)

(d) is a case of lemmas 2.2.2.c and 2.3.2,d. (because G(G, (G/N)aff) is connected 28
�

). �

3.4.3. Closures of subindschemes Sλ⊆Sλ. Again, here G = Gsc is simply connected and
H = H sc,V = V sc are its Cartan and Viberg groups.

26 (b, h) ∈ B×H fixes 1GN if b·N/N ·h−1 = N/N ·(bN ·h−1) equals N/N , i.e., h = bN in H = B/N .
27 !
28 ! as we will prove in the preceding subsection.
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Proposition. (a) The following maps are isomorphisms on π0

G(V sc, Gsc/N)
u1−→
⊆
G(V sc, (Gsc/N)aff)

u2−→ G(V sc)
u3−→ G(Had)

u4←−
⊇

X∗(Had).

(We will denote the component corresponding to λ ∈ X∗(Had) by the index λ.)

(a’) For instance,

G(V sc)←−∼=
G(Hsc)0×G(V sc)red and G(V sc)red ∼= G(Gad).

Also,

[G(V sc)λ]red ∼= G(Gad)λ] and G(Hsc)0×G(V sc)red
∼=
−→G(V sc).

(b) G(V sc, (Gsc/N)aff) is the filtration ⊔λ∈X∗(Had) Sλ of G(Gad). More precisely, the map
G(V sc)→ G(Gad) induces

G(V sc, (G/N)aff)λ
∼=
−→Sλ and G(V sc, (G/N)aff)×G(Had)L

Had
λ = [G(V sc, (G/N)aff)λ]red

∼=
−→Sλ.

Also, [G(V sc, (G/N)aff)λ]red = G(V sc, (Gsc/N)aff)×G(Had)L
Had
λ is identified with Sλ.

Proof. (a) We have G/N = V/∆B, so the first object is G(V.V/uDeB) ∼= G(∆B)
∼= G(Bad)

and the composition u3u2u1 is G(Bad)→ G(Had). so π0(u3u2u1) is an isomorphism since
so is π0(Bad) → π0(Had). Also, π0(u3) is a bijection by the lemma 3.4.2.a. The same
calim for the fourth map is just π0(G(H)) = π1(H).

By now we know that π0(u2u1) is bijective so π0(u1) is injective. However, for G = Gsc

the inclusion u1 : G(V,V/∆B)⊆G[V, (V/∆B)
aff] is dense ??, so π0(u1) is also surjective.

NO??? 29
� . ???

xxx

A. The connected components G(V, (G/N)aff)λ of G(V, (G/N)aff). First, recall that the

embedding G(V, Gsc/N)→֒G(V)→֒G[(V/Z(G)] is the diagonal G(Bad)
δ
→֒G(Gad)×G(Had)

(lemma 3.4.2.b). In particular, G(V, G/N)⊆G(V) embedds as G(Bad)⊆G(Gad) composed

with the diagonal G(Gad)
id×1
→֒ G(Gad)×G(Had).

The ideal p−
def
= z−1O− in O−

def
= k[z−1] defines the negative congrunce subgroups of loop

groups Ap−

def
= Ker(AO−

−→AO−/p− ⊆ AO−
⊆AK. In particular, we have Tp−

∼=
−→G(T )0. Now,

we can write the connected component of G(Bad) corresponding to λ ∈ X∗(H) as

G(Bad)λ = G(T ad)λ·G(N) = (T ad)p− ·z
−λ·S

Gad
0 .

So, inside G(Gad)×G(Had) we have

δ[G(Bad)λ] = (∆T )p− ·(z
−λ, z−λN)·(S

Gad
0 ×L

Had
0 ] = (∆T )p− ·(S

Gad
λ ×L

Had
λ ).

29 ! ?
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Now, G(V, (G/N)aff) is the closure of G(V, G/N) inside G(Gad)×G(Had) (lemma 3.4.2).

Since (∆T )p− is an indfinite indscheme, the closure of G(V, G/N)λ = (∆T )p−·(S
Gad
λ ×L

Had
λ )

inside G(Gad)×G(Had) is

G(V, G/N)λ = (∆T )p− ·(S
Gad
λ ×LHad

λ ) = (∆T )p− ·(S
Gad
λ ×LHad

λ ).

The multiplication here is clearly free, i.e., this is isomorphic to the product

(∆T )p−×S
Gad
λ . Since all G(V, G/N)λ are disjoint we see that G(V, G/N)λ is a connected

component of G(V, (G/N)aff), we denote it G(V, (G/N)aff)λ.

B. We see that

G(V, (G/N)aff)λ = G(V, (G/N)aff) ∩ [G(Gad)×G(Had)λ] = (∆T )p− · (S
Gad
λ ×L

Had
λ )

= (∆T )p−·G(V, (G/N)aff)λ ←−∼=
G(∆T )0×G(V, (G/N)aff)λ.

Also,

G(V, (G/N)aff) ∩ [G(Gad)×L
Had
λ ] = S

Gad
λ ×L

Had
λ

∼= G(G, (G/N)aff)λ.

Clearly the map pr1 : G(Gad)×G(Had) → G(Gad) identifies G(V, (G/N)aff)λ with S
Gad
λ

which has the corresponding presentation as Tp−·S
Gad
λ

∼=
−→ G(T )0×S

Gad
λ (since Tp− is indfi-

nite and G(B)←−
∼=
G(T )×G(N)). �

3.5. Closures of GO-orbits and the Vinberg semigroup V.

3.5.1. Compare with Joel’s “reduceness” conjecture. ?

3.5.2. The Vinberg semigroup V . 30
�

Lemma. (a) The largest commutative quotients of V and V are Had and Had. So, there
is a canonical map of pairs which we call the determinant map

(V,V)
det
−→ (Had, Had).

Remark. When G = SL(U) then (V,V)
det
−→ (Had, Had) is really the determinnat map

(End(U), GL(U)) −→(A1, Gm) (see 3.12).

Proof. The claim for V is obvious since Had = V/Gsc and Gsc is semisimple. The map
V → Had is

31
� still to be constructed.

�

3.5.3. The indscheme G(V,V).

30 ! Some basic facts should be written here from section 1 The following lemma is in 8.5
31 ! ?
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Lemma. (a1) G(V,V) is closed in G(V) hence also in G[V/Z(G)] = G(Gad)×G(Had).

(a2) G(V,V) = pt is open in G(V,V) (however, it is not dense).

(b) G(V,V)⊆G(V) is (Gad)O-invariant.

Proof. (a1) The first claim is because V is affine. The second because G(V) is closed in
G[V/Z(G)] (it is also open, i.e., a union of connected components).

(a2) G(V,V) = pt is open in G(V,V) It is not dense because the boundaru of V in V is
not in codimension two.

(b) The open V-orbit Y o = V/A in Y = V is V itself, hence A = 1 and therefore Ȧ = V
and Ä = VO. However, HO acts trivially on G(V) so this is really just the invariance
under the quotient (Gad)O of VO. �

3.5.4. The toric semigroup T = T . A Cartan T of G defines a Cartan T
def
= T ·H of V

and T ∼= (T×H)/Z(G).

Lemma. (a) G(V)T = G(T ·H) contains G(V)TR = X∗(TH) ∼= P̌×P̌ /X∗(H)P̌ . The map

from G(V)TR to π0[G(V)]
∼=
−→π0[G(Had)] ∼= P̌ is the second projection (LGµ , L

H
λ ) 7→λ.

(b) A cocharacter (µ, λ) ∈ P̌×P̌ /Q̌P̌ = X∗(TH) extends to Gm → TH iff(32)

−λ is dominant and −λ ≥ w(−µ) for w ∈ W .

Proof. (a) Since H acts trivially on G(V) the T -fixed points are the same as G(V)T ·H =
G(T ·H). Also, G(TH)R = X∗(TH) maps injectively to X∗TH/Z(G) = X∗(T ad×Had) =
P̌×P̌ and the image is given by the requirement that the two components have the same
image in Z(G) = P̌ /X∗(H). (If G is simply connected this is P̌×P̌ /Q̌P̌ .)

The last claim is because G(TH)→ G(Had) is the second projection.

(b) Since V is EndH((G/N)aff), a cocharacters (µ, λ) of TH⊆V extends Gm → V iff the
action of Gm on G/N corresponding to (µ, λ) extends to an action of Gm on (G/N)aff.

For a choice of a frame vi of (V
G
ωi
)N , and η ∈ X∗(T ), te element η(s) ∗ 1GN of G/N

corresponds to a collection of vectors η(s)vi = ωi(η(s))·vis〈ωi,η〉)·vi for i ∈ I. This extends
to an orbit of Gm iff 〈ωi, η〉 ≥ 0, i.e., iff η ∈ Q̌+.

For a cocharacter (µ, λ) let us choose v ∈ W so that µ contracts N ′ =v N , For w ∈ W an
element ofN ′w−1B/N can be written as uxN with u ∈ N ′ and x ∈ NG(T ) a representative
of w−1. Then

(µ, λ)(s) ∗ uxN = µ(s)·uxNλ(s)−1 = µ(s)u·x·(wµ)(s)·λ(s)−1N.

32 This funny statement is what is needed in order to match the convention Lλ
def
= z−λGO from (1.3

for parametrizing G(G)TR.
In order to get rid of the minus we would have to consider the (H,G)-action on N\G.
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As s→ 0, we have µ(s)u→ 1, hence (µ, λ)(s)∗uxN converges in (G/N)aff if (wµ−λ)(s)·N
does, i.e., iff wµ− λ ∈ Q̌+.

(33) Therefore, the action of Gm via (µ, λ) extends iff λ ≤ wµ
for all w ∈ W . �

3.5.5. Connected components of G(V,V).

Proposition. (a) The connected components of G(V,V) are paremeterized by dominant
λ ∈ X∗(Had) by

G(V,V)λ
def
= G(V,V)×G(Had) G(Had)λ = G(V,V) ∩ G(V)λ.

Their reduced parts are identified via the map G(V)→ G(Gad) as

[G(V,V)λ]red
∼=
−→ Gλ(Gad).

Proof. (a1) Remember that the map π0[G(V)]
det
−→ π0[G(Had)] = X∗(Had) = P̌ is a bijec-

tion. The extension to a map (V ,V)
det
−→ (Had, Had) shows that V lies above Had⊆Had,

hence in the union of all connected components G(V)λ of G(V) such that λ is dominant.

(a2) According to the lemma 3.5.4.b, G(V,V)TR = G(TH, T )R consists of all (LGµ , L
H
λ )

such that λ is dominant and λ ≥ wµ, w ∈ W .

The first projection G(Gad)×G(Had) → G(Gad) identifies G(V)×G(Had) L
Had
λ

with a connected component of G(Gad). We know that for λ dominant

G(V,V)×G(Had) L
Had
λ →֒G(Gad)λ is closed and GO-invariant (lemma 3.5.3) . So,

from the description of its TR-fixed points we see that its reduced part is Gλ(Gad). So,

[G(V,V)λ]red = Gλ(Gad)×L
Had
λ .

�

3.5.6. Langlands self-duality of the Vinberg (semi)group constructions. The Langlands
duality G↔G

v

for reductive groups in its Satake form extends trivially to a class of
reductive semigroups M↔M̌

v

(whose invertible parts are G and Ǧ). For this one just
replaces G(G) with G(G,M)⊆G(G) (which we think of as the “Loop Grassmannian of
M”) and the category of perverse sheaves PGO

[G(G)] with PGO
[G(G,M)].

33 In terms of (G/N)aff⊆V
def
= ⊕i∈I V G

ωi
, the image of lims→0 (µ, λ)(s)∗uxN in V G

ωi
is lims→0 (µ, λ)(s)∗

uxvi = xvi if µ−λ ⊥ ωi and it is zero otherwise. So, the limit is a projector to an extremal weight space
of V G

ωi
,
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Corollary. For a semisimple Lie algebra g and its Langlands dual ǧ the Vinberg groups
Vg and Vǧ are Langlands dual. The same holds for the Vinberg semigroups Vg and V ǧ.

Proof. First, the tori THg and TH ǧ are dual. For this we know that X = X∗(TH) is

P̌×P̌ /Q̌P̌ so it appears in 0→ X → P̌⊕P̌
−
→ P̌ /Q̌→ 0. This dualizes to 0→ (P̌⊕P̌ )∗

−
→

X∗ → (P̌ /Q̌)∗ → 0, i.e., 0 → (Q⊕Q
−
→ X∗ → P/Q → 0 Now we can see that X∗ is

P×P/QP = X∗(TH ǧ) and then also the duality claim for Vinberg groups.

The standard representations of the dual of Vg are according to the proposition parame-
terized by all pairs of dominant (µ, λ) in P̌×P̌ /Q̌P̌ such that µ ≤ λ. This is precisely the

description of V ǧ. �

3.5.7. The nonreduced directions of G(V,V) [Junk].

Questions. (a) (?) For a dominant λ ∈ X∗(G), the map p∗ : G(V,V) −→G(Gad) induces

G(V,V)λ −→G(G)λ.

(b) G(V) is not reduced. 34
�

So, for λ dominant G(V,V) ∩ G(V)λ = G(V,V)×G(Had) G(Had)λ contains

So, for λ dominant G(V,V) ∩ G(V)λ = G(V,V)×G(Had) G(Had)λ contains

(c) We know that G(V) → G(Gad) induces for any λ ∈ X∗(Had) = π0(V) and its image

λ ∈ X∗(Had)/X∗(H) = π0[G(Gad)], the isomorphism [G(V)λ]red
∼=
−→G(Gad)λ.

(d) ??? So, G(V,V) ∩ [G(V)×G(Had)Lλ] is the union of GO-orbits Gµ = GO·Lµ⊆ G(Gad)λ
such that Lµ is contained in G(V,V). ...

Remark. Now positivity conventions agree for all parts of the theory and for the SL2
example, while the SL3 example currently has the opposite convention.

3.6. The loop Grassmannian G(Gad, Gad) of the wonderful compactification Gad.

3.6.1. The loop Grassmannian G(Gm,P1).

Lemma. G(Gm,P1) is the union of two copies of the semigroup Hd (at 0,∞ ∈ P1) where

the zeros in semigroups are identified. In particular Z
∼=
−→G(Gm,P1)red

∼=
−→π0[G(Gm,P1)].

Proof. Clearly, G(Gm,A1) and G(Gm,P1 − 0) cover G(Gm,P1). Each is isomorphic to Hd

and they meet at G(Gm, Gm) = pt which is the zero in both semigroups. �

34 !
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Remark. For any local space such as G ∗ Gm,P1) there is fusion in homology and in
K-homology. Notice that these only see the reduced part Z.

Here, the fusion does not work on the level of sets or categories (such as the coherent
sheaves).(35)

3.6.2. Vinberg semigroup and the wonderful compactification. Let G be semisimple and
G be the wonderful compactification of Gad.

Lemma. G carries a canonical V-equivariant H sc-torsor V
0
which is quasiaffine. Its

affinization is the Vinberg semigroup V.

Proof. The G×G-stratification of G is given by intersections of smooth irreducible G-
invariant divisors Di, i ∈ I. These define Gm-torsors Ei over G and an H sc-torsor V

o
→ G

which is the product (
∏

/G)i∈I Ei. Since the divisors Di are invariant under V, so is the
H sc-torsor V

o
over G.

... �

3.6.3. G(G,G) for the wonderful compactification G. This will be calculateed using the
results for G(V,V).

Lemma. (a) There is a canonical map G(Gad, G) −→G(Had, Had). This is an isomorphism

on sets of connected components π0[G(Gad, G)
∼=
−→π0[G(Had, Had)] ∼= X∗(Had) /

Set

W .

(b) The reduced part of the connected component G(G,G)λ corresponding to the orbit
Wλ in X∗(Had) is the GO-orbit Gλ(G).

(c) The map G(G,G) −→G(G)×G(Had, Had) is a locally closed embedding. For a dominant
coweight λ =

∑
λiω̌i, the connected component G(G,G)λ is a product of Gλ(G) and

G(Had, Had)λ ∼=
∏

i∈I H
λi
d×I .

Proof. Since G(G,G) = G(Gad, G) ∩G(Gad
G(G) we can suppose that G = Gad.

(a) We can rewrite G(G,G) in terms of the extension V of G = Gad and the V-equivariant
H sc-torsor V

o
over G (lemma 3.6.2):

G(V,V
o
) = G(V/H sc,V

o
/H sc) = G(Gad, G).

Now, V
o
is open in its affinization V and there is a canonical map (lemma 8.0.1)

G(V,V) −→G(Had, Had)

such that ....

35 For “sets”, if s, u ∈ k are nilpotent then at {x, 0} ∈ HA1 we have a map fx : (C,C − {0, x}) →
(P1, Gm) such that in the coordinates u, v on P1, at 0 and∞ (related by uv = 1), it is given by u = z−x+s
near x and v = z + u near 0. Then as x→ 0 in A1, the map fx does not converge in G(Gm,P1). 36

�
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This gives a map G(Gad, G) = G(V,V
o
)⊆ = G(V,V) −→G(V/Had,V

o
/Had).

G −→pt/H sc. which gives The H sc-torsor V
o
over G gives a map G −→pt/H sc. which gives

G(V,V) −→G(H sc, H sc). G(V,V
o
) =

GG(V/H sc,V
o
/H sc) = G(Gad, G) −→G(H sc, H sc). gives �

Corollary. (b) For a Cartan T of G, the connected components of the fixed point set
G(G,G)T are parameterized by X∗(H) so that each Lλ (λ ∈ X∗(T )) lies in a single
connected component [G(G,G)T ]λ. It lies in the connected component G(G,G)λ. of
G(G,G).

(c) If λ =
∑

i∈I liσiω̌i with li ∈ N and σ ∈ {±1} then [G(G,G)T ]λ is canonically isomor-
phich to the connected component Hd×I)

l of the colored Hilbert scheme Hd×I . So, for
each Weyl chamber C in X∗(Had), the part [G(G,G)T ]C is isomorphic to Hd×I and has a
structure of a semigroup.

Proof. (b1) We have G(G,G)T = G(T,GT ) where GT is the closure of the T -orbit T ·a = T

in G. For the wonderful compactification the factorization T
∏

ωi
∼=

−−−−→
∏

i∈I Gm induces

GT

∼=
−→ (P1)I . So, the claim follows from the lemma 3.6.1.

(a1) We already know that X∗(T )⊆G(G,G). Also, G(G) is invariant under Ä for the

stabilizer A of the point a in Y o, Here a = 1 ∈ G = Y o, so A = 1 and Ä = GO. Therefore,
G(G,G) contains each GO-orbit GO·Lλ = Gλ.

(c) There is a canonical map �

Example. G = SL2. The SL2 example is done later in details in 3.12 and that of matrices
in 3.13 !

Besides G(V,V) and G(G,G) I am also wondering about G(GL(V ), V ) ? However, for
SL2. V is just (G/N)aff

37
�

Remark. G(Had, Had) ∼= HC×I .

3.7. Quasimaps. These are G(G,B) = G(G×H, (G/N)aff) [Beilinson]. [How do they
depend on Z(G)? In the adjoint case can they be written using the Vinberg group?]

3.8. Closures of orbits of Ü = UK ⋉ LO. For P = B we use (G/N)aff and for P = G
we use V = EndH((G/N)aff).

In general we have a torsor G/U −→ G/P ′ for P ′/U = (P/U)′, We factor it as
G/U։G/N։G/P ′ with fibers N/U and P ′/N , then the relative affinization (G/U)affG/N

37 ! Maybe in 8.5 ? or in section 1
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has fibers endomorphism bundle End[(G/U)affG/N ] which is the Vinberg semigroup of

P ′/U ??? , then the

3.8.1. Ü acts on G(G,G/U) = G(U)⊆G(G). Here, LO acts by conjugation.

This suffices for P = B. However, we want to act on a larger subspace which is an orbit
of the connected component (PK)0 = (LK)0UK of PK. or of orbit of

3.8.2. The first step may be to get to closres of orbits of (PK)0 since these contain the

closures of orbits of Ü .

G(P ) = G(G,G/P ) = G(V,V/P ). For the cloure thewe are candidates for P as

(G/P ′)aff/(P/P ′)and(G/U)aff/(P/U).

One has G/U → G/P ′ and P/U → P/P ′, hence

P•
def
= (G/U)aff/(P/U) −→ G/P ′)aff/(P/P ′)

def
= P ..

3.9. Intersections.

3.9.1. Orbits of a subgroup V⊆GK on G(G). For a subgroup V of GK we would like to
realize the (closures) of orbits of V on G(G) in terms of some mapping space G(U , Y )
related to G and V.

Here, we choose the group U by combining G with a torus H ′ such that X∗(H
′)

parametrizes the V-orbits. This gives a Vinberg type group U ′ = G×Z(G)H
′.

Next, its semigroup closure U
′
acts on some space Y ′. For each ν ∈ X∗(H

′) we get a
connected component G(U ′, Y ′)ν of G(U ′, Y ′) and its reduced part should be (the closure
of) the orbit V·LGν in G(G).

Notice that U ′/H ′ = Gad.

3.9.2. Intersections. The intersections in G(Gad) of several kinds of orbits or their closures
(say ∩i∈I ViLνi), are then given by

∏

i

[G(Ui, Yi)→ G(Gad)] = G(
∏

i

Ui/Gad,
∏

i

Yi/Gad)

(see lemma 2.2.1.b2. Notice that
∏

i Ui/Gad has a Cartan T×Z(G)

∏
Hi.

Remark. So, the interesting objects are now the orbit (U ′×Gad
U ′′)a for a = (a′, a′′) ∈

Y ′×Y ′′ and its closure, as well as the same for TH ′H ′′a for the Cartan subgroup of
U ′×GadU ′.
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Example. The space ⊔λ,ν Gλ ∩ Sν has two parameters λ and ν in X∗(H). So, in order
to build its classifying space we replace U by U2 = U×Gad

U and then the above space of
intersections:

Gλ ∩ Sν = G(U2,V×(G/N)aff)×G(Had
2) Lµ,ν .

Remark. The same for ⊔ S+
λ ∩ S−µ. However, when we fix λ = 0 then we have hust one

parameter ν and U suffices.

3.10. Zastavas. This is Drinfeld’s description of zastava spaces as moduli of maps from
a curve

3.10.1. Zastava spaces 1. S0 ∩ S−
µ ⊇ S0 ∩ S−

µ . Loop Grassmannian G(G×H) embedds
into G[∆Z(G)\(G×H)] = G(V) as a union of some of the connected components. Here,

the map π1(G×H) −→π1(V) , i.e., π1(H) −→π1(Had), is the inclusion Q̌⊆P̌ .

Let G×H act on (G/N)aff×(G/N−)aff by (g, h)(x, y) = (gx, gyh−1).

Lemma. For this action of G×H

S0 ∩ [⊔µ∈X∗(H) S−
µ ] = G[G×H, (G/N)aff×(G/N−)aff] = G[G, (G/N)aff×(G/N−)aff/H ].

S0 ∩ S−
µ = G(G×H, (G/N)aff×(G/N−)aff)×G(H)L

H
µ .

Proof. The intersection in G(G) of S0 and ⊔µ∈X∗(H) S−
µ is

G(G, (G/N)aff) ×G(G,pt) G(G×H, (G/N−)aff)

∼= G(G×G(G×H), (G/N)aff×pt(G/N−)aff) = G(G×H, (G/N)aff×(G/N−)aff)

where the action of G×H = G×G(G×H) on (G/N)aff×
(G/N−)aff

) is just as stated above.

One can also write G(G×H, (G/N)aff×(G/N−)aff) as

G([G×H ]/H, (G/N)aff×(G/N−)aff/H) = G(G, (G/N)aff×(G/N−)aff/H).

Finally, for µ ∈ Q̌, S0 ∩ S−
µ equals

G(G, (G/N)aff)×G(G,pt)[G(G×H, (G/N−)aff)×G(H)L
H
µ ] = G(G×H, (G/N)aff×(G/N−)aff)×G(H)L

H
µ .

�

xxx

3.10.2. Zastava spaces 2. S0 ∩ S−
µ ⊇ S0 ∩ S−

µ . Let V act on (G/N)aff×(G/N−)aff by

(g, h)(x, y) = (gx, gyh−1).
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Lemma. For this action of V

S0∩[⊔µ∈X∗(Had) S
−
µ ] = G(V, (Gad/N)aff×(G/N−)aff) = G(Gad, (Gad/N)aff×(G/N−)aff/H).

S0 ∩ S−
µ = G(V, (G/N)aff×(G/N−)aff)×G(Had)L

Hadν .

Proof. The intersection in G(Gad) of S0 and ⊔µ∈X∗(Had) S
−
µ is

G(Gad, (Gad/N)aff) ×G(Gad,pt) G(V, (G/N−)aff)

∼= G(Gad×Gad
V, (Gad/N)aff×pt(G/N−)aff) = G(V, (Gad/N)aff×(G/N−)aff)

where the action of V = Gad×Gad
V on (Gad/N)aff×

(G/N−)aff
) is just as stated above. This

can be written as G(V, (Gad/N)aff×(G/N−)aff) = G(V/H, (Gad/N)aff×(G/N−)aff/H) =
G(Gad, (Gad/N)aff×(G/N−)aff/H).

Then

S0∩S−
µ = G(Gad, (G/N)aff)×G(Gad,pt)G(V, (G/N−)aff)×G(Had)L

Hadν = G(V, (G/N)aff×(G/N−)aff)×G(Had)L

�

Remark. 38
� (G/N−)aff/H) differs from (Gad/N−)aff/Had) since Z(G) does not act freely

on (G/N−)aff.

3.10.3. The filtration of S0 by intersections S0 ∩ S−
α , α ≤ 0.

Theorem. [Drinfeld] ⊔α≤0 S0 ∩ S−
α is given by the classifying space...

Proof. The space ∪α∈Q̌+ Sα∩S0 is the fibered product over G(G) = Map[(d, d∗), (BG, pt)]

of Map[(d, d∗), (G\(G/N)aff, pt) and Map[(d, d∗), (V\(G/N)aff, pt)]red , i.e., the space of
maps from (d, d∗) to the fibered product

G\(G/N)aff×G\pt G\[(G/N)aff/H ] = G\[(G/N)aff×pt (G/N)aff/H ].

�.

3.10.4. Corollary. The zastava spaces Z(G,N,N−) is the moduli G(G, (G/N+)aff×(G/N−)aff/H).

This is the same as the moduliMY for Drinfeld’s compactification of a point

Y
def
= G\[(G/N+)aff×(G/N−)aff/H ].

