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Not for distribution

This is a sketch of a Loop Grassmannian construction of U(ň). An element x of U ǧ(η)
gives a map between weight functors Fφ→Fφ+η. For x in U ň this can be realized as a map
between objects that represent weight functors - the constant sheaves on semi-infinite
strata.

Contents

1. Grassmannians over a curve 2

1.1. Semi-infinite subschemas of the BD-Grassmannian 2

1.2. Pro-objects kS and ind-objects ωS 2

1.3. Coincidence of local and compactly supported cohomology 3

1.4. Lemma 4

1.5. Weight functors 4

1.6. Convolution [MV] 4

1.7. Lemma 5

2. Algebra U̇+ 5

2.1. Maps between constant sheaves 5

2.2. Algebra U̇+ 6

2.3. Algebra U+ 7

2.4. Lemma 7

2.5. Algebra structure 7

2.6. Coalgebra structure 8

2.7. The action of U+ on the fiber functor F 8

Date: Long long time ago in a land far away ...
M.F. and A.K. are partially supported by the U.S. Civilian Research and Development Foundation un-

der Award No. RM1-265. M.F. is also partially supported by INTAS94-4720. I.M. is partially supported
by NSF.

1



2 BORIS FEIGIN, MICHAEL FINKELBERG, ALEXANDER KUZNETSOV, AND IVAN MIRKOVIĆ
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1. Grassmannians over a curve

We will extend the semi-infinite stratification of a Grassmannian G to the “global” Grass-
mannians GXn .

1.1. Semi-infinite subschemas of the BD-Grassmannian. Data α1, ..., αn ∈ X∗(T )
define an ind-subscheme Sα1,...,αn

⊆GXn . In order to reduce this to the ordinary Grassman-
nian one first defines Sα1,...,αn

⊆GXn - over a point with distinct coordinates (x1, ...xn) ∈ Xn

the fiber is the product of closures of semi-infinite orbits Sαi
⊆Gxi, and then Sα1,...,αn

is the
closure of its restriction to the regular part of Xn. Then Sα1,...,αn

is obtained by removing
from Sα1,...,αn

all Sβ1,...,βn with βi ≤ αi and (β1, ..., βn) 6= (α1, ..., αn). The fiber of Sα1,...,αn

at (x1, ..., xn) is

Sα1,...,αn
)(x1,...,xn) =

∏

y∈{x1,...,xn}

S∑
xi=y αi,y.

Clearly, various Sα1,...,αn
are not disjoint off the generic part of Xn. To refine this to a

stratification of GXn one should also take into account the stratification of Xn.

One can also get a stratification which is more crude. A less refined extension of the

semi-infinite stratification to GXn is the partition GXn = ⊔ν Sν,Xn where Sν,Xn
def
= ∪∑αi=ν

Sα1,...,αn
.

If X = A
1 the Gm-action contracts Xn to the point 0 = (0, ..., 0) and Sα1,...,αn

to the
intersection Sα1,...,αn

∩ G0 which is the same as S∑
αi

under the identification G0 ∼= G.

1.2. Pro-objects kS and ind-objects ωS. Consider the triangulated category

D(G, k)
def
= lim

→
C

Db
c(C, k), the limit is over compact subschemas C of our ind-scheme G.

For C
i
→֒D, i! = i∗ : D

b
c(C)→Db

c(D) is an inclusion that commutes with Verdier duality,
hence the category D(G, k) is a union of all Db

c(C), and it has Verdier duality.

For an ind-subscheme S⊆G one can define kS as a pro-object in D(G): C⊆D gives

C ∩ S
ρ
→֒D ∩ S, hence kD∩S →ρ∗ρ

∗
kD∩S = kC∩S. This pro-object represents the functor

H∗S(G,−) : D(G)→D(pt), defined by

A 7→ lim
→

Hom(kC∩S,A) = lim
→

Hom[(C →֒G)!kC∩S,A) = lim
→

H∗C∩S(G,A).
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For each A ∈ D(G) this limit stabilizes.

For any two ind-subschemas X and Y we will denote

Exti(kX , kY )
def
= Hom(kX , kY [i])

def
= lim

←
D

Hom(kX , kY ∩D[i])

def
= lim

←
D

lim
→
C

Hom(kX [C], kY ∩D[i]).

However we only consider the cases when everything stabilizes.

1.2.1. Dually, one can define the dualizing sheaf ωS as an ind-object ωS
def
=D(kS) =

lim
→

D(kC∩S) = lim
→

ωC∩S, and also a functor H∗c (S,−) : D(G)→D(pt), by H∗c (S,−) =
DH∗S(G,−), i.e.,

H∗c (S,A) = D H∗S(G,DA