This global modul extends the intersections S0 ∩ S−
α , α ≤ 0.

3.10.5. Orbits in G/N+×G/N−. The space G/N+×G/N− has the origin a = (N,N−).
Let V act on G/N+×G/N− by (g, h)∗ (α, β) = (gα, gβh−1). Let us also recall the Bruhat

decomposition of N+\G/N− into “cells” Kw
def
= N+\(N+wB−/N−, w ∈ W (T ).

38 ! CHECK which one should appear in Sµ
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Lemma. (a) The orbits of V inG/N+×G/N− are indexed byW via w 7→ Ow
def
= V·(N,wN−).

The isomorphismm G\[G/N+×G/N−]
∼=
−→N+\G/N− (by (α, β) 7→ α−1β) identifies the

quotient G\Ow with the Bruhat cell Kw
def
= N+\(N+wB−/N−. The open orbits corre-

spond to w = 1.

(b) The V-orbit V·a⊆G/N+×G/N− consists of all (α, β) ∈ G/N+×G/N− such that
αH, βH meet (equivalently, α meets βH or αH meets β. This is open in G/N+×G/N−.

The G-orbit G·a⊆G/N+×G/N− consists of (α, β) such that α and β meet. It is a G-
torsor.

(c) The boundary ∂YoG of the dense point in YG is a divisor D with irreducible components
Di parameterized by the vertices I of the Dynkin diagram.

Proof. (c) follows from (a) and the same statement for the Bruhat cells in N+\G/N−.
Here, Di = Osi. �

Corollary. Zastava space ZC(G) has a canonical structure of a local space over C. The
structure map π : ZC(G) −→HC,I to the Hilbert scheme of I-colored points of C is

π(f)
def
= f−1(∂Yo).

Proof. If a map f : C → YG visits YoG then the pull back π(f)
def
= f−1∂YoG is an effective

divisor D in the curve C. Moreover, it is I-colored, i.e., a system f−1Di of finite
subscheme of C indexed by i ∈ I.

The locality structure for a disjoint union D = D′⊔D′′ is the gluing map
ZC(G)D′×ZC(G)D′′ −→ZC(G)D which takes maps f ′, f ′′ to unique f such that f = f ′′ off
D′ and f = f ′ off D′′. �

3.10.6. Appendix. Some objects related to zastavas. On the global level each parabolic
P defines a partial compactification BunC(G,P,M) of BunC(P ), defined through the
diagram G⊇P։M for the reductive group M = P/P1.

For any subgroup V⊆G we consider the normalizer NG(V ), its quotient MV = NG(V )/V

and its center ZV . Then G×Z(G)MV maps to VV
def
= AutZV

(G/V ). If G/V is quasi-

affine we also get the semigroup VV
def
= EndZV

((G/V )aff) whose invertible part is VV =
AutZV

(G/V ) = AutZV
((G/V )aff).

This construction appears in [?] when V is related to some parabolic P = U ⋉ U . Here,
V is either U or P ′, hence its normalized if P and M = P/V . When P is a Borel B and
V = N we get the Vibnerg semigroup V.

3.10.7. Appendix. Twisting by a P/V -torsor. Furthermore, a torsor Q for P/V over C,
defines a twisted form [(G/V )aff×(G/V −)aff/H−]

Q over C. The corresponding zastava
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space
G(G, [(G/V )aff×(G/V −)aff/H−]

Q

is the space of sections of [(G/V )aff×(G/V −)aff/H−]
Q over C.

3.10.8. Appendix. The paper [?]. This setting was studied in [?] when V is either the
unipotent radical U of P or its derived subgroup P ′. In the first case the stalks of
intersection homology sheaves were computed. That paper use the Pluecker description
(“coordinate description”) of zastava spaces.

The case V = U also appears below. The affinizations of G/U and G/[P, P ] are studied
in the notes on affinization 6.

3.11. Intersections Gλ ∩ Sν.

3.12. Example G = SL2. Let U be a two dimensional vector space and G = SL(U).

We consider the structural results in 3.12.1–3.12.3. We start woth the notation (3.12.2)
and the action of B⊆G on (G/N)aff ∼= U (3.12.3).

For the Vinberg group V = V sc = GL(U) we calculate G(V, (G/N)aff) and
G(G×H, (G/N)aff) in 3.12.4.

For U of any dimension and the pair V⊆V given by GL(U)⊆End(U) we calculate G(V,V)
in 3.13.

3.12.1. Gsc = SL(U) and Gad = PGL(U). 39
�

3.12.2. Notation. We choose a basis (e+, e−) = (e, f) so that G ∼= SL2⊇ B = ( ∗ ∗
0 ∗ ) =

N ·T for T = ( ∗ 0
0 ∗ ) and N = ( 1 ∗

0 1 ). Let ∆
+ = {α} correspond to ∆T (n) via T

∼=
−→H defined

by T⊆B. For ρ = α/2 we have ρ[
(
a 0
0 a−1

)
N ] = a.

3.12.3. Actions of B⊆G on (G/N)aff ∼= U . Group G×H acts on G/N by (g, tN) ∗

xN
def
= g·xN ·(tN)−1 = gxt−1N . This descends to an action of the Vinberg group

V
def
= Z(G)\(G×H) since the diagonal ∆Z(G)⊆(ZG)2 acts trivially.

Lemma. (a) The affine closure of G/N is identified with U via the orbit map ι : G/N →
U, gN 7→ g·e.

(b) The conjugation action of B on G/N gives a new structure of a B-module on U ,
isomorphic to the B-module g/n.

(c) The action of V on (G/N)aff gives V
∼=
−→GL(V ) which is identity on G andH is identified

with Z[GL(V )] ∼= Gm by ρ−1 : H
∼=
−→Gm.

39 ! Need to see the difference in the map G[SL(U), U ]→ G[PGL(U),N2] to check general claims.
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(d) The image ∆T of T in V by T ∋ t7→(t, tN) is canonically isomorphic to T ad. In

terms of GL(U) the group ∆T is S
def
= ( 1 0

0 ∗ ). As a V ∼= GL(V )-space G/N = U − 0 is
V/N∆T

∼= GL(V )/NS.

Proof. (a) The stabilizer of e = ( 1
0 ) is Ge = N , so ι : G/N → U − {0} is an isomorphism

of G-spaces.

(b) The claim is that the action of G on G/N becomes the standard G-action on U and

the H-action becomes via ρ−1 : H
∼=
−→Gm the standard action of Gm on a vector space.

Since s =
(
a 0
0 a−1

)
N ∈ H acts on G/N by s ∗ xN = x

(
a 0
0 a−1

)
−1N , So, the transported

action on u = xe ∈ U − 0 is by

s ∗ u = s ∗ xe = x
(
a 0
0 a−1

)
−1 e = a−1·xe = a−1·u = ρ−1(s)·u.

(c) The new action of b ∈ B on u = xe ∈ U is b ·
new

xe
def
= (bx)e = b·x·b−1·e = ρB(b)

−1·bxe.

So, the new B-action is U⊗ρB−1, and this is non-canonically isomorphic to g/n (both are
indecomposable B-modules with the same weights −2, 0).

(d) The stabilizers of 1·N ∈ G/N in V and of e ∈ U in GL(U) are clearly N∆T and NS.
The map T → ∆T

∼= S sends t =
(
a 0
0 a−1

)
∈ T to the image of (t, tN) in GL(U) and this

is ρ−1(t)·t = a−1
(
a 0
0 a−1

)
=

(
1 0
0 a−2

)
. �

3.12.4. The spaces G(G×H, (G/N)aff)⊆G(V, (G/N)aff) = G[GL(U), U ]. We have

G(V, (G/N)aff) −−−→
∼=

G(Gad, (G/N)aff/H)
def
=
−−−→ G(Gad,B)

=

y =

y =

y

G[GL(U), U ] −−−→
∼=

G[PGL(U), Gm\U ].
def
=
−−−→ G[PGL(U),P1].

since G(V, (G/N)aff) = G(H\V, H\(G/N)aff) = G(Gad, (G/N)aff/H).

Lemma. (a) G(V, (G/N)aff) = G[GL(U), U ] is the submoduli of G(V) = G(GL(U)) con-
sisting of all lattices U in the sheaf U⊗Od∗ over d, such that U contains the constant
section e ∈ U . (For U ∈ G(V, G/N) the condition is that U ∩ Ke = Oe.)

(b) Then G(G, (G/N)aff) = G[SL(U), U ] is the connected component G[GL(U), U ]0, i.e.,
the submoduli given by U ∈ G[SL(U)], i.e., by asking that the volume of the lattice U
is zero.

(c) In G(SL(U)) the closrues of semiinfinite orbits Slρ̌ are the moduli of lattices L of
volume zero such that L ∋ z−le.

(d) Also, S0 ∩ S−
mρ̌ is the moduli of L such that L ∋ e, zmf . This is

Grm[z
−mO/Oe⊕O/zmOf ]z.
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Proof. (a) The elements of G(V, (G/N)aff) are pairs (T , τ) ∈ G(V) such that for the
stabilizer A = NS⊆V ∼= GL(U) of the origin 1N = e in Y = (G/N)aff ∼= U the section
Aτ ∈ Γ(d∗, T ) extends to Γ(d, Y T ).

Here, YT = T −1×VU is a vector bundle U over d and (Y o)T is U − 0. One recovers T as
the space of trivializations Isom(U,U).

Now, NS acts on T = Isom(U,U) and the restriction of isomorphisms to e ∈ U gives

NS\Isom(U,U)
∼=
−→ U − 0. We can think of τ as an element of Isomd∗(U,U) and of

τ = NSτ as the section τe of U on d∗ (which is invertible in the sense that Oτ⊆U is a
line subbundle). Then the condition is that τ extends to a section of U on d.

If we think of τ as the embedding τ−1 : U →֒ U⊗Od∗ then the data (T , τ) are a lattice U
in U⊗Od∗ (a vector subbundle which is generically everything) and the condition is that
U contains the section e (i.e., the subsheaf Oe).

(b) For a subgroup G′ of G G(G, Y ) ∩ G(G′) = G(G′, YG′) (proposition 2.3.2.b). So, if
G′a = Ga then G′a = Ga, this is G(G, Y ) ∩ G(G′) = G(G′, Y ),

Now, for the origin a ∈ (G/N)aff we have V·a = (G/N)aff = G·a, hence G(G, (G/N)aff) =
G(V, (G/N)aff) ∩ G(G), i.e., the elements of G(G, (G/N)aff) are just the elements of
G(V, (G/N)aff) which lie in GG(G) = G(V )0, i.e., such that the lattice U has volume
zero.

(c) The description of Slρ̌ for l = 0 is already in (a-b). The general l follows by ta shift
Slρ̌ = z−lS0.

(d) By conjugating with s ∈ W − 1, we get that Smρ̌ is given by L ∋ z−mf .

SL2 fixes the standard symplectic structure ω on U . Using ω we see that

L ∋ e, zmf ⇔ L⊇Oe⊕Ozmf ⇔ L = L⊥⊆(Oe⊕Ozmf)⊥ = Of⊕Oz−me. So, S0 ∩ S−
−mρ̌

consists of all subspaces M = L/(Oe⊕zmOf) of z−mO/Oe⊕O/zmOf which are
z-invariant and of dimension m. �

3.12.5. Zastavas. 40
�

3.13. Example: Matrices.

3.13.1. G(V,V).

Lemma. For any vector space U consider the action of G = GL(U) on Y = End(U) by
left multiplication. Then

G[GL(U),End(U)]⊆ G[GL(U)]

40 !
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is invariant under Gin (the global version of the group GO). It is the moduli of lattices
U in U⊗OηC which lie in the trivial lattice OC . (For dim(U) = 2 and G = SL(U) this is

G(V,V).)

Proof. For (T , τ) ∈ G(G) let U = T −1×GU be the corresponding vector bundle. We
have Y T = Hom(U, U)T = Hom(U, UT ) = Hom(U,U) and (Y o)T = Isom(U,U). The
stabilizer A of the origin 1 ∈ End(U) is trivial and so Ä = GO acts on G(Y,G).

So, (T , τ) is in G(G, Y ) if the trivialization τ ∈ Γ[d∗, Isom(U,U)] extends to a d-section
of Hom(U,U). In terms of τ−1 : U →֒U⊗Od∗ this means that U contains 41

� U⊗Od. �

Question. 42
� Does this say that G(V,V) is in this case reduced – it seems to be literally

a union of GO-orbits?

3.14. Functions on asymptotic cones as intersection homology. The G-geometry,
i.e., the moduli G(G1, Y1) that corresponds to a given Ǧ-variety Y̌ seems easy to find.
However, the problem is that its connected components should really be viewed as a
filtration and the perverse sheaves on these components should than be viewed as an
indsystem that really geometrizes O(Y̌ ).

The second difficulty is that the appropriate sheaf may be a projective rather than just
an IC sheaf (as wee see in the case Y̌ = Ǧ).

Question. Does this prevent constructions through a small resolution or a perverse cor-
respondence transform?

3.14.1. G(G, Y ) when Y is a semigroup closure of G. In this casse the intersection hom-
loogy of G(G, Y ) has a commutative ring structure. Its spectrum is an affine Ǧ-variety.

Question. Is this the affine closure of a homogeneous space of Ǧ? �

Theorem. The intersection cohomology IH [G(V,V)] is the ring of functions on Ǧ/Ň , so
its spectrum is (Ǧ/Ň)aff.

Remark. So, affine G-variety Y = (G/N)aff gives Vinberg group and semigroup VY⊆VY .
Then IH [G(VY ,VY )] is O(Y̌ ) for Y̌ = (Ǧ/Ň)aff.

Question. This extends the L-duality of semigroup closures to L-duality of closures of
homogenous spaces? Maybe of affine spherical varieties? Such Y defines its Vinberg pair
VY⊆VY , then IH [G(VY ,VY )] is O(Y̌ ).

3.14.2. aǦ. Let aǦ be the asymptotic cone of Ǧ.

41 ! check direction
42 !
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Lemma. O(aǦ) is approximately

IH [G(V×Had
V,V×V)].

[Yes as a vector space but not as convolution object in sheaves. In order to get algebra
structure on IH [G(V×Had

V,V×V)] We need to combine the convolution of IC(Gλ) and

IC(Gµ) with the projection to the quotient IC(Gλ+µ).

Problems:

(1) O(Ǧ) is an injective object in Rep(Ǧ). The correct construction is as in [MV]
exvept that it shopuld be interpreted as coinduction.

(2) Since O(Ǧ) is indeomposable ober integers (?), ot can not be naturally constructed
on a disjoint union such as G(V2, Y ).

So, the construction of functions on Ǧ-varieties in the form approximately G(K,K) only
works for the Ǧ-varieties that are “asymptotic cones”.

Question. How does one deform the asymtotic objects to the correct objects? (Asymptotic
cones are correct in characteristic zero.)

3.15. Appendix. Satake induction procedures. This has not yet been writ-
ten. An example is the construction of O(Ǧ) as induced from O(cH) realized as
(X∗(H)→֒G(H))∗kX∗(H). Then one pulls back along q : G(B) → G(H). The final step

from B to G uses γGO

BO
.

(The induction needs to be in KO-equivariant sheaves. This is miraculously satisfied for
q∗ and it is exactly the construction for the step from B to G.)

Also, the the line bundle and the Poisson bivector should be induced from a Cartan.
Interestingly, the passage from H to B seems weak but everything is recovered once one
get to G.

3.16. Appendix I. Several kinds of induction. .

A. Induction of conditions (Y, a). For ι : G′ → G one has the pullback func-
tor ι∗ : SpG → Sp(G′) and two direct image functors ι∗, ι

aff
∗ : Sp′G → Sp(G). Here,

ι∗(Y, a) = (Y, a) where Y becomes a G′-space, while ι∗(Y
′, a′)

def
= (G×G′Y ′, (1G, a

′) and

ιaff∗ (Y ′, a′)
def
=

(
(G×G′Y ′)aff, (1G, a

′)
)
. Here,

G(G′, Y ′) ∼= G(G, ι∗(Y
′)) ⊆ G(G, ιaff∗ (Y ′)).

For a parabolic P = UL one has G
i
←֓P

q
։P = P/U ∼= L. The parabolic inductions

functors are

P Ind
G
L

def
= i∗q

∗ and PAInd
G
L

def
= iaff∗ q∗.
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Example. We can view G/N as G×Npt ∼= G×B(B/N), hence

G/N = BInd
G
H(H) and (G/N)aff = BAInd

G
H(H).

This is used for a construction of the disjoint union of closures of (BK)0-orbits

⊔λ Sλ = G(V, (G/N)aff) = G[AutH((G/N)aff),EndH((G/N)aff)],

i.e.,

⊔λ (BK)0·Lλ = G
(
AutH [BAInd

G
H(H)],EndH [BAInd

G
H(H)]

)
.

B. Construction of O(Ǧ/Ň) = CoindǦ
Ň
[O(pt)] = CoindǦ

B̌
[O(H)] in terms of induc-

tion of conditions We have

O(Ǧ/Ň) = IH [G(V,V)].

Here, V should appear because we want to separate closures of GO-orbits. Then the
construction V = EndH((G/N)aff) si a “natural way to restrict” the V-Grassmannian.

However, for me it is still mysterious on the G-side, i.e., from the point of view of
constructing the closures GO-orbits. On the other hand it seems natural from the Ǧ-side

since “closures of GO-orbits” here means exactly the representations of V̌ (the perverse
sheaves that appear on Gλ are the representations of Ǧ whose weights are dominated by λ).
Then one notices that the representations of ȞV should be realized on the Grassmannian

of the L-dual of V̌ , i.e., of V.

Remark. Formally, V is also a double centralizer of V in the action on (G/N)aff =

BInd
G
H(H), i.e., in End((G/N)aff). As it should be, V is dense in its double central-

izer.

C. Satake constructions of functions of Ǧ, Ǧ/Ň and Ň . Here, O(Ǧ) = CoindǦ1 (k)
and O(Ǧ/Ň) = CoindǦ

Ň
(k).

Question. Can one combine the construction of O(Ň) of Jared and of CoindǦ
Ň

in terms

of induxction of conditions to reconstruct O(Ǧ)?

D. The GS constructions of (parameters for) canonical bases. This one is “dif-
ferent” in the sense that???

E. Induction for conditions and Satake construction of (parts of) Ǧ. Induction
of conditions should clarify the Satake constructions? In particular, it should suffice for
closures of Ü -orbits.

F. IC shaf of G(G, Y aff)? The interesting spaces are the closures of orbits. The closure
of G(G, Y )⊆G(G) seems to be G(G, Y aff). So, one ends up computing the IC sheaf of
G(G, Y aff).
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This may clarify the idea of the interseting IC sheaves being produced together with the
spaces?

G. From G to V. Fo a subgroup C of GK, in order to realize closures of orbits C·Lλ⊆G(G)
for λ ∈ X∗(H) we need to replace the group G with G×H (or more economically by

V
def
= G×Z(G)H). ince the connected componnets G(H)λ of G(H) are indexed by λ ∈

X∗(H), The role of the factor G(H) in G(G×H) is that it separates the closures of C·Lλ
for different λ’s in the sense that G(G)×H) = ⊔λ G(G)×G(H)λ and one can realize
C·Lλ⊆G(G) in the copy G(G)×LHλ ⊆ G(G)×G(H)λ of G(G).

3.16.1. The closures of SPλ = Ü ·Lλ for the unipotent radical U of a parabolic P . When

P = B = TN then U = N and N̈ = TONK is the reduced part of B(K)0. For the orbits
Sλ of (BK)0 we have

⊔λ∈X∗(H) SBλ = V[V, (G/N)aff].

When P = G then U = 1 and Ü = GO. We have

⊔λ∈X∗(H)+ Gλ = G(V,V).

Therefore,
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4. MV cycles and their T -fixed points

4.1. Inclusion ∩wi
τi Swi

λi
∩wi
τi Swi

λi
may be proper [Zhijie]. Here s = (sL, , ..., s1) is a

reduced decomposition of w0 and wp = sp· · ·s1, while λ• is a Lusztig walk.

Example. In A2 consider λ = i + j and s = (s1, s2, s1). We consider two Lusztig walks
to λ corresponding to two irreducible components of S0 ∩ S−

λ α = (0, i, i, i + j) and
β = (0, 0, i + j, i + j). The corresponding MV-polytopes are the two triangles Pα =
conv(0, i, i+ j) and Pβ = conv(0, i+ j, j).

(1) The Kamnitzer cycles for α, β are

Ssα = S1
0 ∩ Ss1i ∩ Ss2s1i ∩ Ss1s2s1i+j and Ssβ = S1

0 ∩ Ss10 ∩ Ss2s1i+j ∩ Ss1s2s1i+j .

He proves that they are open in MV-cycles Cα, Cβ.
(2) On the other hand, the intersection of closures

S
s

α = S
1

0 ∩ S
s1
i ∩ S

s2s1
i ∩ S

s1s2s1
i+j

is clearly larger than Cα since it contains the point j.
(3) Actually, this intersection of closures S

s

α seems to be the union Cα ∪ Cβ, i.e., it

is the same as the intersection of the first and last term S
1

0 ∩ S
s1s2s1
i+j ?

4.2. Gλ
T
. Denote the Cartan T×Z(G)H in V by T . Its closure in V is a semigroup that

we denote T .

Lemma. For any dominant λ ∈ X∗(H) the T -fixed points in Gλ are

Gλ
T

= G(T , T )×G(Had) Lλ.

Proof. We know that ⊔ Gλ
T
is (lemma ??)

[G(V,V)red]
T = [G(V,V)×G(Had) G(Had)red]

T = G(V,V)T×G(Had) G(Had)red

and G(V,V)T is G(ZV(T ),V) (by ??). Since ZV(T ) = T we have

G(V,V)T = G(T ,V) = G(T , T ·y)

where the base point in V is y = 1V , so the orbit T ·y is just T and its closure in V is the

semigroup T . Finally, G(Had)red = X∗(H) gives ⊔ Gλ
T

= G(T , T )×G(Had) X∗(H) = . �

4.2.1. T -fixed points in MV cycles. Let C be an MV cycle with Lusztig coorinates (s, λ)
and AK coordinates λ• = (λw)w∈W .

Conjecture. CT is described in terms of λ• the “same” as Gλ
T
in terms of W ·λ.
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4.2.2. Recall that for adjoint(?) G its Cartan group H has a semigroup closure H ∼=
(Gm)

I (with H ∼= (Gm)
I).

Define the semigroup H2
≤ by asking that x−1y lies in H . This means that ....

For each w ∈ W we get H2
w = H2

≤w
and then H2 def

= ∩w∈W H2
≤w

. Notice that we can also

define T×H by using ιB : T
∼=
−→H given by (any) Borel B that contains T .

Lemma. The T ×H defined here is a Z(G)-torsor over T defined above. �

We are really interested in a larger object based on T×HBT

for the T -fixed points torsor

BT for WT
def
= NG(T )/T .

4.3. Questions.
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5. Odds

5.1. The “I-colored divisor map” divI : Γ[(C, ηC), (P, P )] → HC×I . Any H-torsor

P has an extension P
def
= P×H H . When G is simply connected then the identification

H
∼=
−→Gm

I
defines the “I-colored divisor map”

divI : Γ[(C, ηC), (P, P )] −→ HC×I .

(The boundary ∂P
def
= P−P is a divisor with normal crossings with irreducible components

∂iP indexed by i ∈ I.)

The divisor of a rational sections φ ∈ Γ(ηC , P ) has less structure, i.e., divI(φ) is defined
to lie in Z[|C|×I]. Here, φ extends to a regular section of P iff divI(φ) is effective.

5.2. Supports. A pointed stack (Y , pt) will give a machinery (an algebro-geometric
“sigma model”) that associates to each source space X with a family Φ of supports the
space MapΦ(X,Y) of maps from X to Y supported in Φ. This is lim

→ S∈Φ
MapS(X,Y)

where

MapS(X,Y)
def
= Map[(X,X − S), (Y , pt)].

Example. If Φ consists of all proper closed subvarieties then maps with Φ-support are the
same as as generically trivialized maps Map[(X, ηX), (Y , pt)].

If X is also a curve then it is the same as finitely supported or generically trivialized.

5.3. The RX-family M̈X
Y of Hecke groupoids over Map(X,Y). For a space Y let

M̈X
Y −→RC with fibers at E ∈ RX

M̈X(Y , pt)E
def
= Map(X,Y)×Map(X−E,Y) Map(X,Y).

This is an RX -space familiy of groupoids over Map(X,Y).

A point pt → Y defines the constant map ptX : X → Y and then also the subfunctor
MX(Y , pt) with

MX(Y , pt)E
def
= Map(X,Y)×Map(X−E,Y)ptX = Map[(X,E −X), (Y), pt)].

The locality of MX
Y −→RX means that the original groupoid is local in kth variable for

k = 1m2, i.e., for E1, E2 ∈ RX disjoint we have (using prk : M̈X
Y ,pt×Map(X,Y) each time)

M̈X(Y , pt)E1×Map(X,Y)M̈
X
( Y , pt)E2

∼=
−→ M̈X

( Y , pt)E1⊔E2 .
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Remark. The idea is that in order to reconstruct the group G, i.e., the representing
object (B(G), pt) for G(G, pt), maube one should replace G(G, pt) with the corresponding

Hecke groupoid G̈(G, pt) ?

Then the origin L0 → G̈(G) gives B(GO) at least. Now one could take the part invariant
under Aut(d) to get B(G)?

Sounds good?

5.4. Check 2.1.1(2).

5.5.

Question. I would also like to see the corresponding constructions for global curves.

5.6. Improve the text. For instance for the stabilizer A of a ∈ Y in G, we will relate in
2.3.4 the orbits of NG(A)O·AK⊆GK in G(G, Y )⊆G(G) to the Cartan fixed points.

5.7.

Example. The standard zastava spaces are not projective and Y = (G/N)aff×G/N is not
affine (but Y o is still G×H). , i.e., pt→ Y is open. (So, A = 1 and one is in the Drinfeld
setting, i.e., in the local space setting.)

Remark. When A = 1 then G(G, Y )E is Map[(C,C − E), (Y, Y o)]/GO, i.e., G̃(G, Y ) is
Map[(C, ηC), (Y, Y

o)]/GO. So, we can think of generalizing it by

• modifying the target (Y, Y o) to ′Y,′ Y o

• replacing the group G acting on the target by a groupoid G on ′Y , compatible
with Y o.

Question. We know that Y = U+×U− contains V as the open orbit. Does it contain V?
V acts on Y , does V act on Y , does it embedd into Y ?

Example. In SL2, is Y a torsor copy of the semigroup V? Here, a is a frame (e, f) of U
and Y 0 = Va = GL(U)(e, f) is exactly the space of all frames of U .
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5.7.1. The maps d → Y = (G/N+)aff×(G/N−)aff. These will have to be divided by GO

but for a moment we consider the maps themselves.

We consider the cases (1) when we exclude U− and (2) when we keep U− and allow D to
go to ∞c.

[Here, (1) is different from (2) since A = ∆B 6= 1, so the map is not the only part of the
data – we also have a torsor.]

1. When we exclude U− we get all u ∈ UO that can be completed to a frame of UO, i.e.,
such that Ou⊆UO is a summand of UO.]

2. When we allow D to go to ∞c then we get all frames (u, v) of UK with u as above.

So, when one divides by GO one gets

2. all Lagrangian lattices that contain e (?)

1. the obvious part is Ou but remember theat there is also a torsor T .

5.7.2. Twisting. The zastava space is Z = G(G×H, Y for Y = (G/N+)aff×(G/N−)aff,
with H acting only on the second factor. It can be viewed as G(G, Y ) where Y lives over
HC×I×C and at D ∈ HC×I the fiber is

Y D = (G/N+)aff×(G/N−)aff(D)/H.

Something like that?
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6. Appendix Generalities on loop Grassmannians

6.0. Summary. We will describe N±
K -orbits S

±
α in G, their closures S±

α , the intersections

S+
α ∩ S−

β and the the T -fixed points in each of these (i.e., the intersections with the the
loop Grassmannian G(T ) of a Cartan).

6.0.1. The loop Grassmannian of the multiplicative group Gm. For the smooth formal disc
d the commutative monoid Sd freely generated by the disc d is its Hilbert scheme (Hd,+)
with the operation + = ∪d of the schematic union, i.e., the addition of divisors. The
commutative monoid Ad freely generated by d is the loop Grassmannian group G(Gm) =
Ad. The map Sd → Ad is a close inclusion Hd→֒G(Gm). When we replace d with the
pair (d, a) (where a is the center of d) then Sd,a = Ad,a is the quotient of G(Gm) by
G(Gm)

R ∼= Z, and the quotient map has a splitting which is the connected component
G0(Gm) of G(Gm).

(43)

The embeddingHd→֒G(Gm) is byHd ∋ D 7→Od(D) ∈ G(Gm). The image is the submonoid
G(Gm, Gm) for the semigroup closure Gm = (A1, ·) of Gm. The inverse map G(Gm), Gm −→
Hd is the divisor map div.(44)

6.0.2. Inclusions G(N)⊆G(B)⊆G(G). divT : G(T ) −→ Z[I] = X∗(T ). Notice that

divT (Lλ) = −λ since L0 = (T×d, 1) and Lλ
def
= z−λL0 = (T×d, z−λ).

The induction embeds G(B) as a subfunctor G(G,B) of G(G). It consists of all x ∈
G(G) which have a reduction xB to B (such reduction is unique). We denote divB(x) =
divH(xH) for the image xH of xB in G(H). Then the connected components of G(B) are
Gα(B) = {divB = α}.

The action of G(T ) on G(B) gives identifications

G(T )×G(N)
∼=
−→ G(B) hence Gα(T )×G(N)

∼=
−→Gα(B).

Here, G(N) is reduced and Gα(T )red is the point Lα.

6.0.3. N±
K -orbits and their closures. We denote S±

α
def
= N±

K ·Lα and N = N+, hence Sα =
NK·Lα.

The NK-orbits Sα form a stratification of G. We have ⊔α Sα⊆G(G,B)⊆G(G) and these
are equalities for points over a field. Inside G(G,B) ∼= G(B), Sα is given by all x with
xH = LHα .

The closures Sα form a filtration of G. We will only describe the closure Sα inside G(G,B),
here Sα ∩ G(G,B) = ⊔β≤α Sβ .

43 So, G0(Gm) is obtained by stabilizing the Hilbert scheme (Hd,+) with respect to a.
44 The divisor map is defined for any torus T as divT : G(T ) −→ X∗(T ). It indexes the connected

components Gα(T ) = {divT = α} by α ∈ X(T ).
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6.0.4. T -fixed points in Sα, i.e., filtration of G(T ) by Sα. First, G(T ) lies inside G(B) ∼=
G(G,B). While G(T )∩ ∪αSα is just G(T )R = X∗(T ), the exhaustive filtration Sα of G(G)
induces one on G(T ).

6.0.5. Intersections S+
α ∩ S−

β and their T -fixed points.

6.1. Loop Grassmannian of Gm. Inside G(Gm) we consider a generating submonoid
(Hd,∪d). and for the center a of d we interpret the submonoid zN×G0(Gm) ⊆G(Gm) as a
product of H⊆Hd and of the “a-stabilized Hilbert scheme Hd,a” of the disc.

Lemma. (0) The monoid (Hd,∪d) embeds into G(Gm) by a closed embedding Hn
d ∋

D 7→Od(D) ∈ G(Gm).

(1) The image is the submoduli G(Gm, Gm) consisting of all (S, σ,D) ∈ G(Gm) such
that σ extends to a section of S×Gm

Gm. The inverse map div : G+(Gm)→Hd is

div(S, σ)
def
= si

−10 ∈ HC for (S, σ,D) ∈ G+C (Gm).

(2) This embedding identifies the submonoid N[a]⊆Hd with the submonoid
zN⊆G(Gm).

(45)

(3) The connected component G0(Gm) (viewed as a quotient of G(Gm)), is identified
with the “stable Hilbert scheme” of the disc

H(d,a)
def
= lim

→
Hn(d)

where inclusions are given by adding a multiple of the center c of the disc.

(4) For G+
def
= Hd⊆G(Gm), the difference map (a, b) 7→ab−1 gives an isomorphism

G+×G+ G+ ∼= G.

Proof. (3) The factorization of G(Gm) as zZ×K− for the negative congruence subgroup
K−⊆Gm,K, identifies the connected component G0(Gm) with K−. In these terms D ∈ Hd

is the same as a monic polynomial χD(z) ∈ k[z] and this corresponds to χ̌D(z
−1) ∈ K− =

Γ(P1 − 0,∞;Gm) by χD(z) = zl(D)χ̌D(z
−1).

(4) A subsemigroup A+ of a commutative group A acts freely on A+×A+ and the quotient
is the quotient by the equivalence relation generated by (ag, b) ∼ (a, gb), a, b, g ∈ A+.
Then the quotient is is the subgroup of A generated by A+.

�

Remark. We define div : G+(Gm)→ N as the composition of the Div map defined in the

lemma with the degree div(S, σ)
def
= deg[Div(S, σ)] ∈ N.

45 z ∈ G(Gm) is well defined since local parameters form a torsor for Gm,O.
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6.2. Loop Grassmannians for parabolic subgroups G(P ) = G(G,P )⊆G(G). Here
we set up the notation. Let P⊆G be a parabolic subgroup with the unipotent radical U

and Levi group P
def
= P/U .

Let G(G,P )⊆G(G) be the subfunctor consisting of all (P, τ) ∈ G = G(G) such that the
closure of Pτ⊆P|d∗ in P is a P -torsor (i.e., a reduction of P from G to P ). We denote this

reduction by Pτ,P . It comes with a meromorphic section τP and (P, τ)P
def
= (Pτ , τP ) ∈ G(P )

is the unique reduction of (P, τ) to the parabolic P .

For (P, τP ) ∈ GP,G (PP,τ , τP ) ∈ GP,G Composing with the image under P → P gives the

functor G(P,G)→ G(P ) which sends (P, τP ) ∈ GP,G to (P, τ)P,P
def
= (PP,τ , τP )P . This is a

pair of the P -torsor Pτ,P,P
def
= Pτ,P/U and the image τP,P of τP .

Lemma. (a) IndGP is an embedding of functors G(P )→֒G(G).(46) The image is G(G,P ) and

the inverse map is the above map (P, τ) 7→ (P, τ)P
def
= (PP,τ , τP ).

(b) For a Levi subgroup L of P the functor IndPL commutes with the action of LK. Also,
the functors IndGB, G(G,P )→ G(P ) and (P → P )∗ commute with the action of PK.

(c) The composition of G(L)
IndG

L−−−→ G(G,P )
x 7→x

P,P

−−−−→ G(P ) is the isomorphism given by

L
∼=
−→P . For instance, for T⊆B⊆G and α ∈ X∗(T ), we have

LGα = IndGT (L
T
α) and (LGα )B,H = LHα .

(d) Over any field F , the inclusion of F -points for G(G,P )⊆G(G) is equality.

Proof. (a) is a case of lemma 2.3.2.

(c) According to (a) it suffices to prove the same statement for G(L)
IndPL−−−→ G(P )

(P→P )∗
−−−−→

G(P ), but (P → P )∗Ind
P
L(S, σ) = (P → P )∗(S×LP, σ) =

(
(S×LP )/U, σ

)
returns us back

to (S, σ) (up to L
∼=
−→P ).

(d) holds since G/P is complete.(47) �

6.3. The orbits S±
α of N±

K , their intersections and the T -fixed points. We describe
Sα ∩ G(G,B) and Sα ∩ G(T ). For Sα itself see 3.3.

6.3.1. The semiinfinite orbits Sα⊆Sα and their closures. For Sα
def
= NK·Lα = (TONK)·Lα

and Sα
def
= (BK)0·Lα. Then Sα is the reduced part of Sα ∼= G0(T )×Sα and the inclusion

Sα⊆Sα is equality for points over fields.

46 This embedding is not closed.
47 The difference of G(P )⊆G(G) is ‘therefore ‘schematic” – it is given by all (T, τ) ∈ G(G) such that

limz→0 Pτ does not exist in P0.
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Lemma. (a) G(B)
∼=
−→G(G,B) = ⊔α Sα.

The subfunctors Sα⊆Sα of G(G,B) consist of all x such that xB,H = LTα , resp. such that
xB,H ∈ Gα(T ), i.e., that the divisor divH(τB,H) of the section τB,H is −α. (48)

(b) G(T ) is a group and it acts on G(B). This gives G(T )×G(N)
∼=
−→G(B). The con-

nected components are the isomorphisms G(T )λ×S0

∼=
−→Sλ, λ ∈ X∗(T ). This extends to

an isomorphism of indschemes G(T )λ×S0

∼=
−→Sλ.

(c) The following are equivalent: (0) Sα ∋ β, (i) Sα⊇Sβ, (ii) Sα meets S−
β , (iii) α ≥ β.

Proof. (a) The mapm : BK×BO
GO

∼=
−→GK is an injective immersion (on the level of tangent

spaces this is bK +bO gO →֒gK).

Then G(G,B) = (BK×BO
GO)/GO

∼= BK/BO) = G(B) and BK
∼= (BK)0 ⋉ X∗(T ) gives

G(B) = BK/BO = X∗(T )⋊ (BK)0/BO. This is the decomposition G(G,B) = ⊔α Sλ.

Recall that IndBT commutes with TK, and (B → H)∗, IndGB, ?B commute with (BK).
This implies that the points x of Sα satisfy xB,H ∈ Gα(T ) and then G(G,B) = ⊔α Sα
implies that this precisely describes Sα.

Now, (LGα )B,H = LTα implies the characterization of Sα since NK commutes with (B →
H)∗, IndGB, ?B.

(b) The extension to closures follows because the indscheme G(T )λ is indfinite.

(c) is well known. �

Corollary. Tp− acts freely on G(G).(49)

Proof. Tp− acts freely on each Sλ⊆G(G) by part (b) of the lemma. (Sλ is isomor-
phic to a connected component of G(B) on which Tp− acts as G(T )0 and we have

G(T )×G(N)
∼=
−→G(B),)

So, the restriction of the stabilizer scheme S = {(t, x) ∈ Tp−×G(G); t·x = x} to the strata

Sλ of G(GG) is trivial. This implies that S is trivial.(50) �

Remark. The map m : BK×BO
GO

∼=
−→GK is an injective immersion and a bijection on the

level of points over a field. However, m is not an isomorphism – it is a proper embedding
on the level of tangent spaces and π0(BK) = X∗(T ) is larger the π0(GK).

48 So, x ∈ G(G) is in Sα (resp. Sα) iff it is induced from (unique) y ∈ G(B). and the connected
component of y in G(B) is Gα(B), i.e., (B → H)∗y ∈ Gα(T ). Also, x is in Sα iff it is induced from
(unique) y ∈ G(B) and (B → H)∗y ∈ Gα(T ) ∼= LT

α .
49 This is not true for the action of Np−

on G(G) (the stabilizer is nontrivial at Sα for α < 0).
50 The locusX⊆G(G) where the fiber of S is nontrivial is a closed) subindscheme which is TR-invaraint.

The same then holds for Xred⊆X and this implies that if X 6= ∅ then Xred would contain some fixed
point Lλ which is impossible.
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6.3.2. The T -fixed part S0
T
as the Hilbert scheme Hd×I . Recall that for a choice of a local

parameter z we embed Hd into Gm,K by interpreting S ∈ Hn
d as a degree n monic poly-

nomial χS ∈ k[z], with nilpotent coefficients. This gives Hd×I = (Hd)
I ι
→֒(Gm,K)

I←−
∼=
TK.

Also, recall that our convention for X∗(T )→֒G(T )⊆G(G) is λ 7→ Lλ
def
= λ−1L0.

Lemma. (a) The closed embedding Hd×I ∋ P 7→ ι(P )·L0 ∈ G(T ) gives the Y -fixed part:

Hd×I

∼=
−→ (S0)

T = S0 ∩ G(T ).

The connected components for α ∈ N[I] are

S0 ∩ G−α(T ) ←−∼=
Hα
d×I =

∏

i∈I

Hαi

d .

(b) Equivalently, the filtration of G0(T ) induced by Sα, α ∈ N[I], is the filtration of the

a-stable Hilbert scheme H(d,a)×I by subschemes Hα
d×I

def
=

∏
i∈I H

αi

d .

Proof. (a) The factorization

S0 ∩ G−α(T ) ∼=
∏

i∈I

S0 ∩ G−αii(T )

reduces the claim to SL2.

Here, α = n·̌i for the simple coroot ǐ = ε̌1 − ε̌2 and n ∈ N. Then Lα = Lnǐ is the lattice
generated by two vectors 〈zne1, z−ne2〉.

Let us start with Sα = NKLα. For u =

(
1 x
0 1

)
∈ NK, we have uLα = u〈zne1, z−ne2〉 =

〈zne1, z
−n(e2+xe1)〉. So, Sα consists of all lattices L ∈ G0(SL2) such that L∩Ke1 = znOe1

and Sα consists of L ∈ G0(SL2) such that L contains znOe1 or equivalently, L lies in
Ke1⊕Oz−ne2.

The k-points of the negative congruence subgroup K−(Gm)⊆Gm,K are the comonic poly-
nomials Q(z−1) = 1 + a1z

−1 + · · · + anz
−n in z−1 that are invertible in k[z−1]. Consider

the filtration K−(Gm)≤n where powers of z−1 in Q are restricted to ≤ n. Recall that
K−(Gm)≤n identifies by P (z) = znQ(z−1) with the Hilbert scheme Hn

d which is the mod-
uli of monic polynomials P (z) = zn+a1z

n−1+ · · ·+an in z, of degree n and with nilpotent
coefficients.

We choose φ : K−(Gm)
∼=
−→G0(T ) by φ(Q) = ǐ−1(Q)L0 = 〈Q−1e1, Qe2〉. This lies in Sn iff

Qe2 ∈ Oz−ne2, i.e., iff Q is in K−(Gm)≤n. �

Corollary. This identifies the subscheme (S+
α ∩ S−

0 )
T →֒S+

α

T
with the Hilbert scheme

Hα·a⊆ Hd of the finite colored scheme α·a
def
= ⊔i∈I αi·a·i ∈ Hα

d . The connected compo-
nents are

Hβ
α·a

∼=
−→ (S+

α ∩ S−
0 ) ∩ Gβ(T ).
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Proof. If S+
α ∩ Gβ(T ) 6= ∅ and S−

0

T
∩ Gβ(T ) 6= ∅ then 0 ≥ −β and −β ≥ −α , i.e.,

α ≥ β ≥ 0. Then S+
0 ∩ G−β(T ) = Hα−β

d×I ·Lβ. Moreover,a point x ∈ Hβ
d×I ·Lβ lies in S−

0

T

iff N+
K ·x contains L0, i.e., iff L0 ∈ Hβ·x.

So, points x of (S+
α ∩ S−

0 ) ∩ Gβ(T ) correspond to pairs A ∈ Hβ−α
d and B ∈ Hβ

d such that

ι(χBχc)Lα = L0, i.e., A ∪C B = α·a. This is equivalent to A ∈ Hβ−α
d which lie inside

Dα, i.e., to A ∈ Hβ−α
α·a . �

Remarks. (0) We can think of a point of (S+
α ∩S

−
0 )

T as corresponding to a pair of effective
I-divisors α± with α+ +α− = α, or a pair of colored subschemes D± of C with D+ +D−

equal to the subscheme D⊆C of type α. Then D± are complementary subschemes of D
so one determines the other by the “complementation” procedure H(D) ∋ D′ 7→ D−D′ ∈
HD.

So for a fixed D, the moduli of data (D′, D′′) is identified with Gr(D) (in two ways
corresponding to N±).

(1) Here, we are taking the B±-divisors of a section σ of a T -torsor. Notice that this is a
single information, i.e., DivB−(s) = −DivB(s). For T = Gm the difference is just which
one of positions 0,∞ ∈ ∂Gm is regarded as positive.

6.3.3. Intersections Sα ∩ Sβ.

Lemma. (a) Sα ∩Sβ = NK·[Sα ∩Gβ(T )] (and it is nonempty iff β ≤ α, i.e., Sα⊇Sβ). In
other words,

Sα ∩ G(G,B) = NK · ⊔β≤α Sα ∩ Gβ(T ) ←−∼=
⊔β≤α [Sα ∩ Gβ(T )] × Sβ.

Remark. Sα ∩ Gβ(T ) has been calculated above.

Proof. (a) First, Sα meets Sβ iff Sα contains Sβ, i.e., iff β ≤ α. (If Sα meets Sβ then it
meets (Sβ)red = Sβ and then Sα⊇Sβ.) Now,

Sα ∩ Sβ = [Sα NK·(TK)0·Lβ] = NK·[Sα ∩ (TK)0·Lβ ] = NK·[Sα ∩ Gβ(T )].

In other words,
Sα ∩ G(G,B) = ⊔β≤α NK · Sα ∩ Gβ(T ).

Finally, denote by K−(T )β the pull back of Sα ∩ Gβ(T ) under K−(T )
∼=
−→Gβ(T ), then

NK · Sα ∩ Gβ(T ) = NK · K−(T )β · Lβ = K−(T )β · NK · Lβ = K−(T )β cd Sβ

and this is isomorphic to K−(T )β × Sβ ∼= Sα ∩ Gβ(T ) × Sβ. �

6.3.4. The closure S−
0 of the non-reduced ind-subscheme S−

0 ? We would like to know

Sα ∩ S
−
0 .
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Example. The reduced part of S+
i ∩ S

−
0 is S+

i ∩ S−
0
∼= P1. The non-reduced part is a

double point at L0.

6.4. Central extensions of reductive groups. We consider the effect of a central
extension of a reductive group on its loop Grassmannian.

Consider an exact sequence of reductive groups 0 → S → G → G
β
−→ 0 such that S is

central in G which is connected.

Lemma. (1) G(S) is a group and it acts on G(G).

(2) If S is a torus then

• (a) G(G)→ G(G) is a G(S)-torsor.
• (b) The groups of connected components of loop Grassmannians fit into an exact

sequence 0→ π0[G(S)]→ π0[G(G)]
π1(β)
−−−→ π0[G(G)]→ 0.

• (c) Certain simplifications of G(G) are covers of G-objects:

G(G)/G(S)0 ∼= G(G)×π1(G)π1(G) and G(G)red ∼= G(G)red×π1(G) π1(G).

• (c’) If we denote the map π1(G)
π1(β)
։ π1(G) by x7→x = x+X∗(S) then

G(G)x/G(S)0 ∼= G(G)x and [G(G)x]red ∼= [G(G)x]red.

(3) If Z is etale we have 0→ π0[G(G)]→ π0[G(G)]→ Z → 0 and G(G)x
∼=
−→G(G)x for any

x ∈ π1(G)⊆π1(G).

Proof. (1) is obvious.

(2a) First, forX = d orX = d∗ the maps G(X)→ G(X) are surjective since H1(X,Gm) =

0. Now, 0→ S
α
−→G

β
−→G→ 0 gives maps

SK/SO
α
−→GK/GO

β
−→GK/GO

Map α is injective since GO∩GK
SK = SO and β is surjective since GK

β
−→GK is surjective.

Since S⊆G is central the subgroup SO⊆GK acts trivially on GK/GO, hence G(S) acts on
GK/GO. Then, for vi ∈ VK, β(v1VO) = β(v2VO) means that β(v1)GO = β(v2)GO, i.e., for
v = v2

−1v1 we have β(v) ∈ GO = β(VO), i.e., for some x ∈ VO we have β(v) = β(x), i.e.,
vx−1 = α(y) with y ∈ SK. Now, v1VO = v2gVO = v2α(y)xVO = v2α(y)VO = v2y·v2GO is
in G(S)·v2VO.

(2b) The set of connected components π0[G(G)] of the loop Grassmannian of G is π1(G), so
it is a group. The above exact sequence of groups gives 0→ π1(S)→ π1(G)→ π1(G)→ 0
since π2(G) = 0 = π0(S).

(2c’) The first claim follows from (a) and then the description of [G(G)x]red follows because
the reduced part of the connected component of G(S) is trivial.
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Finally, (2c) follows from (2c’) and (2b).

(3) From π1(Z) = 0 = π0(G
′) we have 0 → π1(G) → π1G(G) → π0(Z) → 0. So, the first

claim follows from π0(Z) = Z. �

Corollary. The following spaces are canonically the same for G and G : [G(G)0]red⊇S0⊆S0

and G(G, (G/N)aff).

Proof. G(G, (G/N)aff) is the closure of G(G,G/N) = S0 in [G(G)0]red (since S0⊆[G(G)0]red
and [G(G)0]red⊆G(G) is closed). �

6.4.1. G(G)red as a cover of G(Gss). A reductive group G has the largest central torus Z
and the quotient Gss is semisimple.

Lemma. (a) The map G(G)→ G(Gss) is an ismorphism on connected components(51) :

G(G)red ∼= G(Gss)×π1(Gss)π1(G).

(b) G(G)red splits the quotient G(G)→ G(G)/G(Z)0 :

G(G) = G(G)red·G(Z)0 ←−∼=
G(G)red×G(Z)0.

So, for any Cartan T⊆G one has G(G) = G(G)red·G(T )0.

Proof. (a) Since G(Gss) is reduced, this is a case of the lemma 6.4.c.

(b) Observe that the set π0 of connected components is the same for all three object. So,
we need for each x ∈ π0[G(G)] that the maps [G(G)x]red×G(Z)0։[G(G)x]red·G(Z)0⊆G(G)x
be isomorphisms.

By 6.4.c’ we have [G(G)x]red ∼= [G(Gss)x]red = G(Gss)x and G(G)x/G(Z)0 ∼= G(Gss)x. Now,
the map [G(G)x]red → G(G)x/G(Z)0 is the same as [G(G)x]red → G(Gss)x, so it is an
isomorphism,

Finally, the last claim follows since any Cartan T of G contains Z. �

Remark. The derived subgroup G′ of G is semisimple and the cocenter C
def
= G/G′ is a

torus. Then G/Z = (G/Z)′ is the image of G′. So, G/Z ∼= G′/G′ ∩ Z, i.e., G = G′·Z
and therefore Z → C is surjective and C = Z/Z ∩G′.

Notice that G(G′)·G(Z) is in general only a union of connected components of G(G).
(Because the same is true for the image of G(G′) in G(G)/G(Z) = G(G/Z) = G(G′/Z ′)
for a finite central subgroup Z ′ = G′ ∩ Z in G′.)

6.4.2. Torus quotients. Here we consider exact sequences of the form 0 → G1 → G →
C → 0 where G,G1 are connected reductive and C is a torus.

51 So, from the point of view of individual connected components, G(G)red is itself a loop Grassmannian.
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Lemma. (a) If G1 is simply connected then G(G) → G(C) is an isomorphism on π0. In
general one has 0→ π0G(G1)→ π0G(G)→ X∗(C)→ 0.

(b) G(G)→ G(C) is a G(G1)-bundle.

(c) If G1 is semisimple then the nonreduced part of G(G) comes from G(C) in the sense
that G(G)red = G(G)×G(C)G(C)red.

52
� Proof. (a) The exact sequence π2(C)→ π1(G1)→ π1(G)→ π1(C)→ π0(G1) gives

0→ π1(G1)→ π1(G)→ π1(C)→ 0

(b) 53
�

(c) follows from (b). �

6.4.3. Groups SL⊆GL։PGL. The π1 of the sequence 0→ Gm → GL(U)→ PGL(U)→

0 is 0→ Z
n
−→Z→ Z/n→ 0 for n = dim(U). We have established

G[PGL(U)]
∼=
−→ G(Gm)\G[GL(U)];

G[GL(U)]red ∼= G[PGL(U)]×Z/nZ and G[GL(U)]←−
∼=
G[GL(U)]red × G(Gm)0

Remarks. (0) A model for G[GL(U)]c is provided by the space of lattices U in U⊗Od∗ .
Consequently, G[PGL(U)]c is the moduli of P1-bundles P over d with a trivialization
τ ∈ Isom[P(U),P]. This is also a model for G[GL(U)]red.

A model for G[SL(U)]c are the special finitely supported P1-bundles (the ones that lie in
the connected component of G[PGL(U)]).

(1) When one is describing G[PGL(U)] from G[GL(U)] one needs to consider one con-
nected component G[PGL(U)]x at a time, to choose a representative k ∈ Z of x and to
pass to the reduced part

(
G[GL(U)]k

)
red. This is just a way to describe the quotient

G[PGL(U)] of G[GL(U)] by G(Gm)]. (The quotient by the discrete part Z is given by the
combinatorics of x and k and the quotient by G(Gm)0 is performed by modifying lattices
U to U(D − lDc) for D ∈ Hd.

(54))

52 ! Unfinished
53 !
54 The usual identification of G[PGL(U)]x with G[GL(U)]k is correct only on the reduced parts, say

on the points over a field.
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7. Various

Part 1. Vinberg semigroups and wonderful compactifications

8. Vinberg semigroups

8.0.1. The Vinberg semigroup V .

8.1. Vinberg semigroups VG,P,V : ideas.

8.1.1. The relevant mapping spaces. BunG(C)⊇BunfsC (G) are Map(C,BG) and
Map[(C, ηC), (BG, pt)]. Then G(G) −→HC is a “resolution” (or a more elaborate version)

of BunfsC (G) with G(G)D = Map[(C,C −D), (BG, pt)], while G(G) −→RC is in between.

8.1.2. Change the parametrization of Vinberg semigroups. 55
� Data are given by a

subgroup V⊆G such that G/V is quasiaffine. Then G×NG(V )/V acts on G/V by

(g, uV ) ∗xV
def
= g·xV ·uV −1, hence also on (G/V )aff. Also, NG(V ) acts on G/V⊆(G/V )aff

by conjgation.

Then one can define ZV as the automorphisms

ZV
def
= AutG×NG(V )/V (G/V )

and the Vinberg group and semigroup as

VV
def
= AutZV

(G/V ) ⊆ VV
def
= EndZV

((G/V )aff).

Example. For a parabolic P any normal subgroup V between U and P ′ satisfies the
condition that G/V is quasiaffine and NG(V ) = P .(56)

AGAIN: For any subgroup V⊆G we consider the normalizer NG(V ), its quotient MV =

NG(V )/V and its center ZV . Then G×Z(G)MV maps to VV
def
= AutZV

(G/V ). If G/V

is quasiaffine we also get the semigroup VV
def
= EndZV

((G/V )aff) whose invertible part is
VV = AutZV

(G/V ) = AutZV
((G/V )aff).

This construction appears in [?] when V is related to some parabolic P = U ⋉ U . Here,
V is either U or P ′, hence its normalized if P and M = P/V . When P is a Borel B and
V = N we get the Vibnerg semigroup V.

55 !
56 The conditions here on V ⋉ P are that P/V is reductive and P/U → P/V is an isomorphism on

commutative quotients (P/U)ab
∼=
−→(P/V )ab.
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8.1.3. Vinberg semigroups VG,P,V . For a parabolic P = U ⋉ L in a (reductive?) semisim-
ple group G we consider a normal subgroup V of P that lies between the unipotent

radical U and the derived subgroup P ′. Then G×P/V acts on Y o
G,P,V

def
= G/V by (g, pV )∗

xV
def
= gxV (pV )−1 = gxp−1V and therefore als on its affinizations YG,P,V

def
= (G/V )aff. We

will use these two spaces to relate G and P/V . Once we pass to mapping spaces (G/V )aff

will really be a correspondence between mapping spaces associated to groups G and P/V
(say, the loop Grassmannians G(G) and the moduli of G-bundles BunG(C)).

Remark. I think I have checked that G/V is quasiaffine, hence G/V⊆(G/V )aff. �

The corresponding Vinberg group V = VG,P,V and Vinberg semigroup V = VG,P,V are
defined using the double centralizer and the affine closure. First, we conider Z =

ZG,P,V
def
= AutG×P/V (G/V ) and then

V = AutZ(G/V ) and V = EndZ((G/V )aff).

Example. When P = G then V must be G hence G/V = pt and 1 = Z = V = V.

8.1.4. When P dos not contain any semisimple normal subgroup of G. Then

Lemma. 57
� (a) Z = Z(P/V ).

(b) V = G×Z(G)P/V .

(c) V is a semigroup closure of V.

(d) When P is a Borel TN and V = N then VG,B,N is the semigroup introduced by
Vinberg.

8.1.5. The (closures) of orbits of V̈ on G(G). These should be realized as (reduced parts
of) the connected components of the mapping spaces G(V, Y ) for some Y = YG,P,V .

Remark. Seemingly, in all cases V = VG,B,N (rather than say VG,P,V ). At least this is true
for P = B and P = G.

However, Y seems to behave in an unusual way. First, for U = N (the radical of P = B),

the orbits of Ü = NK⋉TO are related to Y = YG,B,N
def
= (G/N)aff. On the other hand, for

U = 1 (the radical of P = G), the orbits of Ü = GO are related to Y = EndH(YG,B,N) =
EndH((G/N)aff) = VG,B,N .

57 ! Conjecture?
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8.1.6. The doubling from (G/N)aff to V. We have seen that the “degenerate” case P = G
appears as a “double” of the “substantial” case P = B? (Here, the “doubling” terminology
comes fromdim[EndH((G/N)aff)] = 2 dim((G/N)aff). [So, dimensionwise this is more like
U 7→T ∗U than U 7→End(U) = U⊗U∗ which squares the dimension.]

Question. Why is this so?

Remarks. (0) “G as a double of B” is standard in q-groups. However, in this classical
version one does not double B but its “dual” G/N .

(1) This “doubling uses H-action on G/N (dual to H⊆B ?). The doubling of
G/N⊆(G/N)aff is V⊆V.

Questions. Does it work the same for all YG,P,V and VG,P,V ?

8.1.7. The structure theory of V. The basic feature is the following stratification VJ , J⊆I,
of V.

The fibers of the stablizer scheme for the H-action on V (or H-action?) are ideals in H, I
guess that they correspond to subsets J⊆I. This gives a stratification VJ of V and gives
varieties XJ = VJ/(H/HJ). When J = ∅, i.e., where H acts freely, X∅ is the wondrful
compactification of Gad.

Possiby, in generall one gets compactifications of adjoint quotients of Levi factors GI???
(Seemingly not exactly like that since such object is not canonically defined!)

Question. Is the structure theory of V some kind of the double of such theory for (G/N)aff?

8.2. Vinberg semigroup as EndH((G/N)aff).

Lemma. The action of V(G) on (G/N)aff yields

V(G) ∼= EndH((G/N)aff).

Proof. A. The semigroup EndH((G/N)aff) has a zero. First, (G/N)aff contains the semi-
group H which has zero, we denote this point z. The action of H contracts (G/N)aff to
z. So, any f ∈ U = EndH((G/N)aff) fixes the point point z.

Now the constant map 0 : (G/N)aff → z ∈ (G/N)aff is the zero in U since it lies in U and
for f ∈ U one has 0◦f = 0 = f◦0.

B. The left and right multiplication by H⊆V now contract U to the point 0. In particular,
U is connected.

C. The action of the Vinberg semigroup V on (G/N)aff identifies V with the invertible
part AutH((G/N)aff) of EndH((G/N)aff) = U .
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C’. The invertible part of U is open hence dense. For this we may want to reduce the
situation where U is clearly a scheme (rather then an ind-scheme). This is accomplished
by replacing (G/N)aff by finite infinitesimal neighborhoods of the vertex z. As U fixes z
it preserves each of these neighborhoods.

D. For a Cartan T of G, the group T×Z(G) H is a the Cartan in V and we know its

closures in V and U coincide.

This proves that V = U since for a Cartan T of the invertible part G of a reductive
semigroup G one knows that G = G·T ·G for the closure T of T in G [Kapranov].

8.2.1. Details. Vinberg semigroup has been defined in characteristic zero by describing
its ring of functions. The proof above uses properties of this definition of V.

This provides a geometric definition of the Vinberg semigroup over Z which (as we have
checked) coincides with the usual one in characteristic zero.

One should also check that this notion of Vinberg semigroup is Z-flat. (Again, this should
follow when one establishes certain pieces of the structure theory of reductive semigroups
over Z.)

Question. Is Kapranov’s observation that I use “over Z” for split forms?

8.2.2. Vinberg semigroup “can” be defined via functions over Z. Over Q we can write
O((G/N)aff) = O(G/N) = O(G)1×N as ⊕λ∈X∗(H)+ Wλ⊗SNλ̌ . (I want to choose W and S

so that SNµ = Sµ(µ) !)

Over Z we have a filtration with Gr[O(G)] = ⊕λ∈X∗(H)+ Wλ⊗Sλ̌.

That gives some estimate on N -invariants which combines with their H-character(?).

8.3. Summary of Vinberg semigroup results and conjectures. Let G be semisim-
ple and G be the wonderful compactification of Gad.

8.3.1. V via (G/N)aff. The following property seems to be a reasonable definition of V.

Lemma. V⊆V act on G/N⊆(G/N)aff and

V
∼=
−→AutH(G/N) = AutH((G/N)aff) and V = EndH((G/N)aff).

8.3.2. V and the wonderful compactification Gad.
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Lemma.

• (a) The H-free part V
o
of the Vinberg semigroup V is an H sc-torsor over the

wonderful compactification Gad of Gad.
• (b) As an H sc-torsor over Gad, V

o
is the product of Gm-torsors that correspond

to the decomposition of ∂Gad = G − Gad into irreducible G-invariant divisors
Di, i ∈ I.
• (c) V is the affinization of V

o
.

Proof. (a) The free part V
o
of V contains V, so V

o
/H sc contains V/H sc = Gad. .... �

Remark. Gad is the geometric invariant theory quotient V//H sc of V by H sc in the sense
that it is the quotient of the free part of the space. So, Gad is open in the Gad-stack V/H .

8.3.3. V via a semigrouoid S over B. We consider a certain groupoid S over B with a
semigroupoid closure S (see 19.9.4). The notion of sections Γ(B,S) of a groupoid means

the sections of S → B2 pr2−→ B. The sections form a semigroup Γ(B,S) and its invertible
part Γ∗(B,S) is a group.

Define the stable sections of S as the Hilbert scheme closure of Γ∗(B,S) in all sections
Γ(B,S) of S.

Lemma. V is the group of invertible sections Γ∗(B,S) of S.

Conjecture. The stable sections of S form precisely the Vinberg semigroup V.

8.3.4. Groupoid S over B and its semigroupoid closure S. The action groupoid for the
G-action on B is G0 = B×G→ B2 by (b′, g) 7→(gb′, b′). (We will also think of it as G×BG
for the conjugation action of B on G.)

Its vertical part G↑0 = G|∆B
is the group bundle G×B B (for the conjugation action of B

on B). It contains a normal group subbundle G−
def
= G×B N . Our groupoid over B will

be
S

def
= G0/G−.

So, the fiber at (B′′, B′) ∈ B2 is

SB′′,B′ = {gN ′ ∈ G/N ′; gB′ = B′′} = {N ′′g ∈ G/N ′; gB′ = B′′}.

Also, the total space of S is G×BG/N and the second projection map pr2 : S → B is
G×BG/N −→G/B = B by (g, xN) 7→ (g, xN) 7→ g.

We define S as the relative affinization of S over B

S
def
= SaffB = G×B (G/N)aff.

Lemma. S is a semigroupoid closure of the groupoid S.
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8.3.5. The canonical resolution Ṽ. of V.

• (a) V has a canonical resolution Ṽ.

• (b)V and Ṽ. are stable sections of certain groupoids over B.

8.3.6. More on semigroupoids. (a) Γ(G) = Γ∗(G) is the Vinberg group GP
def
= G ×

Z(G)
HP .

(b) The closure Γ(G) of Γ∗(G) in Γ(G) is a semigroup.

(b’) If P = B this is an extension of the wonderful compactification G/Z(G) by HP .

(b”) An open part Γ(G)
0
is an extension by HP and Γ(G) = Γ(G)

0
×
HP

HP . As an HP-torsor

over G/Z(G), this open part Γ(G)
0
corresponds to the I-colored divisor which is minus

the boundary of bolshaya yacheyka in G/Z(G).

(c) The affinization of Γ(G) is a semigroup which we call the Vinberg semigroup

GP associated to the partial flag variety P. In turn, Γ(G) is a resolution of GP . In
particular when P is the flag variety B and G is simply connected, we get the usual
Vinberg semigroup.

Add the formulation for general P.

(d) There should be another statement concerning the action of G̃P on G/P ′×
HP

HP .

Proof. (a) is known for P = B, and all is known for SL2.

8.4. SL(3) . Let G = SL(V ) with dim(V ) = 3. Then (G/N)aff embedds into V =

V⊕V ∗ by gN 7→(ge, ge∗) where e ∈ V N and e∗ ∈ (V ∗)N are bases of these lines. (G/N)aff

is given in V⊕V ∗ as the quadric 〈v, v∗〉 = 0. The G-orbits in (G/N)aff are given by
G/N = {v, v∗ 6= 0} and G/P ′

i = {v = 0 6= v∗}, G/P ′
i = {v 6= 0 = v∗} and G/P ′

i,j =
G/G == {v = 0 = v∗}.

The Vinberg group V is G×H acting on V by the diagonal action of G and H⊆H = Gm
I

acting by (zi, zj)(vi, vj) = (zivi, zjvj). The Vinberg semigroup V is the closure in End(V)
of G·H (or the algebraic subgroup generated by?).

The Cartan TH is parameterized by α̌Bi : Gm → T⊆ and α̌i : Gm → H (here α̌i(z) =

α̌Bi (Z)·N), realized via H
∼=
−→Gm

I as α̌i being the identity map Gm → (Gm)
i.

The standard basis e1, e2, e3 of Vi = V has weights εi so that for a = diag(a1, a2, a3) ∈ T ,
εi(a) = ai; in the dual basis ei of V ∗ we have weights −εi.

The Cartan TH acts on ek ∈ Vi by akzi and on el ∈ Vj by al
−1zj .
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A cocharacter χ = (µ, λ) of TH cabe written by ai = sµi and zp = sλp, where µ =
(µ1, ..., µ3) ∈ Z3 and λ = λiα̌i + λjα̌j. It acts on ek by sµk+λi and on on el by s−µl+λj .

We are interested in χ = (λ, µ) such that it extends from Gm → GL(V) to Gm → End(V),
i.e., such that

−λi ≤ µk ≤ λj .

Now, if µ = xiα̌
B
i + xjα̌

B
i = (xi, xj − xi,−xj)then the conditions are that

−λi ≤ xi, −xj , xi − xj ≤ λj.

This involves 6 inequalities:

λi + xi ≥ 0 λj − xi ≥ 0 λi − xj ≥ 0 λj + xj ≥ 0 λi + xi − xj ≥ 0 λj + xj − xi ≥ 0.

Say, if λi = λj = p then the conditions are that |xi|, |xj | and |xi − xj | are all ≤ p.

Say, in the chamber where xi, xj ≥ 0 the conditions are that |xi|, |xj|, |xi − xj ≤ 1.

However, the conditions are W -invariant in µ as σi(xiα̌i + xjα̌j = −xiα̌i + xj(α̌i + α̌j) =
α̌i(xj − xi) + chαjxj , i.e., si(xi, xj) = (xj − xi, xj). So, the conditions in all chambers
are of the same kind as in the dominant chamber, i.e., the conditions that wµ ≤ λ.

When p = 1 we get weights µ with |µi| ≤ 1. If say, xi = 0 then we get three coweights
−α̌j , 0, α̌j. If xj = 0 we get −α̌i, 0, α̌i. When xi, xj 6= 0 then the last inquality says that
xi = xj so we also get ±(α̌I + α̌j). These are the 7 weights of ǧ = L(ρ̌).

8.5. The “determinant” map det : (V,V)→ (Had, Had).

Lemma. (a) The largest commutative quotients of V and V are Had and Had. So, there
is a canonical map of pairs(58)

(V,V)
det
−→ (Had, Had).

(b) The following square is Cartesian:

V
det
−−−→ Had

⊆

y ⊆

y

V
det
−−−→ Had.

Proof. (a) The claim for V is obvious since Had = V/Gsc and Gsc is semisimple. The map
V → Had is

59
� still to be constructed.

58 When G = SL(U) ∼= SL2 then (V ,V)
det
−−→ (Had, Had) is really the determinnat map

(End(U), GL(U)) −→ (A1, Gm) (see 3.12).
59 ! ?



68

(b) The claim is that if v ∈ V has det(b) ∈ H invertible then v itself is invertible. 60
�

�

8.6. Appendix: History of Vinberg semigroups. Definitions

8.6.1. The current data. To a parabolic P = U ⋉L and its normal subgroup V (between
U and [P, P ]) we associate

• (G, (P/V )o)-spaces G/V⊆(G/V )aff;
• groupoid S = SP,V over P = G/P and its semigroupoid closure SP,V ;

• the Vinberg group V = VP,V
def
= (G×Z(G) Z(P/V ) and its semigroup closure VP,V .

8.6.2. The definitions and realizations of VP,V .

• The original definition of a Vinberg semigroup was in tems of its ring of functions.
It was only valid in characteristic zero (and the data were the standard ones
(G,B,N) with G simply connected).
• Alvaro Rittatore defined Vinberg semigroups over an arbitrary field. He considers
the category FM(G0) of “very flat” reductive monoids M (irreducible, normal
and with a nice abelianization map), such that the derived subgroup (M∗)′ of its
ivertible part M∗ is a given semisimple group G0.
Rittatore’s abstract machinery is his classification of objects in FM(G0) from

the point of view of the classiphication of spherical varities.
Then certain data produce the Vinberg semigroup UG0

, However he also
(1) proves the universal property of UG0

(so he calls it the envelope of the semisim-
ple group G0);

(2) and he constructs it geometrically from a torsor over the wonderful
compactification.(61)

• My definition/construction should be

VG,P,V
def
= EndZG,P,V

[(G/V )aff].

• A conjectural realization/definition via sections of semigroupoids: V is the
(affinization of?) stable sections of a certain semigroupoid over B.
• My original notes used a complicated and conjectural definition (conjecture
21.1.2.d). via semigroupoids.
• Pluecker definition/realization?

In V = ⊕ Vi (G/N)aff is given by Pluecker equations. The semigroup End(V)
contains G = Gsc and H. Then it should also contain V as the subsemigroup of
End(V) generated by the two.(62)

60 ! ?
61 I noticed this at some point. Did I claim or conjecture this before 2005?
62 This may be in Kapranov’s paper on hypergeometric function on reductive groups (at least in some

sense)?
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Remarks. (0) The universal property of V was formulated and proved by Vinberg (in
caracteristic zero) and by Rittatore (over a field). This should be the definition of the
Vinberg semigroup of a semisimple (or reductive?) group. Then one can choose his own
favorite existence proof or construction.

These so far involve EndH((G/N)aff), wonderful compatification, Pluecker, classification
of nice reductive monods.

(1) Definition over integers. Rittatore does not seem to mention that his construction is
over integers (he does not in this paper). (The universal property has not been considered
over integers, however this should follow from the result over fields, i.e., I think that
flatness statements are checked over geometric points?.)

(2) The endomorphism construction seems philosophically intriguing. (One may think of
it as some kind of induction?) That’s the interesting part of my approaches.

It ihas been written so far for the standard Vinberg semigroup V(G) = VG,B,NB(G)
(theorem 8.2).

This seems closer to a reasonable definition of Vinberg semigroups.

8.6.3. Sections below. In the section 20We calculate the invertible sections of the groupoid
S = SP,V as the Vinberg group VP,G and show that the sections of S are controlled by
the T -fixed points.

In the next section 21 we introduce the Vinberg semigroups VP,V⊇VP,V and give a con-
jectural comparison with the stable sections of Γ∗(P,S)⊆ Γ(P,S) of the semigroupoid
S.

8.7. Appendix. The “correspondence” idea. Let C be a central quotient (A×B)/Z
of A×B. A semigroup closure S of C is a kind of correspondence between A and B. The
effect is that

G(C, S) ⊆ G(C) → G(A/Z)×G(B/Z)

is indeed a correspondence beetween G(A/Z) abd G(B/Z).

Remarks. (0) If A is semisimple and B is a torus then the disconnectedness of G(B) may
pass onto G(C, S) where it has the effect of separating certain pieces of G(A).

(1) The price for this separation is that the newely separated pieces of G(A) acquire in
G(C, S) some nonreduced directions from G(B).

So, what wet is a description of the said pieces of A as being the reduced part of the
connected components of G(C, S).

8.7.1. Step 0. The central torus in G. The semigroup closures of a reductive group G are
related to the maximal central torus Z. Group G is an extension 0→ Z → G→→ Gss →
0 with Gss semisimple. Then
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• G(S) acts freely on G(G) and the quotient is G(G).
• This splits in the sense that

G(S)0×G(G)red
∼=
−→ G(G)

and G(G)red −→G(G) is etale and an isomorphism ofconnected components

[G(G)x]red
∼=
−→/G(G)x.

8.8. Dennis: The Deconcini-Procesi Vinberg semi-group. 4.2.1. Consider the
group

Genh
def
= V = G×Z(G)T.

Let us recall Vinberg’s construction of the semi- group G+
enh = V, whose locus of invert-

ibility coincides with Genh.

Defining such a semi-group is equivalent to specifying which representations of extend to
it. Any representation of V is a direct sum of ones of the form V⊗ λH the weights of
representation V of G are in λ+ Q̌. For V we require that the weights of V are ≤ λ.

xxx

Lemma. By construction, we have a canonical map s : V → H with V×H H = V. �

8.8.1. 4.2.3. For a parabolic P with Levi quotient M let cP ∈ H be the point defined by
the condition that

〈α, cP 〉 = δα∈M

for simple roots α. Consider the preimage

s−1(cP ) ⊆ V .

It contains an open subset isomorphic to

G/U×M G/U−.

Lemma. 4.2.4. There exists a unique V×V-invariant open subscheme V
o
⊆V such that for

every parabolic P , the intersection

s−1(cP ) ∩ V
o

equals G/U×M G/U−.

9. The wonderful compactification W of G/Z(G)

9.1. The wonderful compactification G and the Vinberg semigroup V.
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9.1.1. The stratification of the wonderful compactification. The wonderful compactifica-
tion G of Gad has a stratification parameterized by subsets J⊆I. The open stratum
W∅ is the subgroup G/Z(G). In general one has WJ ·WK⊆ WJ∪K . So the closures
WJ = ∪K⊇J WK , are ideals in the semigroup W , i.e., W ·WJ⊆WJ⊇WJ ·W . In partic-
ular, WI

∼= B×B is a monoid for (a, b)·(c, d) = (a, d).

For SL2 the wonderful compactification is the same as the quasimap compactification
of automorphisms of P1. The standard point of view on the wonderful compactification
interprets G/Z(G) as maps from g to g. In general, there should be a point of view on the
wunderbar compactification that interprets G/Z(G) as stable maps from B to B. [This
has been done by Brion!]

9.1.2. Remember that there should be a resolution W̃ of the Vinberg semigroup that is
an extension of W by the semigroup closure of the Cartan.

I proposed to describe W̃ as sections of a semigroupoid, in order to make the semigroup
structure manifest.

9.2. Wonderful compactification as a Hilbert scheme.

9.2.1. Lemma. (a) The closed stratum B×B⊆ W is interpreted in terms of the Hilbert
scheme of subvarieties of B×B by: point (p, q) ∈ B2 corresponds to the cross p×B ∪ B×q.

(b) Let e ∈ b ∈ B be a regular nilpotent and consider the line e
Ce in G⊆ W . Its

boundary is the unique B-fixed point in the closed stratum W .

(c) All subschemes of B2 that lie in W are reduced.

Proof. (b) The boundary point is the subscheme Y = lim
s→∞

(1, ese)· ∆B of B2. Since for

any b′ ∈ B one has lim
s→∞

(1, ese)· b′ = b (the only e-fixed point in B), Y contains all

lim
s→∞

(1, ese)· (b′, b′) = (b′, b), i.e., B×b. Since e
Ce· ∆B is invariant under the switch of

coordinates, so is Y . So Y contains the cross b×B ∪ B×b. Since both Y and the cross
are in the same Hilbert scheme they are equal. So Y is the unique B-fixed point (b, b) in
the closed stratum B×B of W .

(c) follows from (a) since the most degenerate schemes in W are reduced.

9.2.2. Example: SL2. Here W is P3 = P(M2) and W∅ = G/Z(G) = PGL2 is the pro-
jectivization rank two operators, while WI = P1×P1 is the projectivization of rank one

operators. Its extension W̃
def
= Γ(G)→ is the line bundle OP1(−1). The zero-section is

an ideal with the above semigroup structure. The remaining torsor for H ∼= C∗ consists

of the Vinberg group W̃∅ = GL2, and over WI one has W̃I = rank one operators. The
semigroup structure is just the multiplication of matrices except in the case of two rank
one matrices A,B with the composition of rank zero. Arguing by continuity, the product
A◦B lies in the zero section and equals the pair of lines (Im(A), Ker(B)).
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Affinization map from W̃ to the Vinberg semigroup M2 is the blow up.

Observe that W̃ (= blow up of M2) acts on G/N×
H
H(= blow-up of C2), this is the blow-up

(continuous extension) of the action of matrices on vectors.

Makes you wonder about all other examples.

9.3. Singularities of stable maps from P to P. W seems to be the closure of Aut(P)
in ”stable maps” from P to itself.

9.3.1. Example: projective space. If P is the projective space P(V ) for G = SL(V ), the
semigroup is End(V ) and 0 6= A ∈ End(V ) defines a rational map from P(V ) to itself,
which is not defined on Ker(A). I guess that it is defined on the blow-up along Ker(A).

There is no singularity if the kernel is a hyperplane, i.e., for the rank 1 operators, since the
blow up does not change the space. However, one still remembers the kernel, i.e., while
the associated map for P to itself is the constant map Im(A), the stable map associated
to A is in this case the pair (Im(A), Ker(A)) ∈ P(V )×P(V ∗) = P(rank 1 operators).

In general, one should hopefully have singularities on the embedded partial flag varieties
of Levi factors. It may be interesting to see what reductive generalization of the blow up
will be needed to make the maps defined.

9.4. The strata of W are groupoids?

9.4.1. General “wonderful compactifications” WP,V ? For a parabolic P there isa Vinberg

semigroup VP with the invertible part VP
def
= G→֒ G ×

Z(G)
P ab. The corresponding wonder-

ful compactification is the invariant theory quotient

WP
def
= VP//P

ab def
= ,

9.4.2. Orbits in (G/N)aff and in V .

Question. The number of G-orbits in the affine closure of G/N is 2rank, and their mutual
position is “toric”, the same as for the G-orbits in the wonderful compactification of G.
(See remark 24.3.5.)

10. Reductive semigroup closures

10.1. Semigroup closures and normality. Let L be a reductive group. A “partial
toric” compactification of L is an open dense inclusion L⊆L of L×L-spaces.
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10.1.1. Lemma. If L is affine and normal it is a semigroup closure of L.

Proof. L×L-inclusion means that L×L −→L extends to both

L×L −→L and L×L −→L,

hence to L×L − ∂L×∂L −→ L. Now, the codimension of ∂L×∂L is ≥ 2, and L×L is
normal while the target L is affine.

10.1.2. Sublemma. If X
open dense

⊇ U
f
−→ Y and

• codimX(∂U) ≥ 2,
• X is normal,
• Y is affine

then f extends to X .

Proof. Y is closed in some An, so we can assume that Y = An, and then that n = 1.

10.1.3. Remark. (1) One needs X to be normal. Say X is the crossing of two A2’s called
Xi at a point p, then U = X − {p} = ∪ Xi − {p} and a function f on U consists of two
functions fi on Xi − {p}, which extend to Xi. Now f extends to X iff f1(p) = f2(p).

(2) One needs Y to be affine: Wonderful compactification W of an adjoint group G is
not a semigroup, so extension fails for X = W×W (normal) and U = X − ∂G×∂G (of
codimension 2).

10.2. The Grothendieck resolution of a semigroup closure G of G.

10.2.1. Lemma. (a) T is an affine toric variety.

(b) N is closed in G.

Proof. (a) by definitions. (b) N is an orbit of N in an affine variety G, hence closed!

10.2.2. The incidence subvariety

M
def
= {(x,B) ∈ G×B; x ∈ B}

projects to B as G×
B
B. It maps , to H

def
= B//N , and the most interesting map is

M
π
−→G×G//G=H//WH.

10.2.3. Remark. N×T −→ B is not injective if G has a zero. It need not be surjective
because of 14.1.5.



74

10.2.4. Lemma. π is proper, surjective and generically an isomorphism.

Proof. Even the mapM
π
−→G×G//GH −→G is proper since it factors asM⊆G×B −→G.

Next, over G×H//WH this is the usual Grothendieck resolution, so it is an isomorphism
over Grs×H//WHr. Finally, map is surjective since it is proper and generically an isomor-
phism.

10.2.5. Question. Let T be a torus. In an irreducible affine T -variety X , is the fixed point
set XT connected?

10.2.6. Question. (No) Is the map of sets of orbits T/T −→G\(G/V )aff surjective?

10.2.7. Conjecture. G×L-orbits in (G/U)aff, and G×L-orbits in (G/U)aff, are both pa-
rameterized by the WL-orbits in ∆T (u

ab), i.e., the minimal roots in u.

11. Langlands duality of reductive semigroups

11.1. Tori.

11.2. Reductive groups.

Remark. In order that for a torus extension V of G and Y⊇Y o = V/A, G(V, Y ) is GO-

equivariant, we need A = 1 so that Ä = VO. So, Y must be a partial compactification
of V. In order to have a convolution on G(V, Y ) we then need the group structure on
Y o = V to extend to a monoid structure on Y ???

11.3. Semigroups with zero. Let V be a normal subgroup of P that contains U , so
that M = M is reductive.

11.3.1. Lemma. For the irreducible LG(λ) and the coWeyl module W̌ (λ), one has

LG(λ)V = LM (λ) and W̌G(λ)V = W̌M(λ)

if λ is orthogonal to the T -roots in V, and otherwise it is zero.

Proof. Representation L(λ)V of M is an extension of irreducible representations LM (µ).
Each µ is dominant for B/V ∩ B, hence also for B. So there is at most one term in
the socle and it is LM(λ). It appears iff the B-highest weight space λ is V -fixed, i.e., iff
λ ⊥ ∆T (V).

11.3.2. Lemma. G/V is quasiaffine.

Proof. The image of the G-map G/V
τ
−→ (G/V )aff is a homogeneous space G/K for some

V⊆K⊆G.

τ is an embedding on M
def
= P/V since
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Part 2. Pieces

12. Technical pieces

12.1. Fibered products of quotient stacks G1\Y1 ×G0\Y0 G2\Y2. We consider a sys-

tem of groups G1 −→G0 ←−G2 and a compatible system Y1
a1−→ Y0

a2←− Y2 of Gi-spaces
Yi.

Lemma. The fibered products of quotient stacks simplifies to

G1\Y1 ×G0\Y0 G2\Y2
∼= G0\[(G0×G1

Y1) ×Y0 (G0×G2
Y2)]

∼= G1\[Y1×Y0 (G0×G2
Y2)] ∼= G2\[(G0×G1

Y1)×Y0 Y2].

Proof. G1\Y1 ×G0\Y0 G2\Y2 can be written as

G0\(G0×G1
Y1) ×Y0 G0\(G0×G2

Y2)

where ai extends tp G0×Gi
Yi

αi−→ Y0 by αi[(g0, ui)] = g0· ai(yi). This is isomorphic to

G0\[(G0×G1
Y1) ×Y0 (G0×G2

Y2)]

where G0 acts diagonally. Then the last two nonsymmetric formulas follow. �

f ∈ Map[S,G1\Y1 ×G1\Y1 G2\Y2] consists of maps fi : S → Gi\Y1 with compatibility of

αi◦fi for αi : Gi\Yi → G\Y . These are the diagrams S
φi←− Pi

ψi−→ Yi with an identification
of the diagrams

S
φi←− G×Gi

Pi
ψi−→ Yi

ai−→ Y

, i.e.,

S
φ1
←−−− G×G1

P1
a1ψ1
−−−→ Y

=

y ζ

y∼= =

y

S
φ2
←−−− G×G2

P2
a2ψ2
−−−→ Y

�

12.2. Describing the nonreduced directions. It seems more difficult to me since the
traditional tools like Bialnicky-Bitula are now unclear to me!

12.3. Colored divisors of meromorphic sections of H-torsors. For a simply con-
nected G we have

∏
i∈I ωi : Hω̌Gm

I . So, an H-torsor S is a system of Gm-torsors
Si, i ∈ I, i.e., of the corresponding line bundles Li = A1×Gm

Si. A meromorphic section
σ of S is locally a system of I meromorphic functions si. So, we can define its I-colored
divisor div(σ) ∈ Z[I].
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For a Cartan subgroup T⊆G, a choice of a Borel B⊇T defines T
∼=
−→H as T⊆B։H . This

moves T -torsors to H-torsors S 7→SB and similarly for sections s 7→sB. So, a section s of

a T -torsor S acquires an I-colored divisor DivB(s)
def
= Div(sB).

12.4. The closure of a subindscheme. The closure of a subindscheme Y = lim
→

Yi in

the indscheme X = lim
→

Xi can be described as the ind system of closures of subschemes:

Y
def
= lim

→
Yi ⊆X .

Question. Does the passage from indschemes to schemes, i.e., commute with closures?

12.5. Stratifications of schemes. The interest here is in a definition.

Remark. However the goal of the present text seems to be to construct for X → S a
stratification of X and maube S whose strata are flat (?) or the map is stratified flat?
(“Flattening stratifications”). This stratification is preferably canonical.

12.5.1. Functor. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX -module. For any scheme T over S we will denote FT the base change of F to T , in
other words, FT is the pullback of F via the projection morphism XT = X ×S T → X .
Since the base change of a flat module is flat we obtain a functor

Fflat : (Sch/S)
opp −→ Sets, T −→

{
{∗} if FT is flat over T ,
∅ else.

(1)

12.5.2. Flattening stratifications. Just the definitions and an important baby case.

Let X → S be a morphism of schemes. Let F be a quasi-coherent OX -module. We
say that the universal flattening of F exists if the functor Fflat defined in Situation ?is
representable by a scheme S ′ over S. We say that the universal flattening of X exists if
the universal flattening of OX exists.

Note that if the universal flattening S ′ 63 of F exists, then the morphism S ′ → S is a
monomorphism of schemes such that FS′ is flat over S ′ and such that a morphism T → S
factors through S ′ if and only if FT is flat over T .

We define (compare with Topology, Remark ?a (locally finite, scheme theoretic) strati-
fication of a scheme S to be given by closed subschemes Zi ⊂ S indexed by a partially

63The scheme S′ is sometimes called the universal flatificator. In [?] it is called the platificateur

universel. Existence of the universal flattening should not be confused with the type of results discussed
in More on Algebra, Section ?
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ordered set I such that S =
⋃

Zi (set theoretically), such that every point of S has a
neighbourhood meeting only a finite number of Zi, and such that

Zi ∩ Zj =
⋃

k≤i,j
Zk.

Setting Si = Zi \
⋃
j<iZj the actual stratification is the decomposition S =

∐
Si into lo-

cally closed subschemes. We often only indicate the strata Si and leave the construction of
the closed subschemes Zi to the reader. Given a stratification we obtain a monomorphism

S ′ =
∐

i∈I
Si −→ S.

We will call this the monomorphism associated to the stratification. With this terminology
we can define what it means to have a flattening stratification.

12.5.3. Let X → S be a morphism of schemes. Let F be a quasi-coherent OX -module.
We say that F has a flattening stratification if the functor Fflat defined in Situation ?is
representable by a monomorphism S ′ → S associated to a stratification of S by locally
closed subschemes. We say that X has a flattening stratification if OX has a flattening
stratification.

When a flattening stratification exists, it is often important to understand the index set
labeling the strata and its partial ordering. This often has to do with ranks of modules,
as in the baby case below.

Lemma. Let S be a scheme. Let F be a finite type, quasi-coherent OS-module. The
closed subschemes

S = Z−1 ⊃ Z0 ⊃ Z1 ⊃ Z2 . . .

defined by the fitting ideals of F have the following properties

(1) The intersection
⋂
Zr is empty.

(2) The functor (Sch/S)opp → Sets defined by the rule

T 7−→

{
{∗} if FT is locally generated by ≤ ∇ sections
∅ otherwise

is representable by the open subscheme S \ Zr.
(3) The functor Fr : (Sch/S)

opp → Sets defined by the rule

T 7−→

{
{∗} if FT locally free rank ∇
∅ otherwise

is representable by the locally closed subscheme Zr−1 \ Zr of S.

If F is of finite presentation, then Zr → S, S \ Zr → S, and Zr−1 \ Zr → S are of finite
presentation.
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Proof. We refer to More on Algebra, Section ?for the construction of the fitting ideals in
the algebraic setting. Here we will construct the sequence

0 = I−∞ ⊂ I′ ⊂ I∞ ⊂ . . . ⊂ OS

of fitting ideals of F as an OS-module. Namely, if U ⊂ X is open, and
⊕

i∈I
OU → O

⊕\
U → F|U → ′

is a presentation of F over U , then I∇|U is generated by the (n−r)×(n−r)-minors of the
matrix defining the first arrow of the presentation. In particular, I∇ is locally generated

by sections, whence quasi-coherent. If U = Spec(A) and F|U = M̃, then I∇|U is the
ideal sheaf associated to the fitting ideal Fitr(M) as in More on Algebra, Definition ?Let
Zr ⊂ S be the closed subscheme corresponding to I∇.

For any morphism g : T → S we see from More on Algebra, Lemma ?that FT is locally
generated by ≤ r sections if and only if I∇ · OT = OT . This proves (2).

For any morphism g : T → S we see from More on Algebra, Lemma ?that FT is free of
rank r if and only if I∇ · OT = OT and I∇−∞ · OT = ′. This proves (3).

The final statement of the lemma follows from the fact that if F is of finite presentation,
then each of the morphisms Zr → S is of finite presentation as I∇ is locally generated by
finitely many minors. This implies that Zr−1 \Zr is a retrocompact open in Zr and hence
the morphism Zr−1 \ Zr → Zr is of finite presentation as well. �

Lemma ?notwithstanding the following lemma does not hold if F is a finite type quasi-
coherent module. Namely, the stratification still exists but it isn’t true that it represents
the functor Fflat in general.

Lemma. Let S be a scheme. Let F be a quasi-coherent OS-module of finite presentation.
There exists a flattening stratification S ′ =

∐
r≥0 Sr for F (relative to idS : S → S) such

that F|S∇
is locally free of rank r. Moreover, each Sr → S is of finite presentation.

Proof. Suppose that g : T → S is a morphism of schemes such that the pullback FT = }∗F
is flat. Then FT is a flat OT -module of finite presentation. Hence FT is finite locally free,
see Properties, Lemma ?Thus T =

∐
r≥0 Tr, where FT |T∇ is locally free of rank r. This

implies that

Fflat =
∐

r≥0
Fr

in the category of Zariski sheaves on Sch/S where Fr is as in Lemma ?It follows that Fflat
is represented by

∐
r≥0(Zr−1 \ Zr) where Zr is as in Lemma ? �

We end this section showing that if we do not insist on a canonical stratification, then we
can use generic flatness to construct some stratification such that our sheaf is flat over
the strata.
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Lemma. [Generic flatness stratification] Let f : X → S be a morphism of finite presen-
tation between quasi-compact and quasi-separated schemes. Let F be an OX -module of
finite presentation. Then there exists a t ≥ 0 and closed subschemes

S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅

such that Si → S is defined by a finite type ideal sheaf, S0 ⊂ S is a thickening, and F
pulled back to X ×S (Si \ Si+1) is flat over Si \ Si+1.

Proof. We can find a cartesian diagram

X
d
−→

r
−→X0

d
−→S

r
−→S0

and a finitely presented OX′
-module F′ which pulls back to F such that X0 and S0 are of

finite type over Z. See Limits, Proposition ?and Lemmas ?and ?Thus we may assume X
and S are of finite type over Z and F is a coherent OX -module.

Assume X and S are of finite type over Z and F is a coherent OX -module. In this case
every quasi-coherent ideal is of finite type, hence we do not have to check the condition
that Si is cut out by a finite type ideal. Set S0 = Sred equal to the reduction of S.
By generic flatness as stated in Morphisms, Proposition ?there is a dense open U0 ⊂ S0

such that F pulled back to X ×S U0 is flat over U0. Let S1 ⊂ S0 be the reduced closed
subscheme whose underlying closed subset is S \ U0. We continue in this way, provided
S1 6= ∅, to find S0 ⊃ S1 ⊃ . . . . Because S is Noetherian any descending chain of closed
subsets stabilizes hence we see that St = ∅ for some t ≥ 0. �

12.6. Partial closures of the group. Any partial compactification L of a group L
defines a submoduli G(L)L•⊆G(L) consisting of all (S, σ,D) in G(L) such that σ extends

to a section σL• of the L•-bundle SL•

def
= S×LL•.

Example. For a parabolic P let L⊆P be a Levi factor, i.e., a subgroup section of P →

P . A partial compactification L• of L defines G(P )L•

def
= G(P )×G(L)G(L)L• ⊆G(P ). (It

consists of all (SP , σP ) ∈ G(P ) such that (SP/U, σP ) ∈ G(P ) lies in G(L)L• , i.e., such
that σP extends to a section σP • of S/U×PP •.)

12.7. General parabolic zastava spaces. More generally, one can associate a zastava
space

G[G, (G/V )aff×(G/V −)aff/H−]

to any choice of opposite parabolic subgroups P± of G and their normal subgroups V ±,
such that the spaces G/V ± are quasiaffine. (Here P = P+ etc.) 64

�
(65)

64 !
65 Instead of H− may use P+ ∩ P−?
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13. Example: G = SL2 (Versions)

There are three parts below from three different sources:

• A. Present text. This is above in 3.12.
• B. From the original writing on Drinfeld’s classifying formulation
• C. From Vinberg text This is reapeated below in 20.4.

Part A. deals with G(V , Y ) for V = GL(U) and Y = (G/N)aff or V = End(U).

Part B. deals with the zastava space for SL2. One first describes End(U)⊇ (U − 0)2⊇ GL(U). Then the
standard description of fibers of zastava space (as certain z-Grassmannians) is recondtrcted from ? point
of view.

Part C. deals with reconstructing the Vinberg semigroup V as sections of the semigroupoid

S = G×B(G/N)aff over P1 = P(U). The sections are described as the realization End(U) of V .

13.1. B. From the original writing on Drinfeld’s classifying formulation.

13.1.1. Realization of End(U) as (G/N+)aff×(G/N−)aff. Here, G = SL(U) acts on the vector space
U = 〈e+, e−〉 (we also denote e1 = e+ and e2 = e−). Let e

± be the dual basis of U∗.

We choose N+, N− as stabilizers of e+, e− or equivalently of vectors e−, e+ in U∗. (In the basis (e+, e−)
we have e+ = ( 10 ) , e− = ( 01 ), hence e+ = ( 1 0 ) , e− = ( 0 1 ) and N = N+ = ( 1 ∗

0 1 ) and N− = ( 1 0
∗ 1 ).)

This gives identifications

G/N± ∼=
−→ U − 0, gN± 7→ ge±, hence (G/N±)aff

∼=
−→ U.

The sum of two copies U± of U identified with (G/N±)aff can be identified with two columns of the
matrix algebra End(U) :

(G/N+)aff×(G/N−)aff
∼=
−→ U+⊕U− ∼= End(U) = U⊗U∗.

13.1.2. The open cell N+TN− in G. It consists of all
(
a b
c d

)
∈ G = SL2 such that d 6= 0. (66) This cell

can also be described as all g ∈ G such that the e−-component [ge− : e−] of ge− is nonzero. Its boundary
in G is therefore given by d = 0 or by ge− ∈ ke+.

Lemma. There are canonical identifications

(G/N+)aff×(G/N−)aff
⊇

←−−−− G/N+×G/N− ⊇
⊇

←−−−− (G/N+×G/N−)o

∼=

y ∼=

y ∼=

y

EndU
⊇

←−−−− (U − 0)2
⊇

←−−−− GL(U)
.

Proof. We know the identifications in the first two columns. , i.e., the columns are not zero. The open
subset (G/N+×G/N−)o⊆G/N+×G/N− is given by all (v+, v−) = (g+e+.g−e−) ∈ U⊕U for g± ∈ G
such that g+

−1g− lies in the open cell N+TN−. This means that (g+, g−) ∈ G(1×N+B−). Since,
(1×N+B−)(e+, e−) =

(
1 k

0 k
∗

)
lies in GL(U) and contains

(
1 0
0 k

∗

)
, its G-image is precisely GL(U). �

13.1.3. The divisor in YG is given by det = 0.

66 ( 1 x
0 1 ) ·

(
s 0
y 1/s−1

)
=

(
s+xy xs−1

y s−1

)
.
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Corollary. The divisor ∂Yo
G⊆YG is given by the equation det = 0 in the G×H-torsor

(G/N+)aff×(G/N−)aff ∼= End(U) over YG. �

13.1.4. Modular description of fibers of the zastava spaces as a certain Grassmannian. A map φ =

(φ+, φ−) from (C, a) to (G/N+)aff×(G/N−)aff
∼=
−→ U+⊕U− = End(U) defines two subsheaves L± =

OCf
± of the trivial rank two bundle V = U⊗OC over C.

Lemma. This identifies the fiber Z(G)D of ZC(G) at D = na ∈ HC with the space of O(D)-submodules
of UD = U⊗O(D) = UO/z

nUO of rank n.(67)

Proof. The condition that f is generically in (G/N+×G/N−)o = GL(U) means that f+, f− is generically
a frame of V , i.e., that L++L∗ 1⊆V is generically an equality. In particular, L± are locally free sheaves
subsheaves of V of rank one. Let L±⊆L±⊆V be their extensions to line subbundles of V .

We can assume that L− is OCe− or more precisely that f− = zde− where d is the order of vanishing of
f− at a = 0 in C. This reduces the symmetry from (G×H)(C) to the stabilizer (???) (N−×H)(C) of
zde−.

... �

13.2. C. From Vinberg text. Let U = 〈e+, e−〉 and G = SL(U).

It deals with reconstructing the Vinberg semigroup V as sections of the semigroupoid S = G×B(G/N)aff

over P1 = P(U). The sections are described as the realization End(U) of V .

13.2.1. For G = SL2, the semigroupoid S
def
= (G/N)o→B can be identified with the vector bundle O2

P1(1)

over P1 (which appears in various settings), and the sections Γ(B,S) with 2×2 matrices M2.

13.2.2. Corollary to the lemma 3.12.3.

Corollary. (a) G×H-equivariant bundle S
def
= (G/N)0→B is isomorphic to the G×Gm-equivariant vector

bundle (g/n)0→B. Here Gm acts on the vector bundle in the standard way and we use identification

ρ : H
∼=
−→Gm.

(b) (g/n)0 ∼= O(1)⊕O(1) ∼= TH (the twistor space of the hyperkähler manifold H). In particular, the

sections of (g/n)0 = T̃ ∗B (the universal twisted cotangent bundle), can be identified with the set M2 of
2×2 matrices.

13.2.3. Identification of Γ(P1,S) with GL2. In this case it is simpler to think of S first. With the

conjugation action of B, G/N has been identified with U(1), and this induces G/N ∼= U(1) − {0}.
Therefore, sections of S→ B can be identified with M2. A bases e1, e2 of U gives Γ[P1, U(1)] =
Γ[P1,O(1)]e1⊕ Γ[P1,O(1)]e2, with each summand of dimension two and giving one row of M2 (or a
column?).

Sections of S→ B are the non-vanishing sections of U(1) = O(1)⊕O(1). A non-zero section s of O(1)
vanishes precisely once, its divisor is a point x in P1 and s is determined by x up to a scalar. A section
s = (s1, s2) of U(1), vanishes iff one of si’s is zero, or if they have the same divisor; but this is the same
as saying that one is a multiple of the other, i.e., that the matrix with rows si is not invertible.

67 In terms of the a local parameter z at a we consider the nilpotent operator z on the vector space UD =
U⊕Uz−1⊕· · · Uzn−1. and we consider of its Springer fiber Grn(D)z in the Grassmannian Grn(UD)z .
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13.3. (Intersection) Homology of moduli. The question is that IH(M) of a moduli
M should itself be some kind of a moduli. The same for H∗ and H∗

13.3.1. AM for a moduli of mapsM = Map(Σ, X).

Question. As functors we seems to have

AMap(Σ,X)
∼= Map(Σ, AX).

13.4. Standard MC questions.

13.4.1. Relation of moduli interpretation of H∗(X) (Kontsevich) and the geometric inter-
pretation AX of relative motivic homology.

13.4.2. Question. How does the moduli interpretation of H∗(X) as the moduli of defor-
mations of Coh(X) relate to the Hrel

∗ (X,Z) = AX?

13.4.3. Absolute and relative motivic homology. Seemingly there should be a map from
Habs

∗ to Hrel
∗ since any traditional (absolute) finite correspondence gives a relative one,

i.e., there is a map

13.4.4. The fundamental class in motivic cohomolgy? It is of the diagoanal Hodge type?

Check the sources.
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Part 3. Kapranov: Reductive semigroups

14. Reductive semigroups

14.0.1. Setting. G is a reductive group with a central torus Z. Fix T⊆B⊆G. Let G be a
semigroup closure of G with zero. The closures T ,B in G are affine semigroups.

14.1. G in Tannakian terms. Rep(G)⊆Rep(G) is a full-subcategory of representations
that extend to G, in particular Irr(G)⊆Irr(G). The Grothendieck semi-rings lead to an
inclusion of based semirings Z+[Irr(G)]⊆Z+[Irr(G)]. In particular, O(T ) = k[X∗(T )]
lies in O(T ) = k[X∗(T )].

If we think of Irr(G) as the dominant cone X∗(T )+, then Irr(G) is a subsemigroup we
denote X∗(T )+.

14.1.1. Lemma. [Kapranov, Vinberg] G = G·T ·G.

14.1.2. Corollary. A representation of G extends to G iff its T -weights extend to T .

14.1.3. Corollary. (a) For χ ∈ X∗(T ), if nχ ∈ X∗(T ) for some n > 0 then χ ∈ X∗(T ).

(b) X∗(T ) is convex inside X∗(T ):

conv[X∗(T )] ∩X∗(T ) = X∗(T ).

Proof. (a) For U open and dense in X , if some power of fO(U) extends to X then f also
extends to X .

(b) follows since for A⊆Zn, conv(A) ∩ Zn lies in Q·A.

14.1.4. Questions. (a) When is conv[Irr(G)] ∩ Irr(G)⊆ Irr(G) an equality?

(b) Does any G-orbit in the semisimple part of G (a constructible subset), meet T ?

(c) Is B·W ·T ·B⊆G an equality? (Yes for GL2⊆M2.)

14.1.5. Remark. (1) B·T⊆B is a dense constructible subset. (2) B·T and T ·B need not
be the same. (In SL2, products

(
α 0
0 β

)
· ( a b0 c ) with a, b 6= 0 give all matrices A with

A11 = 0⇒A12 = 0, while BT is described by A22 = 0⇒A12 = 0.)

14.1.6. Conjecture. The following are the same

(1) Semigroup closures G of G,
(2) W -invariant cones C in X∗(T )R, generated by finitely many integral weights,
(3) Full abelian subcategories R of Rep(G) stable under ⊗ and subqouotients and

extensions (?).
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Proof. (G) 7→Rep(G) is a bijection by Tannakian formalism. They give C = X∗(T ) and
conversely R consists of representations of G with weights in C.

14.2. Stratifications of G.

14.2.1. Questions. (a) Adjoint quotients of semigroups:

G//G −−−→ G//G

∼=

x ∼=

x?

T//W −−−→ T//W

.

(b) Do all G2-orbits meet T , i.e., is the map of finite sets T/Waff −→G\G/G surjective?

14.2.2. Conjecture. The stratification of G by G2-orbits should be encoded in a stratifi-
cation of T//W by T -orbits.

True for G = GLn⊆Mn = G.

14.2.3. Define Gss

def
= GT , Gr

def
= {x ∈ G, ZG(x) = dim(T )}. Then Grs

def
= Gr ∩ Gss

consists of elements of G that lie in the closure of one Cartan T of G.

14.2.4. Questions.

14.2.5. Lemma. A representation of G extends to G iff its T -weights extend to T .

Proof. for p > 0.

14.3. Functions on G.

14.3.1. Lemma. GrO(G) = ⊕L∈Irr(G) L⊗L∗ contains GrO(G) = ⊕L∈Irr(G) L⊗L
∗.

Proof.

14.3.2. Observe that

14.3.3. Lemma. (?) G//Z is a projective variety and it is a compactification of the

reductive group G
def
= G/Z.

15. Semigroup closures

15.0.1. Data. We start with a reductive group G and a finite subset A⊆Irr(G). It defines

a semigroup Gc
def
= the closure of the image of G in the semigroup End(Lc).

If the representation (Lc
def
= ⊕L∈A L is faithful then Gc is a semigroup closure of G.
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15.1. Projective variety Xc. Under the

• Homogeneity assumption: the image of G in GL(Lc) contains scalars

the semigroup Gc has a zero, and it is a cone. Then

Xc
def
= P(Gc)→֒P[End(Lc)]

is a projective variety.

15.2. Classification of reductive semigroups.

15.2.1. Lemma. Isomorphism classes of semigroup closures G→֒G are the same as ...

16. G-spherical varieties

A G-space X is said to be spherical if there is a dense B-orbit O. Then X contains a
(unique) spherical G-orbit G·O.

One also says that a subgroup H of G is spherical if the G-space G/H is spherical. Such
pairs (G,H) are called Gelfand pairs.

The rank of a spherical space X is defined as rank(G) − rank(H) if the open spherical
orbit in X is of the form G/H .

16.0.1. Lemma. Subgroup H is spherical iff G/H has no multiplicities (i.e. O(G/H) has
none).

16.0.2. Examples. (a) G/N− is spherical – the open B-orbit is the big cell BB−/N . (b)
Symmetric subgroups are spherical. (c) ∆G⊆G2 is spherical.

17. Newton polytope Qc of a finite subset A⊆Irr(G)

The “Newton polytope” Qc of a finite subset A⊆Irr(G) is defined as the convex closure
of the union of weights in A.

17.0.1. Examples. (a) In SLn let A be the basic representation, then Qc is the standard
(n− 1)-simplex: W ·ω1 = Sn·ε1 = {ε1, ..., εn}.

The facets of Qc are the subsets of {1, ..., n}, and the W -orbits in the set of facets of Qc

are indexed by the size 0 ≤ k ≤ n.

(b) In SLn let A be the fundamental representation L(ωp) =
p
∧ kn. Since ωp = ε1+· · ·+εp,

the vertices of Qc are the (p− 1)-dimensional facets of Q(Lω1
).
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17.0.2. Theorem. (a) G×G-orbits in the semigroup Gc associated to a finite subset
A⊆Irr(G), are the same as the W -orbits in facets of the polytope Qc.

(b) Let us associate to each face Γ of Qc an idempotent operator eΓ on Lc – the projector
to the sum of all weight spaces in Γ. Then eΓ is in the image of the G-action on Lc, i.e.,
in Gc, and it defines a G2-orbit

G·eGa·G
def
= Gc(Γ)⊆ Gc.

17.0.3. Lemma. Gc is a spherical G-variety.

18. Tannakian approach (“monoidal set approach”)

19. Appendix. Vinberg semigroup V(G) = VB(G) via algebras of functions

Here we recall Vinberg’s original definition of the (absolute) Vinberg semigroup (from “On
reductive Algebraic Semigroups”). There Vinberg has defined V = V(G) by describing

its algebra of functions O(V) as a certain subalgebra of functions on V
def
= G ×

Z(G)
H. These

formulas are only valid in characteristic zero.

Vinberg’s formula for functions on V(G) is

O(V)
def
= ⊕

λ∈X+, µ∈λ+Q+

L(λ)⊗L(λ)∗⊗C·eµ ⊆ O[G ×
Z(G)

H ]
def
= ⊕

λ∈X+, µ∈λ+Q
L(λ)⊗L(λ)∗⊗C·eµ.

The only thing we do in this section is fix a choice of the matrix coefficient map.

19.1. Groups G, V(G) and the semigroup H.

19.1.1. Groups G, G̃ and H. Let G be a semi-simple simply connected algebraic group.

Denote by ∆⊆ X
def
= X∗(H) the abstract roots and let ∆+ correspond to g/b. Then X

contains the the ∆+-dominant weights X+, and also X ⊇ Q
def
= Z·∆ ⊇ Q+

def
= Z+·∆+.

19.1.2. The Vinberg group G̃ of G. This is the group G̃
def
= G ×

Z(G)
H.

19.1.3. Semigroup closure H of the Cartan group. Abstract Cartan group

H
def
= Spec(C[X ]) lies in a semigroup H

def
= Spec(C[X+]), corresponding to a

cone X+ in the lattice X . Observe that the lattice Q̌ dual to X has a basis of simple

coroots Π̌, such that the cone it generates Q̌+
def
= Z+·Π̌ is dual to X+. We decompose H

according to Π̌: H = X∗(H)⊗Gm = ( ⊕
α∈Π

Zα̌) ⊗Gm =
∏
α∈Π

α̌(Gm) ∼= (Gm)
Π̌. Cocharacters

λ of Q̌+⊆ Q̌ = X∗(H) extend to semigroup maps λ : C→ H and H =
∏
α∈Π

α̌(C) ∼= CΠ̌.
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19.2. Functions on G, G̃ and H.

19.2.1. Functions on G. For a representation V of G matrix coefficient map c = cV :

V⊗V ∗→O[G] defined by cv,u(x)
def
= 〈v, xu〉 for x ∈ G, v ∈ V and u ∈ V ∗, is G×G-

equivariant:

[(g, h) cv,u](x) = cv,u(g
−1·x·h) = 〈v, g−1xh·u〉 = 〈gv, x·hu〉 = cgv,hu(x).

For a dominant weight λ ∈ X+, we denote by L(λ) the irreducible representation of G with
the highest weight λ. This means that for any Borel subgroup B the action of H ∼= B/N
on H0[N,L(λ)] is by a character λB ∈ X∗(B/N), dominant for (∆+)B = ∆(g/b); while
the action on L(λ)N is by (w0λ)B dominant for ∆(n).

We will use the identification ⊕
λ∈X+

L(λ)⊗L(λ)∗
∼=
−→ O[G] given over Q by the above

matrix coefficient maps.

To describe the algebra structure on O[G] in this realization, we use decompositions
L(λ′)⊗L(λ′′) ∼= ⊕

i
L(νi). For v′ ∈ L(λ′), v′′ ∈ L(λ′′), u′ ∈ L(λ′)∗, u′′ ∈ L(λ′′)∗, the

decomposition above gives v′⊗v′′ = ⊕
i
vi and u′⊗u′′ = ⊕

i
ui. Therefore,

c
L(λ′)
v′,u′ · c

L(λ′′)
v′′,u′′ = c

L(λ′)⊗L(λ′)
v′⊗v′′,u′⊗u′′ =

∑

i

cL(νi)vi,ui
.

19.2.2. Functions on H. Characters µ ∈ X = X∗(H), give a basis of functions on H :
O[H ] = C[X ]. Moreover, C·µ is anH×H-submodule of C[H ] isomorphic to L(−µ)⊗L(µ),
since for a, b, h ∈ H one has

[(a, b)·µ](h) = µ(a−1·h·s) = µ(a)−1µ(b) · µ(h).

19.2.3. Functions on G̃. We start with

O[G×H ] = O[G]⊗O[H ] ∼= ⊕
λ∈X+,µ∈X

L(λ)⊗ L(λ)∗⊗ Cµ.

Next, G̃ is the quotient of G×H by the action of Z(G) embedded into G×G×H×H by

z 7→ (1, z, z, 1). The summand corresponding to (λ, µ), factors to G̃ iff the actions of
Z(G) on L(λ)∗ (by −λ) and on C·µ (by −µ) cancel, i.e., iff Z(G) acts the same via λ and
µ. This means that λ− µ ∈ Z(G)⊥ = Q⊆X , hence

O(G̃) = O(G)⊗O(H) ∼= ⊕
λ∈X+, µ∈λ+Q

L(λ)⊗ L(λ)∗⊗ Ceµ.

19.3. The Vinberg semigroup V = V(G) of G. The space V is defined in terms of the

subalgebra O(V)⊆O(G̃) :
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Lemma. The following subspace O(V)⊆O(G̃) is a subalgebra:

O[V]
def
= ⊕

λ∈X+, µ∈X, λ≤µ
L(λ)⊗L(λ)∗⊗C·eµ,

(Here, λ ≤ µ is defined using the cone Q+⊆X .)

Proof. To check that this is a subalgebra we notice that for λ′, λ′′ ∈ X+ and µ′, µ′′ ∈ X
with λ′ ≤ µ′ and λ′′ ≤ µ′′, one has [L(λ′)⊗ eµ

′

]⊗[L(λ′′) eµ
′′

] ∼= ⊕
i
L(νi)⊗ eµ

′+µ′′ , and

νi ≤ λ′ + λ′′ ≤ µ′ + µ′′. �

19.4. The canonical map V→ (G/N)aff. We will describe the map from the Vinberg
semigroup into the affinization of G/N .

19.4.1. The quotients by free actions. We will denote by A\X the quotient under a free

action of an affine group A. Here “free” means that there is a G-bundle X
p
−→B which is

locally isomorphic to A×B→B, i.e., X→B is an A-torsor in the Zariski topology. Then
A\X = B is also an invariant theory quotient, i.e., OB→ (p∗OX)A is an isomorphism.

19.4.2. Functions on G/N .

Lemma. (a) The functions on G/N are

O[G/N ] = O[G]1×N = [ ⊕
λ∈X+

L(λ)⊗L(λ)∗]1×N = ⊕
λ∈X+

L(λ)⊗[L(λ)∗]N .

(b) A description of G/N as G×
B
B/N gives

O[G×
B
B/N ] = ⊕

λ∈X+

L(λ)⊗ [L(λ)∗]N⊗ C·eλ ⊆ ⊕
λ∈X+, µ∈X

L(λ)⊗ [L(λ)∗]N⊗ C·eµ = O[G×H ].

Proof. O[G×
B
B/N ] = (O[G]⊗O[B/N ])B = (O[G]1×N⊗O[B/N ])B/N equals

=

(
⊕

λ∈X+, µ∈X
L(λ)⊗[L(λ)∗]N⊗ C·eµ

)B/N

= ⊕
λ∈X+, µ∈X

L(λ)⊗([L(λ)∗]N⊗ C·eµ)B/N .

The (λ, µ)-summand is zero unless −µ is the N -highest weight of L(λ)∗, i.e., the lowest
weight λ of L(λ).

19.4.3. The canonical map V→(G/N)aff. By our algebraic definition of V, O(V) lies in
O(G×H). Moreover, by 19.4.2(a), O(V) contains the subalgebra O[G/N ] of O[G×H ].
This gives a map of affine varieties V→(G/N)aff. Actually, one has

G×H
open
−−−→ V

=
−−−→ V

=

y
ysurj?

G×H
surj
−−−→ G×

B
H = G/N −−−→ (G/N)aff
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Remark. Is V(G) hyperkähler? (Yes in SL2 and the dimensions are always even, but this
may be all of the relation there is).

Part 4. Schubert polynomials via semigroups [Knutson–Miller]

Here the double Schubert polynomials are exaplined in terms of the Vinberg semigroup.
(Hence no triple Schubert polynomials.)

19.4.4. Let B be the flag variety of a simply connected semisimple group A. Let G be a
reductive group containing A and G its semigroup closure (a semigroup with open dense
part G). Consider the map

H∗(B) = H∗
1×B(G) ←−H∗

1×B(G) ∼= H∗
T

for a Cartan T of a Borel B of G. The last step requires that G have a zero, hence be
equivariantly contractible.

19.4.5. For a cycle C in B let C be its inverse in G. The fundamental class of [C] ∈
H∗

1×B(G) ∼= H∗
T maps to [C] ∈ H∗(B), so it is a “refinement” of C.

19.5. Positivity. Suppose that G is A ×
Z(G)
T for a torus T ⊆ EndG(W̌ ) for a “faithful”

representation W̌ of G, and G is the closure of G in linear operators on W̌ .

Choose a basis B of W̌ in which the Cartan T = Tc·T ⊆G diagonalizes, and use a
cocharacter ζ of the torus (Gm)

B to degenerate in the Hilbert scheme the subvariety
C⊆ G⊆ End(W̌ ) (it is Gm-invariant, so the degeneration happens in the projective space)
to a (Gm)

B-invariant subscheme Cζ , i.e., a union of coordinate planes.

This should show that [C] is a Z+-combination of monomials in the polynomial ring H∗
T .

19.6. The case of the semigroup of matrices G = Mn [Knutson-Miller]. This was
done by Knutson and Miller for A = SLn and matrices G = Mn to get a construction
of the Schubert polynomial Sw[x1, ..., xn], w ∈ Sn with manifest positivity and stability
(under N ≥ n). They also prove nice properties of C and Cζ , Cohen-Macaulay and
reduced, which may be interesting in a larger generality.

19.7. Double Schubert polynomials and the Vinberg semigroup. If G is the Vin-
berg semigroup (W̌ is the sum of fundamental representations), and C is a Schubert cycle,
one should get the double Schubert polynomials.
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B. Vinberg semigroups, semigroupoids and affinization

These are the elements of an old study if these topics. In particular this is not up to date.

19.8. Definitions of Vinberg semigroups.

19.8.1. The data. To a parabolic P = U ⋉L and its normal subgroup V (between U and
[P, P ]) we associate

• (G, (P/V )o)-spaces G/V⊆(G/V )aff;
• groupoid S = SP,V over P = G/P and its semigroupoid closure SP,V ;

• the Vinberg group V = VP,V
def
= (G×Z(G) Z(P/V ) and its semigroup closure VP,V .

19.8.2. The definitions and realizations of VP,V .

• The original definition of a Vinberg semigroup was in tems of its ring of functions.
It was only valid in characteristic zero (and the data were the standard ones
(G,B,N)).
• The “up to date” definition/construction should be

VG,P,V
def
= EndZG,P,V

(G/V ).

• More conjectural realizations/definitions:
(1) affinization of a certain torsor over the wonderful compactification;
(2) (affinization of?) stable sections of a certain semigroupoid over B.
The text below, uses a complicated and conjectural definition (conjecture 21.1.2.d).
along the lines of (2).

The endomorphism construction is known for the standard Vinberg semigroup V(G) =
VG,B,NB(G), i.e., it has a realization as endomorphisms EndH((G/N)aff) (theorem 8.2).

This seems closer to a reasonable definition of Vinberg semigroups.

19.8.3. Sections below. In the section 20 We calculate the invertible sections of the
groupoid S = SP,V as the Vinberg group VP,G and show that the sections of S are
controlled by the T -fixed points.

In the next section 21 we introduce the Vinberg semigroups VP,V⊇VP,V and give a con-
jectural comparison with the stable sections of Γ∗(P,S)⊆ Γ(P,S) of the semigroupoid
S.

19.9. Summary: Vinberg semigroup and wonderful compactification. 68
� Let

G be semisimple and G be the wonderful compactification of Gad.

68 ! his material appaears in 8.3
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19.9.1. V via (G/N)aff. The following property seems to be a reasonable definition of V.

Lemma. V⊆V act on G/N⊆(G/N)aff and

V
∼=
−→AutH(G/N) = AutH((G/N)aff) and V = EndH((G/N)aff).

19.9.2. V and the wonderful compactification Gad.

Lemma.

• (a) The H-free part V
o
of the Vinberg semigroup V is an H sc-torsor over the

wonderful compactification Gad of Gad.
• (b) As an H sc-torsor over Gad, V

o
is the product of Gm-torsors that correspond

to the decomposition of ∂Gad = G − Gad into irreducible G-invariant divisors
Di, i ∈ I.
• (c) V is the affinization of V

o
.

Proof. (a) The free part V
o
of V contains V, so V

o
/H sc contains V/H sc = Gad. .... �

Remark. Gad is the geometric invariant theory quotient V//H sc of V by H sc in the sense
that it is the quotient of the free part of the space. So, Gad is open in the Gad-stack V/H .

19.9.3. V via a semigrouoid S over B. We consider a certain groupoid S over B with a
semigroupoid closure S (see 19.9.4). The notion of sections Γ(B,S) of a groupoid means

the sections of S → B2 pr2
−→ B. The sections form a semigroup Γ(B,S) and its invertible

part Γ∗(B,S) is a group.

Define the stable sections of S as the Hilbert scheme closure of Γ∗(B,S) in all sections
Γ(B,S) of S.

Lemma. V is the group of invertible sections Γ∗(B,S) of S.

Conjecture. The stable sections of S form precisely the Vinberg semigroup V.

19.9.4. Groupoid S over B and its semigroupoid closure S. The action groupoid for the
G-action on B is G0 = B×G→ B2 by (b′, g) 7→(gb′, b′). (We will also think of it as G×BG
for the conjugation action of B on G.)

Its vertical part G↑0 = G|∆B
is the group bundle G×B B (for the conjugation action of B

on B). It contains a normal group subbundle G−
def
= G×B N . Our groupoid over B will

be
S

def
= G0/G−.

So, the fiber at (B′′, B′) ∈ B2 is

SB′′,B′ = {gN ′ ∈ G/N ′; gB′ = B′′} = {N ′′g ∈ G/N ′; gB′ = B′′}.
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Also, the total space of S is G×BG/N and the second projection map pr2 : S → B is
G×BG/N −→G/B = B by (g, xN) 7→ (g, xN) 7→ g.

We define S as the relative affinization of S over B

S
def
= SaffB = G×B (G/N)aff.

Lemma. S is a semigroupoid closure of the groupoid S.

19.9.5. The canonical resolution Ṽ . of V.

• (a) V has a canonical resolution Ṽ.

• (b)V and Ṽ. are stable sections of certain groupoids over B.
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Part 5. Vinberg semigroups and sections of semigroupoids

Example. For G = Gad = PGL2 we have V = G×H . If G = PGL2 then (G/N)aff is the
nilpotent cone N and G/N = Nreg.

In particular, one of its orbits provides a canonical map V(G)→ (G/N)aff.

20. Sections of the semigroupoid S associated to [P, P ]⊇V⊇U

To a parabolic P = U⋉L and its normal subgroup V (between U and [P, P ]) we associate
a groupoid S = SP,V , its semigroupoid closure S and the Vinberg group

V = VP,V
def
= (G×Z(G) Z(M)

for M = P/V .

We calculate the invertible sections of the groupoid S = SP,V as the Vinberg group

Γ
∗
(P,S) ∼= VP,G

(under some technical assumptions on P, see 20.2.1 which hold for the full flag variety).

Next, we are interested in the closure of Γ∗(P,S) in all sections Γ(P,S) of the semi-
groupoid S. Here we only notice that for P = B the sections of S are controlled by the
T -fixed points.

In the next section 21 we introduce the where Vinberg semigroups VP,V⊇VP,V and we
attempt to compare them with Γ∗(P,S).

20.0. Data (P, V ). Here, P is a parabolic subgroup with the unipotent radical U . V is

a normal subgroup of P that lies between U and [P, P ]. Then M
def
= M is reductive as a

quotient of the Levi group P
def
= P/U by V/U .

On the level of Lie algebras, l = Z(l)⊕ ⊕j∈J lj for simple factors lj. Then v = v0⊕⊕j∈J ′ lj
for v0 = v∩Z(l) and some J ′⊆J while m = m0⊕⊕j∈J ′′ lj for m0 = Z(l)/v0 and J ′′ = J−J ′.

Example. The interesting choices are V = U and V = [P, P ]. Then M is the Levi group
P = P/U of P or the commutative quotient P ab of P .

20.0.1. Example P = B: sections of semigroupoids S⊆S over B. Here the only choice is
V = N = [B,B]. We will only formulate the key objects.

For a semi-simple algebraic group G we consider a G-equivariant bundle

S
def
= G×

B
G/N→ G/B = B. Here, the B-action on G/N is by conjugation.(69)

69 The translation action extends to a G-action and then the G-bundle is trivial.
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We will see that S is a groupoid over B and the above map S −→B is its first projection.
We are interested in global sections S over B. This gives the space

S×G/N

over B which is the first projection map for a semigroupoid S over B. Here we denote the
global sections by S = Γ(B,S.

20.1. Groupoid S = SP,V over G/P .

20.1.1. The group bundles 0 → VP → PP → MP → 0 over P. For a reductive group G
we consider the data (P, V ) as above.

Let P be the partial flag variety that contains P . It carries several G-equivariant bundles,

the tautological group bundle TPP = G×P with a normal subgroup VP
def
= G×PV and

the the quotient group MP = G×P M
def
= MP (here we use the conjugation actions of P ).

20.1.2. The groupoid SP,V over P.

• Let G = GP,V ∼= G×P be the action groupoid for the G-action on P.
• Its vertical part G|∆P

is the stabilizer group bundle PP . We define the groupoid
S = S(P, V ) = S(P, V ) over P as the quotient G/VP .

The fibers of G are

GP ′′,P ′ = {g ∈ G; gP ′ = P ′′} ⊆ Isom(P, P ′) = Isom(TP , TP ′).

So, one can think of G as the “groupoid G−Aut(PP) of G-automorphisms” of the group
bundle PP . Then S would be the groupoid G − Aut(MP) of “G-automorphisms” of the
group bundle MP over P.

Lemma. (a) The restriction S|P×{P} is a bitorsor for (MP ,M×P). It consists of all
trivializations of the group bundle MP .

(b) The restriction S|P×{P} isG/V . So, S can be written asG×P G/V (for the conjugation
action on the second factor). �

Example. When V is the derived group [P, P ], the group bundle S|∆P
∼= P ab× P is

trivial.

20.2. Sections of S. For the notion of sections of (semi)groupoids see the appendix 23.
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20.2.1. Assumptions. We will assume that

(1) p does not contain any simple summands of g. Otherwise, we could consider the
same P from the point of view of a smaller group G.

(2) G։Aut(G/P ).

Here, (1) implies that the map G/Z(G)→֒Aut(P) is injective.

Requirement (2) can probably be avoided by replacing in formulations G sometimes with

the possibly larger group Ãut(P)
def
= G×Gad

Aut(P) (an extension of Aut(P) by Z(G)).
See remark 20.2.4.

20.2.2. Sections of MP .

Lemma. If V ∈ {U, P ′} then the global sections of MP are given by the center of M :

Γ(P,MP) ∼= Z(M) and Γ(P,mP) ∼= Z(m)].

Proof. (1) Lie algebras. For the Lie algebra claim we have m = m′⊕Z(m). Here, Z(m)
gives a summand of mP which is a trivial G-bundle. We will see that Γ(P,mP

′) is the
sum of all simple factors of g contained in p, i.e., Γ(P, G×P m′) = 0.

If m′ is non-trivial then V = U and M is the Levi factor P . Its Lie algebra is a sum
of simple Lie algebras mi corresponding to connected subsets Ji of the set I of simple
coroots. Let φi be the highest root of mi, the vector bundle G×

P
m′ is the direct image

from the full flag variety of the sum of line bundles ⊕ OB(φi).

It remains to see that if φi is dominant then mi is a simple summand of g. Since φi =∑
α∈Ji

nα·α with all nα > 0, and for simple roots α ∈ Ji and β 6∈ Ji one has 〈φi, β〉 ≤ 0,
the dominance implies that any simple roots α ∈ Ji and β 6∈ Ji have to be orthogonal.

(2) Groups. The group Γ(P, MP

Z[MP ]
) is finite since its Lie algebra Γ (P,mP

′) is zero.

A section of MP (or MP

Z[MP ]
)) stays in the closure of one “conjugacy class”. For that observe

that MP maps to the invariant theory quotient M//M for the conjugation action, hence
any section of MP gives a map from P to the affine space M//M , which has to be a
constant.

Now we see that the evaluation of sections at P ∈ P is injective. If a section σ of MP

Z[MP ]

has value 1 at P then σ stays in the unipotent cone, but it also has finite order.

Finally, group G acts on the bundle MP

Z[MP ]
, and on its global sections. The orbit of a Levi

factor L⊆ P through a section σ is isomorphic to the conjugacy class of σ(P ). Since it is
finite σ(P ) is central and so is σ. �
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20.2.3. The direct image of (AX , τ
∗AY )-bitorsors for a map X

τ
−→ Y . We consider a group

AX on X and a group AY over Y , where X and Y are related by a map X
τ
−→ Y .

We consider a bitorsor T for the pair of groups (AX , τ
∗AY ) on X . We define its “direct

image in spaces” τSp∗ (T ) −→Y as the total space of T , considered as a variety over Y .

Lemma. The group AY acts on τSp∗ T on the right and

AutAY
(τSp∗ T ) = τSh∗ AX .

(Here, τSh∗ is the direct image in sheaves, i.e., a fiber [τSh∗ AX ]y is the space Γ(Xy, AX) of
sections of AX on the fiber at y.)

Example. Consider the case of the map P
a
−→ pt, the group MP on P and its fiber

[MP ]P = M as a group on the point pt. We know that the total space of the restriction
S|P×{P} of the groupoid S = SP,V to a copy of P is the map G/V = → G/P = P and
that this is a bitorsor on P for (MP ,M×P) (lemma 20.1.2).

The direct aSp∗ image of this bitorsor S|P×{P} → P is its total space G/V . The lemma
now says that

Corollary. For the action of M on G/V on the right

AutM(G/V ) = Z(M).

Proof. AutM(G/V ) is AutM
(
aSp∗ (G/V → P)

)
and by the lemma this is (P −→pt)Sh∗ MP =

Γ(P,MP). However, this was calculated in lemma 20.2.2 as Z(M) �

20.2.4. M-automorphisms of G/V .

Corollary. If G→ Aut(P) is surjective then

AutM
(
S|P×{P}

)
= AutM(G/V ) = G ×

Z(G)
Z(M).

Proof. Recall that the fiber (G/V )x of G/V → G/P at a point x = gP ∈ P is gP/V , and
this is a bitorsor for (gP/gV ,M) where the first group is the fiber of MP at x = gP .

(1) Let π : G/V → G/P = P. The maps i and q in the sequence

0→ Γ(P,MP)
i
−→ AutM(G/V )

q
−→ Aut(G/P )→0

are defined by

[i(γ)](y)
def
= γ

(
π(y)

)
·y and [q(α)](x)

def
= π[α(y)] for y ∈ G/V, x = π(y) ∈ G/P.

This sequence is exact. First, the map q is surjective by the canonical map

G ×
Z(G)

Z(M)
ι
−→ AutM(G/V )
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and by our assumption that G։Aut(G/P ).

The map i is injective since for γ ∈ Ker(i)⊆Γ(P,MP) and any x, y as above we have
y = [γ(x)](y) = γ(x)·y, i.e., γ(x) ∈ (MP)x acts trivially on the torsor (G/V )x. So,
γ(x) = 1 and γ = 1.

Now, elements α of Ker[AutM(G/V )
q
−→AutM(G/P )]) preserve each fiber (G/V )x and act

on it by automorphisms of the right M-torsor structure. So, such α acts on (G/V )x as a
unique element α̃(x) ∈ (MP)x, hence α acts on G/V as a section α̃ ∈ Γ(P,MP)

(2) By the lemma 20.2.2 Γ(P,MP) ∼= Z(M). �

Remark. In order to extend the lemma to the general situation in the for-

mulation AutM(G/V ) = Ãut(P) ×
Z(G)

Z(M), we would need surjectivity of

AutM(G/V ) −→Aut(G/P ).

20.2.5. Invertible sections of the groupoid SP,V .

Lemma. Under the assumptions 20.2.1

Γ∗(P,SP,V ) ∼= G×Z(G) Z(M).

Proof. A section s ∈ Γ(P,S) →P) of the groupoid S
(q,p)
−−→ P2, is a pair s = (f, σ) of

a map f : P→P and a section σ of G→X2 over the graph of f , i.e., σ : X→G and
σ(x) ∈ Sf(x),x. Subgroup Γ∗(P,S) is the invertible part of the semigroup Γ(P,S), it
consists of all f ∈ Aut(P).

Group G ×
Z(G)

Z(M) acts on S
p
−→ P and on sections Γ∗(P,S). The translations of the

canonical section 1 give an embedding G ×
Z(G)

Z(M)
ι
−→ Γ∗(P,S). There is an exact

sequence 0→Γ(P,S|∆P)→ Γ∗(P,S)
τ
−→ Aut(P)→0, since (1) by assumption, G surjects

onto Aut(P), and (2) the kernel of τ consists of sections s = (1, σ), with σ a section of
S|∆P = MP . Now ι is also surjective since by lemma 20.2.2, Γ(P,S|∆P) = Γ(P,MP) =
Z(M).

20.2.6. The case of the flag variety. For the flag variety B the only choice of V⊆ B is the
unipotent radical N . Now, SB′′,B′ = {g ∈ G, gB′ = B′′} is a bitorsor for (B′′/N ′′, B′/N ′).
Group bundle BB/NB = G×

B
B/N is the trivial bundle B× H for the abstract Cartan

B and the group of sections is H (by its definition). Finally,

AutH(G/N) ∼= G ×
Z(G)

H ∼= Γ∗(B,S).

20.3. Semigroupoid SP,V = G×P (G/V )aff and its sections. We define S as the
affinization of S relative to a projection to a single copy of P.
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Conjecture. S is a semigroupoid over P

The only things established here are certain injectivity results for the restriction of sections
to BT = W and the case of SL2.

20.3.1. Evaluation of sections at points of B. We will see in 20.4 that for G = SL2 the
evaluation at opposite Borels b± yields an isomorphism

Γ(B,S)
∼=
−→ G/N+×G/N−.

In general we have

Lemma. Restriction of sections to BH , yields an embedding Γ(B,S)→֒
∏
w∈W

G/wN .

Proof. Image of 1 ∈ G×H is the collection 1 of unit cosets. Since the map is equivariant
under G×H it suffices to find the fiber at 1. It consists of all (g, h) ∈ G×H such that g
lies in all wB, w ∈ W,, i.e., g ∈ H ; and for each w ∈ W , hB equals gwB = w(gB). So the
conditions are that g ∈ HW = Z(G) and then also h = gB lies in Z(G)⊆H .

Remarks. (a) In general, the evaluation at b± is not injective. [ Let ρ be the composition

G×H →֒S→G/N+×G/N−, then ρ(g, s) = (1, 1) implies that g ∈ B− ∩ B+ = H and then
it is equivalent to h = gB±

. So the conditions are that h = gB−
= w0gB+

= w0h, i.e.,

g ∈ H{1,w0} and h = gB±
.]

(b) The fact that a section of S→B is determined by the values at W points wb, w ∈ W
seems to be a generalization of the fact that in the case of SL2, for S = C2(1), any
section is determined by the values at two points. [However, considerably fewer points
may suffice?]

20.4. The case G = SL2. In this case, S
def
= (G/N)0→B can be identified with the vector

bundle
OO2

P1(1) over P1 (which appears in various settings), and the sections Γ(B,S) with 2 by
2 matrices M2.

20.4.1. Lemma. (a) The affine closure of G/N is W
def
= C2

(b) The action of G on G/N becomes the standard G-action on W and the H-action

becomes via ρ : H
∼=
−→Gm the standard action of Gm on a vector space.

(c) The conjugation action of B on G/N gives a new structure of a B-module on W,
isomorphic to the B-module g/n.

Proof. We fix the notation. Let G = SL2⊇ B = ( ∗ ∗
0 ∗ ) = N ·H for H = ( ∗ 0

0 ∗ ) and
N = ( 1 ∗

0 1 ). Let ∆+ = {α} and ρ = α/2, so that ∆H(g/b) = {αB}. Denote W = C2 and
fix the basis (e1, e2) = (e, f).
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(a) The stabilizer of e = ( 1
0 ) is Ge = N , so ι : G/N

∼=
−→W − {0}, gN 7→ g·e is an

identification of homogeneous spaces of G.

For (b) observe that s =
(
a 0
0 a−1

)
∈ H acts on e by a = (−ρB)(s). So for h ∈ H and

g ∈ G,

ι(h gN) = ι(gN ·(hB)
−1) = ι(g (hB)

−1 N) = g (hB)
−1·e = ρB(hB)·ge = ρ(h)·ι(g).

(c) For b ∈ B and v ∈ W one has b ·
new

v = ρB(b)·bv, since for g ∈ G and v = ge

b ·
new

ge
def
= (bg)·e = b·g·b−1·e = (ρB(b)·b)·ge.

So with the new action this B-module is W(1)
def
= W⊗ρB, and this is non-canonically

isomorphic to g/n (both are indecomposable B-modules with the same weights 2, 0).

20.4.2. Corollary. (a) G×H-equivariant bundle S
def
= (G/N)0→ B is isomorphic to the

G×Gm-equivariant vector bundle (g/n)0→B. Here Gm acts on the vector bundle in the

standard way and we use identification ρ : H
∼=
−→Gm.

(b) (g/n)0 ∼= O(1)⊕O(1) ∼= TH (the twistor space of the hyperkähler manifold H). In

particular, the sections of (g/n)0 = T̃ ∗B (the universal twisted cotangent bundle), can
be identified with the set M2 of 2×2 matrices.

20.4.3. Identification of Γ(P1,S) with GL2. In this case it is simpler to think of S first.

With the conjugation action of B, G/N has been identified with W(1), and this induces
G/N ∼= W(1)−{0}. Therefore, sections of S→ B can be identified withM2. A bases e1, e2
of W gives Γ[P1,W(1)] = Γ[P1,O(1)]e1⊕ Γ[P1,O(1)]e2, with each summand of dimension
two and giving one row of M2 (or a column?).

Sections of S→ B are the non-vanishing sections of W(1) = O(1)⊕O(1). A non-zero
section s of O(1) vanishes precisely once, its divisor is a point x in P1 and s is determined
by x up to a scalar. A section s = (s1, s2) of W(1), vanishes iff one of si’s is zero, or if
they have the same divisor; but this is the same as saying that one is a multiple of the
other, i.e., that the matrix with rows si is not invertible.

Odds

20.5. Action groupoid G. The action of G on a partial flag variety P defines the action

groupoid G
p′′,p′

−−→ P2 with fibers GP ′′,P ′ = {g ∈ G, gP ′ = P ′′}. Its restriction to the
diagonal G↑ = G|∆P

is the stabilizer group bundle P P with the fiber at P ∈ P equal P .
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20.5.1. A base point P ∈ P. For any choice of P ∈ P, the restriction G|P×{P} is a bitorsor
for (PP , P×P) since the fiber GP,P is a (P, P )-bitorsor. Its total space is G (for any action

groupoid, G
p′

→ P is identified with G× P). Also, PP can be written as G×
P

P for the

conjugation action on the second factor.

20.5.2. Normal subgroup V of P . Fix P ∈ P and its normal subgroup V which will
be either the derived subgroup P ′ or the unipotent radical U of P . It defines a normal
subgroup VP of PP , hence for each P ∈ P a normal subgroup V = VP⊆ P .

If P = B then V = B′ = U .

20.6. Groupoid S = SP,V . Since VP is also a normal subgroupoid of G, we also get a
groupoid

S
def
= G/VP

p′′,p′

−−→ P2

with fibers SP ′′,P ′ = VP ′′\GP ′′,P ′ = GP ′′,P ′/VP ′.

The restriction S|P×{P} is a bitorsor for (MP ,M×P), and its total space is G/V . So, S
can be written as G×

P
G/V for the conjugation action on the second factor.

20.7. Use of quasimaps for q-cohomology of flag varieties? 19.9.3

Givental’s used quasimaps for the q-cohomology of flag varieties. In our paper [FFKM],
there is only a map in one direction and this is also what is expected here: V(G) mapping
to “Hilbert maps”.

Here, V is conjecturally constructed in terms of “stable maps” whic we defined as “Hilbert
maps”, i.e., the Hilbert space closure of the space of graphs of maps. Prsumably the
stable curves of Kontsevich have the same AG interpretation.

Is the present construction related to Giventhal’s mystery?
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21. Vinberg semigroups as sections of semigroupoids (Conjectures)

My old proposal to construct these as “stable sections” (a la Kontsevich’s stable curves),
has been partially accomplished by Brion – he does wunderbar compactifications as the
stable automorphisms of the (partial) flag variety. My problem was that I did not have a
definition of stable maps in general, but of course these are just closures of maps in the
Hilbert scheme. With this definition everything should be clear.

We will describe the Vinberg semigroup as

• (i) stable sections of a bundle over the flag variety and
• (ii) affinization of a torsor over the very wonderful compactification.

Let π1(G) = 0 and let the subset J⊆ I of simple coroots correspond to Levi factors of
parabolic subgroups in a partial flag variety P. For a Cartan subgroup T of P = UL ∈ P
one has X∗(T ) = Z[I] and X∗(P

ab) = Z[I − J ]. The cone Z+[I − J ] corresponds to a

semigroup closure P ab.

21.1. Conjectures on Vinberg semigroups. For a parabolic flag variety P consider

the torsor P̃ = G/P ′→ G/P = P for HP
def
= P ab. Its automorphism groupoid

G
def
= Aut(P̃/P)

(q,p)
−−→ P2, has fibers Gp′′,p′ = IsomHP

(P̃p′ , P̃p′′).

It lies in a semigroupoid G
def
= G ×

HP

HP , for the canonical semigroup closure HP of HP .

Let us also consider the relative affinization (GP)
aff def

= [GP
p
−→P]aff. It is a non-symmetric

object, i.e., it maps to only to the second copy of P.

21.1.1. Lemma. (GP)aff is the affinization of G̃P and G̃P is a resolution of GP .

XXX 70
� The following is also in 8.3.6 at least in part.

21.1.2. Conjectures. (a) Γ(G) = Γ∗(G) is the Vinberg group GP
def
= G ×

Z(G)
HP .

(b) The closure Γ(G) of Γ∗(G) in Γ(G) is a semigroup.

(b’) If P = B this is an extension of the wonderful compactification G/Z(G) by HP .

(b”) An open part Γ(G)
0
is an extension by HP and Γ(G) = Γ(G)

0
×
HP

HP . As an HP-torsor

over G/Z(G), this open part Γ(G)
0
corresponds to the I-colored divisor which is minus

the boundary of bolshaya yacheyka in G/Z(G).

70 !
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(c) The affinization of Γ(G) is a semigroup which we call the Vinberg semigroup

GP associated to the partial flag variety P. In turn, Γ(G) is a resolution of GP . In
particular when P is the flag variety B and G is simply connected, we get the usual
Vinberg semigroup.

Add the formulation for general P.

(d) There should be another statement concerning the action of G̃P on G/P ′×
HP

HP .

Proof. (a) is known for P = B, and all is known for SL2.

YYY
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Example. For G = Gad = PGL2 we have V = G×H . If G = PGL2 then (G/N)aff is the
nilpotent cone N and G/N = Nreg.

21.1.3. The absolute Vinberg semigroup V(G) = VB(G) as endomorphisms of (G/N)aff.

To a simply connected semisimple group G one attaches the Vinberg group V
def
= G ×

Z(G)
H

and its semigroup closure, the Vinberg semigroup V = V(G). Some of its features:

(1) Vinberg semigroup V(G) acts on (G/N)aff by H-endomorphisms and actually it
is precisely the semigroup of H-endomorphisms of (G/N)aff (8.2).

(2) In particular, one of its orbits provides a canonical map V(G)→ (G/N)aff.
(3) In characteristic zero, V(G) has been introduced by describing its algebra of func-

tions (a subalgebra of O(V)).
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22. Semigroupoid Z over P

22.1. Version one: Z. A groupoid S
(q,p)
−−→ P2 defines a space over P S ′ def

= (S
p
−→P)

and its affinization

(S ′)aff
def
= (S

p
−→ P)aff.

One can extend the structure map (q, p) to a correspondence

Z⊆ Saff/2 × P
2

which is the closure of the graph of (q, p). So, (Saff/2 )c = (SP×a)
aff need not map to P,

and ZP×a =

22.1.1. Lemma. Z is a semigroupoid.

Proof. We need to extend the multiplication S×
P
S→ S i.e., Sc,b× Sb,a→ Sc,a.

SP×b× S(b,a)→ SP×a gives

SP×b× S(b,a) =
(
SP×b× S(b,a)

)aff
→ (SP×a)

aff = SP×a.

Because of the G-equivariance one has Z = G×
P

ZP for the fiber ZP at P ∈ P, and the

fiber is a partial compactification of the group (G/V )P = M .

22.1.2. Conjecture. Affinization qaff : Zaff→ (G/V )aff is an isomorphism.

“ Proof. ” Map q is proper and generically it is the isomorphism Γπ
∼=
−→ G/N . In particular,

q is surjective. Since G/N is irreducible, so is Z.

22.1.3. Semigroup P ab. Let π1(G) = 0 and let P correspond to a subset J of the set
I of simple coroots. For a Cartan subgroup T of a Levi factor L of P = U ·L, one has

X∗(T ) = Z[I] and X∗(P
ab)

∼=
−→ Z[I −J ]. The cone Z+[I −J ] consists of cocharacters that

extend to maps from Gm = (Gc, ·) to the semigroup closure P ab. We identify P ab with
GI−J
c by cocharacters I − J .

To J⊆ I − J one can associate a subsemigroup P ab
J ⊆ P ab with degeneracy J : P ab

J =
{(zi)I−J ∈ GI−J

c , zi = 0 for i ∈ J}.

22.2. Version two: Z. The extension of the map G/V
π
−→ G/P to the affinization

(G/V )aff is the correspondence Z
q,p

⊆ (G/V )aff× P – the closure of the graph of π.

Because of the G-equivariance one has Z = G×
P

ZP for the fiber ZP at P ∈ P, and the

fiber is a partial compactification of the group (G/V )P = M .
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22.2.1. Conjecture. Affinization qaff : Zaff→ (G/V )aff is an isomorphism.

“ Proof. ” Map q is proper and generically it is the isomorphism Γπ
∼=
−→ G/N . In particular,

q is surjective. Since G/N is irreducible, so is Z.

22.2.2. Semigroup P ab. Let π1(G) = 0 and let P correspond to a subset J of the set
I of simple coroots. For a Cartan subgroup T of a Levi factor L of P = U ·L, one has

X∗(T ) = Z[I] and X∗(P
ab)

∼=
−→ Z[I −J ]. The cone Z+[I −J ] consists of cocharacters that

extend to maps from Gm = (Gc, ·) to the semigroup closure P ab. We identify P ab with
GI−J
c by cocharacters I − J .

To J⊆ I − J one can associate a subsemigroup P ab
J ⊆ P ab with degeneracy J : P ab

J =
{(zi)I−J ∈ GI−J

c , zi = 0 for i ∈ J}.

22.3. Y . Let Y
def
= G×

P
M for a certain semigroup closure M of the reductive group M .

23. Appendix. Sections of (semi)groupoids

23.0.1. Sections. The space of sections of a semigroupoid G
(q,p)
−−→ X2 is defined as

Γ(G) = Γ(X,G)
def
= Γ(G

p
→X).

Lemma. (a) Γ(X,G) consists of pairs s = (f, σ) of a map f : X→X and a section σ of
G→X2 over the graph Γf , i.e., σ : X→G and σ(x) ∈ Gf(x),x.

(71)

(b) Γ(X,S) is a semigroup for

(f ′′, σ′′)·(f ′, σ′)
def
= (f ′′◦f ′, σ), for σ(x)

def
= σ′′(f ′(x))·σ′(x).

(c) A semigroupoid G over X also defines a semigroup G↑
def
= G|∆X

over X , and the
corresponding semigroup Γ(X,G↑). There is an exact sequence of pointed sets

0→ Γ(X,G↑) → Γ(G)→ End(X).

Proof. (b) Here, σ′(x) ∈ Gf ′(x),x and σ′′(f ′(x)) ∈ Gf ′′(f ′(x)),f ′(x), hence σ(x) ∈ Gf ′′(f ′(x)),x.
�

Remark. If G is a groupoid, then G↑ and its sections are groups and so is Γ∗(X,G)⊆Γ(X,G)
defined as the inverse of Aut(X) in Γ(G). Then one has an exact sequence of groups

0→ Γ(X,G↑) → Γ∗(G)→ Aut(X).

71 (One can say that s(x) = (f(x), σ(x), x) for x ∈ X .)
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23.0.2. Semigroup closures from semigroupoid closures. We see that any groupoid G gen-
erates a group Γ∗(G). If a groupoid G lies in a semigroupoid G, then the group Γ∗(G)

naturally extends to a semigroup Γ∗(G) – the closure of Γ∗(G) in Γ(G).

The “closure” here means the closure of the space of graphs of sections γf,σ = σ(X) ⊆ G

in the Hilbert scheme of the total space of G. I will informally call elements of Γ∗(G) the
“stable” sections of G.

23.0.3. A framework for constructing extensions of groups: Extensions of automorphism
groups of objects over a given space. Suppose that our groupoid G is of the form Aut(X),
the groupoid of symmetries of an object X over X . Then, (f, γ) ∈ Γ∗[Aut(X)] that lies
above some f ∈ Aut(X) is a family of γx ∈ Isom(Xx,Xf(x)), i.e., an isomorphism of X
and f ∗X.

The image of the projection Γ∗[Aut(X)]→ Aut(X), (f, σ) 7→ f , is the stabilizer subgroup
Aut(X)[X] of the isomorphism class [X] of X, i.e., all f ∈ Aut(X) such that f ∗X is iso-
morphic to X . So we get an exact sequence

0→ Aut(X) → Γ∗[Aut(X)]→ Aut(X)[X] →0.

Therefore, Ãut(X)
def
= Γ∗[Aut(X)] is an extension of Aut(X)[X] by Aut(X).

Remark. Such extensions come with semigroup closures Ãut(X, [X]) from the
semigroupoid closure End(X/X)⊇ Aut(X, [X])).

Example.
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Part 6. Affinization of G/V for V = UP or V = P ′

Here we use the affinization of quasiaffine schemes as a construction tool.

23.0.4. Notation. Here we assume that G is simply connected semisimple group over a
closed field k. Fix a Borel subgroup B = N ⋉ T and let H = B/N . For a dominant
weight λ let W̌ (λ) be the corresponding coWeyl module. Let W̌i = W̌ (ωi), i ∈ I, and

W̌
def
= ⊕i∈I W̌i.

24. Affinization of (G/P ′)aff

24.1. Subgroups V⊆G with G/V quasiaffine.

Question. Is G/V is quasiaffine for any unipotent subgroup V⊆G?

Is G/V not quasiaffine precisely when V meets some subgroup S with Lie(S) ∼= sl2 in a
Borel subgroup BS? (In that case G/V contains S/BS

∼= P1.) If not then there should
be a representation V and a vector v such that Gv is V ?

Example. For an affine G-space X and any point x ∈ X , the stabilizer Gx has the property
that G/Gx is quasiaffine (since G/Gx

∼= G
x⊆X). This in particular applies to centralizers

in G of elements of g or G.

24.2. Summary. Each (G/P ′)aff has a resolution which is obtained by extending the

map G/P ′→ G/P (a P ab-torsor), to the affinization (G/P ′)aff. The resolution is a P ab-

torsor over G/P . The appearance of P ab in the resolution is just a fancy way of saying

that P ab is the closure of P ab in (G/P ′)aff.

The semigroup structure on P
ab

is the same problem as the construction of the semi-
groupoid structure on S.

G-orbits in the resolution and in (G/P ′)aff are in a bijection. For instance, G-orbits in
(G/N)aff are of the form G/P ′

J for all J⊆ I. In this way (G/P ′
J)

aff embeds into (G/N)aff

as the closure of G/P ′
J .

24.3. Affinization Y of G/N . For convenience we choose a frame yi of W̌
N
i . This gives

y = (yi)i∈I ∈ W̌ and a G-orbit Yφ
def
= G·y⊆W̌ . Moreover, for any J⊆I there is a version

with degeneracy J :

YJ
def
= G·yJ for (yJ)i =

{
yi if i ∈ I − J,

0 if i ∈ J.

Let PJ = LJUJ be the standard parabolic obtained by adding J to B (and to T ).
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be the subvariety of W̌ =
∏

i∈I W̌i given by all systems of vectors v = (vi)i∈I that satisfy
Plücker equations. It is stratified by degeneracy J⊆I:

Y = ⊔J⊆I YJ , YJ
def
= {v ∈ Y , vi = 0 iff i ∈ J}.

24.3.1. Lemma. (a) For J⊆I, the stabilizer of yJ in G is P ′
J , hence G/P ′

J

∼=
−→YJ .

(b) Vector bundle G×PJ
[
∏

i/∈J W̌N
i ] is a resolution of YJ .

(c) The closure of YJ in W̌ is the union of all YK with J⊆K (the orbits more degenerate
then YJ). Moreover, the resolution from (b) is a bijection on G-orbits.

Proof. (a) is standard.

(b) Since
∏

i∈I ωi : T
∼=
−→(GM)I , one has T ·yJ =

∏
i/∈J W̌N

i − {0}, hence YJ⊇T ·yJ =∏
i/∈J W̌N

i . Therefore the map G×PJ

∏
i/∈J W̌N

i −→YJ is well defined. It is proper since

its composition with YJ⊆W̌ factors into G×PJ

∏
i/∈J W̌N

i ⊆ G×PJ
W̌ ∼= G/PJ×W̌ −→W̌ .

Above YJ the map is an isomorphism G×PJ
[
∏

i/∈J W̌N
i − {0}]←−∼=

G×PJ
PJ/P

′
J
∼= G/P ′

J .

(c) G-orbits in G×PJ
[
∏

i/∈J W̌N
i ] are the same as the orbits in

∏
i/∈J W̌N

i of PJ , i.e., of P
ab
J

which is identified by
∏

i/∈J ωi with (Gm)
I−J . So they are given precisely by the degeneracy

J⊆K⊆I.

Since G×PJ
[
∏

i/∈J W̌N
i ] −→ YJ is surjective, the same is true for the map of sets of orbits.

However, orbits YK = G·yK are clearly distinct.

24.3.2. We will denote G/P ′
J

def
= YJ .

24.3.3. Corollary. Let P be a parabolic subgroup PJ .

(a) Space G/P ′ is quasi affine.

(b) The affine closure of G/P ′ is the normalization of the closure G/P ′
J of YJ in W̌ .

(c) The lift of the generic stratum to the resolution G/P ′→֒G×P (
∏

Jo W̌N
i ) is an isomor-

phism on affinizations.

Proof. YJ is affine and if for J⊆K⊆I there is some i ∈ K − J ,

dimYJ − dimYK = dimG/(PJ)
′ − dimG/(PK)

′ = dim g/(pJ)
′ − dim g/(pK)

′

= dim[(pK)
′/(pJ)

′] ≥ dim(gi⊕k·̌i) = 2.

So, we see that the affine closure of YJ is the normalization of YJ by 27.1.1.

(c) G/P ′ ∼= G×P (
∏

Jo W̌N
i −{0}) ⊆ G×P (

∏
Jo W̌N

i ) Here, O
G×P (

∏
Jo W̌N

i )
/
G/P )

is a sum

of line bundles O(
∑

Jo riωi on G/P over all r ∈ ZJ
o

+ . It lies in O
G×P (

∏
Jo W̌N

i )
/
G/P )

which

is such sum over all r ∈ ZJ
o

. But a line bundle O(
∑

Jo riωi has sections only for r ∈ ZJ
o

+ .
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24.3.4. Conjecture. G/P ′
J (

def
= YJ) is normal. So it is the affine closure (G/P ′

J)
aff of

G/P ′
J .

24.3.5. Remark. The number of G-orbits in the affine closure of G/N is 2rank, and their
mutual position is “toric”, the same as for the G-orbits in the wonderful compactification
of G.

24.3.6. Corollary. The restriction of the the resolution of G/N to G/P ′
J factors into a

bundle over the resolution of G/P ′
J , with fibers isomorphic to the flag variety of the Levi

factor LJ .

Proof. Let J⊆K, the fiber at yK ∈ YK ∼= G/P ′
K of the the resolutions of G/N is the set

of all Borels B such that B′ lies in the stabilizer P ′
K of vK , i.e., B⊆PK ; while the fiber

of the the resolutions of G/P ′
J is the set of all parabolics P ∈ PJ such that P ′⊆P ′

K , i.e.,
P⊆PK

24.3.7. Conjecture. The fibers of the above resolutions of all G/P ′
J are reduced.

24.3.8. Remarks. Denote by X̃ the resolutions of X = G/P ′
J . The resolution factors

through the affinization as X̃
q
−→X̃aff p

−→X . Now p is the normalization and q is surjective
since it is proper and generically an isomorphism. Maps p and q are bijections of sets of
G-orbits (both maps are surjective hence surjective on G-orbits and the composition is a
bijection of orbits).

Moreover, for any orbit α in X̃, map q(α) −→ p(α) is an isomorphism. To start with,
α −→ p(q(α)) has reduced and connected fibers (it can be written as G/P ′ ∩ B −→G/P ′

and the fibers P ′/P ′ ∩B are partial flag varieties). Since q|α is surjective and flat, p|q(α)
also has reduced and connected fibers. However the fibers are also finite since p is a
normalization.

It seems that

(1) The scheme theoretic inverse of the K-stratum G/P ′
K in the resolution is the K-

stratum of the resolution: G/P ′
K ∩ B. (Above yK ∈ YK one has a point (B, yK)

in the K-stratum of the resolution, and the map of the K-strata is G/P ′
K ∩ B −→

G/P ′
K).

(2) The scheme-theoretic fiber at the vertex 0 of the cone G/P ′
J is the zero section of

the resolutions as a vector bundle over G/PJ ,

This would imply the conjecture: since q has connected reduced fibers and p is proper
and surjective, then p also has connected reduced fibers. Since p is finite (affine proper
and surjective), it is an isomorphism.

One can also argue that p is an isomorphism on strata and that the fibers can be calculated
on the strata.
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24.4. Resolution of (G/P ′)aff.

24.4.1. Corollary. Let PJ be the partial flag variety that contains P = PJ .

(a) A resolution of G/P ′ is given by the correspondence

G̃/P ′ def
= {(v, P ) ∈ G/P ′×PJ , P ′ fixes v}

between G/P ′ and PJ .

(b) Above a G-orbit YK ∼= G/PK
′, the fibers are isomorphic to the partial flag variety

P(LJ )J of all parabolics of type J in the Levi factor LK of PK .

(c) Over PJ , the resolution is the sum ⊕i/∈J O−ωi
, of all duals of fundamental line bundles,

that make sense on PJ .

Proof. (a) is clear form the definition of the resolution.

(b) The fiber of the resolution at vK consists of all parabolics P ∈ PJ such that P ′ lies in
the stabilizer GvK = PK

′, i.e., P⊆PK . These are the same as the parabolics of type J in
the Levi factor of PK .

(c) The fiber of the resolution at PJ ∈ PJ is ⊕i/∈I W̌
N
i = ⊕i/∈I k−ωi

. �

24.4.2. Remark. These resolution are usually not minimal models, even for (G/N)aff.

(1) For G = SL2, Ỹ→Y is the blow-up of Y = C2.

(2) Also, for each partial flag variety P we have an analogous space ỸP⊆ Y×P, and some
of these spaces are smooth.

(3) For G = SL3 and W̌ = Lω1
= A3, Y ∼= {(v, λ) ∈ W̌×W̌ ∗, 〈λ, v〉 = 0 }, has a small

resolution {(v, λ, L) ∈ W̌×W̌ ∗×P(W̌ ), λ ⊥ L ∋ v }. This is rank three vector bundle
over P(W̌ ) and the fiber at (λ, v) ∈ Y is: P2 at (v, λ) = (0, 0) (codimension 5), P1 if
just one of v and λ vanishes (codimension 3). (In general I do not expect the existence of
semi-small resolutions.)

24.5. Semigroup P ab. In honor of the normality conjecture 24.3.4 above, we denote here
G/P ′

J by (G/P ′)aff.

24.5.1. Lemma. Let P = LU be PJ = LJUJ .
(a) Let P ab be the closure of P ab = P/P ′ in [G/P ′]aff, the identification (ωi)i∈I :

P ab
∼=
−→ GI−J

m , extends to P ab
∼=
−→ GI−J

c .

(b) P ab is canonically a semigroup with an open subgroup P ab. The action of P ab on

G/P ′ extends to an action of P ab on [G/P ′]aff.
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(c) For any right P ab-orbit O in G/P ′, the closure in [G/P ′]aff is described by

O ×
Pab

P ab
∼=
−→ O.

Proof. In (a), [G/P ′]aff consists of all v = (vi)i∈I ∈ W̌ = ⊕i∈I W̌i, that satisfy Plücker
equations and vi = 0, i ∈ J . Here G/P ′ is given by: vi = 0 iff i ∈ J .

Observe that P ab = P/P ′ embeds into G/P ′ as the fixed point set for the left multipli-
cation by P ′. So in the Plücker model

P/P ′ = {v ∈ ⊕W̌ P ′

i , vi 6= 0 iff i ∈ I − J & Plücker condition}.

This is
∏

i∈I−J (W̌N
i − 0), since (i) (W̌i)

P ′

is W̌N
i for i ∈ I − J and 0 otherwise, and (ii)

Plücker condition is automatic in ⊕W̌N
i . Therefore the closure of P/P ′ is ⊕i∈I−J W̌N

i .
In terms of functions this description becomes

O(P ab) = C[⊕i∈I−JZωi] ⊇ C[⊕i∈I−JZ+ωi] = O(P ab),

and puts a semigroup structure on P ab. This semigroup acts on G×
P
P ab, hence also on

its affinization [G/P ′]aff.

Now (c) follows from (a) by left translations.

24.6. Plücker model G/N of G/N . We denote by G/N the G-orbit Yφ = G·y in W̌ .

“Pluecker equations” means any set of generators of the ideal of the closure of G/N = G·y

in W̌ . We will recall the standard choice of Pluecker equations in characteristic zero. In
general Pluecker equations seem only known in characteristic zero.

24.6.1. I-data. We say that a system of vectors vi ∈ L(ωi), i ∈ I, satisfies Pluecker
equations if for any multiplicities λi ≥ 0, the projection of ⊗i∈I W̌ (ωi)

⊗λi to the unique
G-invariant complement of W̌ (

∑
i∈I λiωi), kills ⊗i∈I v

⊗λi
i .

24.6.2. X∗(T )+-data. Recall that for dominant λi’s, the space

Hom[W̌ (λ1)⊗· · ·⊗W̌ (λs), W̌ (λ1 + · · ·+ λs)]

is one dimensional. Let us supply each W̌ (λ) with a frame yλ of W̌ (λ)λ. Then
the above space of homomorphisms has a canonical frame mλ1,...,λs characterized by
yλ1⊗· · ·⊗yλs 7→ yλ1+···+λs.

Now, equivalently, we say that a system of vectors vλ ∈ W̌ (λ), λ dominant, satisfies
Pluecker equations if for any dominant λ and µ,

• (i) mλ,µ(yλ⊗yµ) = yλ+µ,
• (ii) the projection of W̌ (λ)⊗W̌ (µ) to the unique G-complement of W̌ (λ+µ), kills
vλ⊗vµ.
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24.6.3. Identification data. A particular identification of G/N with this Pluecker model,
requires fixing in each fundamental representation W̌i of G a frame yi of W̌

N
i . Then

G/N
ι
→֒

∏
W̌i by gN 7→(gyi)i∈I .

24.6.4. The open cell and its boundary divisors. The complement of the open cell:

B−

∼=
−→B−·N/N⊆G/N , is a divisor in G/N . Its irreducible components Yi, i ∈ I, are given

by the conditions vi ⊥ (W̌ ∗
i )
N .

25. Affinization of G/U

25.1. (G/V )aff. We consider a normal subgroups V of a parabolic P = U⋉L. We assume
that M = M is reductive, i.e., that V contains U . Then

25.1.1. Conjecture. G/V is quasiaffine.

We will usually only cover the cases V = P ′ (24) and V = U . Then the above conjecture
is in Corollary 25.3.2.

25.2. Stratifications of (G/N)aff and (G/N)aff×(G/N)aff. Let G×H2 act on
G/N×G/N by (g, b′N.b′′N)·(xN, yN) = (gxb′N, gyb′′N).

25.2.1. Lemma. (a) G-orbits in (G/N)aff are indexed by subsets J⊆I, J 7→YJ .

(a) B-orbits in (G/N)aff are indexed by pairs (J, w) of a subset J⊆I an a coset w ∈ W/WJ ,
(J, w) 7→YwJ .

(c) The orbits of G×H2 in (G/N)aff×(G/N)aff are indexed by triples (J,K,w) of subsets
J,K⊆I and a coset w ∈ WK\W/WJ , (J,K,w) 7→YwJ,K .

Proof. (a) is in the lemma 24.3.1. The orbit associated to J⊆I is isomorphic to G/P ′
J ,

hence the B-orbits in it are the same as for B\G/PJ , and therefore indexed by W/WJ ∋
7→B·wyJ .

(c) A G×G-orbit in (G/N)aff×(G/N)aff is by (a) associated to two subsets J,K⊆I and of
the form G/P ′

J×G/P ′
K . The orbits of G×H

2 in G/P ′
J×G/P ′

K . are the same as the orbits

of G in G/P aff
J ×G/PK , but G\[G/P aff

J ×G/PK ]
∼=
−→PJ

−1\G/PK ∼= WJ\W/WK . Let w ∈ W
define a coset w̄ ∈ WJ\W/WK , the corresponding G×H2-orbit passes through (yJ , wyK).

25.2.2. Question. Describe the closure relations in the stratifications above,

25.2.3. Question. (KL-exercise) Find the IC-stalks for these three stratifications.
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25.2.4. Remarks. (1) Case (a) should be doable from the above resolutions of G-orbits in
(G/N)aff.

(2) Cases (b) and (c) should be combinations of the standard KL-theory and (a).

(3) Hopefully, settings (b) and (c) give more symmetries (of the Fourier type), then the
standard KL-theory. For instance the Kazhdan-Laumon extension of intertwining functors
to (G/N)aff.

25.3. G-orbits in (G/N)aff×(G/N)aff.

25.3.1. Stratification of (G/N)aff×(G/N)aff according to the G-action. The stratification
of (G/N)aff×(G/N)aff given by the action of G is the stratification by the orbits of G×H2,
so any G-orbit is of one of the types

Y w̄
J,K

def
= G·(yJ , wyK) ∼= G/G(yJ ,wyK) = G/P ′

J ∩
w P ′

K .

Conversely, for any two parabolic subgroups P,Q of G, G/P ′∩Q′ is isomorphic to one of
Y w
J,K .

For fixed J and K, the union of all G×H2-orbits YwJK is a G2-orbit YJ×YK ∼=
G×G/P ′

J×P
′
K . It is a P ab

J ×P
ab
K -torsor over a partial flag variety G/PJ×G/PK . So, the

mutual position of all G×H2-orbits Y w̄JK , w̄ ∈ WJ\W/WK.

25.3.2. Corollary. (a) For any two parabolic subgroups P and Q, G/P ′∩Q′ is quasiaffine.
In particular:

(b) G/N ∩ wN is quasiaffine for w ∈ W .

(c) [Grosshans] For any parabolic P , G/U is quasiaffine.

Proof. Clearly (b) is a case of (a), also (c) is a case of (b) with w = wL
0 . Finally, (a) is

seen by embedding the orbits YwJ,K into (G/N)aff×(G/N)aff.

25.3.3. Question. Describe the G-orbits in the closure of a single G orbit Y w
JK = G/P ′

J∩
w

P ′
Q in (G/N)aff×(G/N)aff, and their closure relations.

25.3.4. Remarks. (1) In the special case when the orbit G/P ′∩Q′ has P ′∩Q′ =w N∩N =
U for w = wL

0 , G-orbits in the closure are parameterized by the WL-orbits in the set of
T -roots in uab.

So there may be a generalization of the action of WL on ∆(uab) involving ∆T ([n∩
w n]ab).

(2) In some sense the largest G-orbit is Y w0

φφ = G·(y, w0·y) ∼= G/N ∩w0 N = G. However,
this orbit is closed.
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The corresponding G×H2-orbit is Yw0

φφ = ∆G·(T ·y, Tw0·y) = ∆G·(T ·y, w0·y) =
∆G·(y, w0·y)·H×1 (so it is an orbit of G×(H×1) but not of the Vinberg group since the
center acts from the left in a diagonal fashion, but not from the right).

25.4. Semigroup M . If M
def
= M embeds into (G/V )aff, say, when G/V is quasiaffine,

we define M = M as the closure of M in (G/V )aff.

25.4.1. Question. When is M (a) normal, (b) smooth?

25.4.2. Lemma. M is a semigroup closure of M and G×M acts on (G/V )aff.

Proof. The claim is that the action (G/V )aff×M −→(G/V )aff extends to (G/V )aff×M −→
(G/V )aff. Then in particular the multiplication on M extends to M so M is a semigroup.

We start with the G-action on (G/V )aff: G×(G/V )aff −→(G/V )aff, and we restrict it to

G×M −→(G/V )aff.

Since the left multiplication action of V on M is trivial, this factors to

G/V×M −→(G/V )aff,

and now we just take affinizations

(G/V )aff×M = [G/V×M ]aff −→(G/V )aff.

(M is affine since V is normal in P .) To see that this is compatible with (G/V )aff×M −→
(G/V )aff repeat the above procedure with M instead of M .

25.5. G×L-orbits in (G/U)aff.

25.5.1. Theorem. (Conjecture.) G×L-orbits on (G/U)aff and L×L-orbits on L (a gener-
alization of the rank stratification of matrices), are both parameterized by the WL-orbits
in ∆T (u

ab).

25.6. Examples of affinizations (G/U)aff.

25.6.1. Vector spaces. Let G = SL(A) and A = E⊕F with dimE = n and dimF = 1.
Let P and P− be the stabilizers of E and F , they have Levi decompositions P± = U±⋉L
where L = P ∩ P− is the stabilizer of {E, F}.

Let Yφ be the set of all v ∈ An which are independent.
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Lemma. (a) A choice of a basis e = (e1, ..., en) of E gives G/U
∼=
−→Yφ by gU 7→ge.

(b) This induces (G,L)-identifications with G acting on A and P on E,

(G/U)aff
∼=
−−−→ Homk(E,A)

⊆

x ⊆

x

G/U
∼=
−−−→ Injk(E,A)

(G/P ′)aff
∼=
−−−→ A

⊆

x ⊆

x

G/P ′
∼=
−−−→ A− {0}

25.6.2. Corollary. (a) P−⊆G/U is now described as all ( αa ) ∈ Hom(E,A) =
End(E)⊕Hom(E, F ), such that α is invertible.

(b) L ∼= GL(E) and L ∼= End(E) is a matrix semigroup.

25.6.3. Maximal parabolics in type A. Let G = SL(A) and A = E⊕F with dimE = e and
dimF = f . The stabilizers P and P− of E and F have Levi decompositions P± = U±⋉L

with a common Levi subgroup L
def
= P ∩ P− which is the stabilizer of {E, F}.

Let Aφ be the set of all pairs (v, u) ∈ Ae×(A∗)f such that vi ⊥ uj and that vi’s and uj’s
are independent.

These data are the same as a basis of a subspace W⊆A of dimension e = dim(E) plus a
basis of A/W , so GL(A) acts transitively on such pairs. If v and u are bases of E and
E⊥, then the stabilizer GL(A)u,v is the unipotent radical U of the parabolic P = GE (for
G = GL(A) or G = SL(A)).

Therefore,

[GL(A)/U ]aff = Ae⊕(A∗)f = Hom(E,A)⊕Hom(A, F ).

(GL(A)/U is open dense in the RHS which is affine and normal.) Also, one can describe

[SL(A)/U ]aff by fixing a frame φ in the line Hom(
top
∧F,

top
∧E), then [SL(A)/U ]aff is the

closure in Ae⊕(A∗)f of all (v, u) ∈ Ae⊕(A∗)f such that v1∧· · ·∧ve⊗u1∧· · ·∧uf = φ.

25.7. Functions on M : a mess. The difficulties appear in positive characteristic. Here,
the asymptotic cone is much simpler to understand then the group itself.

25.7.1. Lemma. (a) O(M) = Im[O(G/V ) −→O(M).

(b) Gr[O(M) = ⊕M -dominant µ LM(−µ)⊗LM(µ) contains

Gr[O(M)] = ⊕G-dominant λ LM (−λ)⊗LM(λ).

Proof. (a) follows from the conjecture 25.1.1. (b) follows from (a).

Proof. Denote λ∗ def
= − w0λ and by W (µ) denote the coWeyl module with an extremal

weight λ.
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Recall that O(G) has an increasing filtration Fλ, λ ∈ X∗(T )+; such that

Gr[O(G)] = ⊕G-dominant λ W̌ (λ∗)⊗W̌ (λ).

Since the modules W̌ (λ)V = L( ???

25.7.2. Two-sided quotients of G.

25.7.3. Lemma. L
∼=
−→ U−\\G//U . and Lab

∼=
−→ P ′

−\\G//P ′.

26. Partial affine closures of G/P ′ (A dull and aching pain)

A dull and empty section on nothing (instead of nothingness). The idea was to list
systematically all partial affinizations of G/P ′. Should be skipped.

26.1. Notation. We will denote by H ′ the derived subgroup of H and Hab def
= H/H ′.

26.1.1. Lemma. (a) Let P be a partial flag variety, let P ∈ P be a parabolic subgroup

with a Levi decomposition U ·L and denote P̄
def
= P/U .

(i) L′ is connected and semi-simple and P ′ = L′·U .

(ii) L = L′·Z(L)0 and P = P ′·Z(L)0.

(iii) Groups ZP
def
= Z(L)·U/U

∼=
−→Z(P̄ ) and HP

def
= P ab

∼=
−→P̄ ab are canonically independent

of the choice of P ∈ P. The canonical map ZP→HP is a finite cover and it factors into
ZP →֒H։HP¿ In particular ZB = H = HB.

(b) Let Q⊆P be another parabolic subgroup, then

(i) L′ ∩Q is a Levi subgroup in L′, and

(ii) (L′ ∩Q)′ = L′ ∩Q′.

26.2. Partial affine closures of G/N . Instead of G/N one can consider its affine closure

G/N and then S̄
def
= G×

B
G/N→B is the affine closure of the B-variety S.

More generally, for a pair of parabolic subgroups P⊇Q, consider the G-bundle
G/Q′→G/P ′ with the fiber P ′/Q′ ∼= L′/L′ ∩Q′ = L′/(L′ ∩Q)′. Denote its relative affine

closure by YG(Q⊆P )
def
= (G/Q′→G/P ′)aff. This is a G-bundle over G/P ′ with the fiber

[L′/(L′ ∩Q)′]aff = YL′(L′ ∩Q⊆L′).

Actually, in general, YG(P⊆P ) = (G/P ′→G/P ′)aff = G/P ′ lies in YG(P⊆G) =
(G/P ′→G/G′)aff = (G/P ′)aff. This is a special case of the following functoriality

(1) Q1⊆Q2⊆P gives a map YG(Q1⊆P )→YG(Q2⊆P ),

(2) Q⊆P1⊆P2 gives a map YG(Q⊆P1)→YG(Q⊆P2).
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Here, if Q1⊆Q2⊆P there is a G/P -map G/Q′
1։G/Q′

2, and it induces a map
(G/Q′

1։G/P ′)aff → (G/Q′
2։G/P ′)aff. Also, if Q⊆P1⊆P2, there is a G/P ′

2-map
G/Q′

։G/P ′
1, and it induces (G/Q′

։G/P ′
1)

aff → (G/Q′
։G/P ′

2)
aff.

In the basic case Q = B ∈ B, one has YG(B⊆B) = G/N⊆ (G/N)aff = YG(B⊆G). The

G-bundle G/N = G/B′→G/P ′ has fibers P ′/N = L′·U/NL′·U ∼= L′/NL′ for NL′

def
= N ∩

L′. So the fibers of the relative affine closure (G/N→G/P ′)aff→G/P ′ are isomorphic to
(L′/NL′)aff.

26.3. Partial closures of S. If Q⊆ P then Q acts by conjugation on G/Q′
։G/P ′, so

there is a G-bundle over G/Q,

SG(Q⊆P )
def
= G ×

Q
(G/Q′

։G/P ′)aff = G ×
Q
YG(Q⊆P ).

The relations of S’s is the same as for Y ’s. In particular S(P,G,G) =
G×
P
(G/P ′

։G/G′)aff = G×
P
(G/P ′)aff is the affine closure of the G/P -variety

SG(P⊆P ) = G×
P
(G/P ′

։G/P ′)aff = G×
P
G/P ′.

Over G/B = B we have S
def
= SG(B⊆B) ⊆ S

def
= SG(B⊆G).

26.4. Global sections. We are interested in the spaces SG(Q⊆P )
def
= Γ[Q/Q,S(Q⊆P )]

and in the inclusion SG(P⊆P ) = Γ[G/P,G×
P
G/P ′]⊆ SG(P⊆G) = Γ[G/P,G×

P
(G/P ′)aff].

26.4.1. Symmetries. For a parabolic subgroup P ∈ P, group G×P ab = G×HP acts on

G/P ′→G/P
def
= P. For a pair Q⊆P , via H։Qab

։P ab, we get an action of G×H on
G/Q′→G/P ′, hence also on S ⊆S(Q,P,G)⊆ S and the corresponding sections.

27. Appendix, Affinization

27.1. Affinization functor. Affinization of a scheme X→B with a base B is

Xaff = (X→B)aff
def
= Spec π∗OX .

Lemma. (a) Affinization with a base is a functor.

(b) Affinization is the right adjoint of the inclusion of affine B-varieties into all B-varieties.
This includes a canonical map (X/B)→ (X/B)aff.

Proof. (a) For X
f
−→ Y

b
−→B = X

a
−→ B one has a map a∗OX = b∗f∗OX ← b∗OY , i.e.,

simply the pull back of functions f∗OX ← OY .

(b) For any B-variety X→B there is a canonical B-map X→Xaff, such that any B-map
X→Y with Y a B-affine variety factors through X→Xaff: Hom[X, Y ] = Hom(Xaff, Y ).
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(c) [Dependence on the base.] Composable maps X
f
−→B′ −→B give a diagram

X −−−→ (X/B′)aff
α

−−−→ (X/B)aff

f

y
y β

y
B′ −−−→

=
B′ −−−→ (B′/B)aff.

(d) [Functoriality in pairs.] In general, any map of pairs

X ′ f
−−−→ Xy

y
B′ g
−−−→ B,

gives a map of

afinizations of pairs which is a combination of the maps of the types α (changes base) and
β (changes the scheme itself) above:

(X ′/B′)aff −→(X/B)aff
def
= [(X ′/B′)aff

α
−→ (X ′/B)aff

β
−→ (X/B)aff].

�

27.1.1. Quasiaffine spaces, resolutions and normality. We say that X/B is quasiaffine if
it is open in some affine map Y/B.

Recall that the normalization of an affine variety is affine ([Ha] Exc. 3.17), and if X is of
finite type over a field then the normalization is a finite map ([Ha] Exc. 3.8).

Lemma. (a) If X is quasiaffine(?), X→ Xaff is an open dense embedding.

(b) For a normal quasiaffine X , the affinization Xaff is again normal.

(c) Xaff as a normalization.] If a normal variety X is open and dense in an affine variety
Y and the boundary is in codimension 2, then Xaff is the normalization of Y .

(d) Let Ỹ
π
→ Y be a “resolution” of an affine variety Y (in the sense that it is proper and

generically an isomorphism), If the fibers are connected then π is a Y -affinization.

Proof. (a) Let X be open in an affine scheme Y . Then X⊆ Y factors through X→ Xaff,
hence X→ Xaff is also an embedding. Since the closure X of X in Xaff is affine, it equals

Xaff. (b) Since the normalization X̃aff→ Xaff is affine and an isomorphism over X , it is
an isomorphism.

(c) X is also open and dense in the normalization Ỹ of Y . Since Ỹ→Y is finite, the
boundary of X in Ỹ is again in codimension 2. Together with the normality of Ỹ it
implies that the functions on X extend uniquely to Ỹ . So Ỹ is affine and O(X) = O(Ỹ ).

(d) Under these conditions π∗OỸ←−∼=
O(Y ).
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27.1.2. Examples of affinization of varieties.

(1) For G = SL(U) and P the maximal parabolic such that P ′ is the stabilizer of
0 6= e ∈ U , (G/P ′)aff = U is smooth.

(2) For G = SL(U) ∼= SL3, (G/N)aff = {(v, u∗) ∈ U⊕U∗, v ⊥ u∗}.
(3) [Nilpotent orbits.] The affinization of O ∈ G/N is the normalization of O.
(4) g̃aff = = g×g//Gh

Proof. (2) One embeds G/N into U⊕U∗ as the orbit of the B-highest vectors (v0, u
∗
0).

The only singularity is the vertex (the differential dv,λ〈−,−〉 = 〈v,−〉+ 〈−, λ〉 vanishes
only for v = λ = 0).

(3) is by the lemma 27.1.1.c.

(4) Use lemma 27.1.1.d. �

Remark. An example of “resolutions” that are not affinizations are normalizations. (Nor-
malizations are affine so they can be affinizations.)

Question. If Y is normal, is any resolution an affinization?

27.1.3. Affinization of the map G/N → G/P ′ for G = SL3. For a maximal parabolic
subgroup P = Pβ⊇B and U = C3 one has

G/N −−−→ (G/N→G/P ′)aff −−−→ (G/N)aff = {(v, u) ∈ U⊕U∗, v ⊥ u}

f

y φ

y pr1

y

G/P ′ = U − {0} −−−→
=

G/P ′ ⊆
−−−→ (G/P ′)aff = U.

The fiber of f is P ′/N ∼= A2 − {0}, so φ is an A2-bundle. The fiber of pr1 at the single
boundary point 0 in (G/P ′)aff −G/P ′ jumps to A3.

27.2. Resolutions from correspondence extensions of maps to affinizations. We
are looking for a resolution of Xaff for smooth X , that maps into a convenient complete
variety Y . If X is open in some X, any B-map f : X→Y extends to a correspondence
Y ← F→X, with F the closure of the graph Γ⊆ X×Y in X×Y .

If Y is complete then F→ X is (a) proper (as a composition F⊆ X×Y→ X), (b) generically

an isomorphism (overX it is Γ
∼=
−→X) and (c) surjective (by (a) and (b)). So if Y is complete

and F is smooth then F is a resolution of X.

Finally, we consider a quasiaffine X open in X = Xaff and a map f from X to a proper Y .
The affinization F aff→ Xaff is a finite map – it is proper and the fiber at y ∈ Xaff embeds
into π0([F→ Xaff]−1y). So if Xaff is normal, the affinizations of X and F coincide.
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27.2.1. Examples. (1) Let V be a vector space and X = V − {0}
f
→ P(V ) = Y . The

correspondence Xaff ← F→Y is the blow up V ← Ṽ→P(V ).

(2) P ab-torsor X = G/P ′→ Y = G/P gives correspondence (G/P ′)aff ← F→G/P . Here,

F is a resolution of (G/P ′)aff and it is a P ab-torsor over G/P (see 24.3.1).

(These examples coincide for G = SL2 in (2) and V = C2 in (1).)
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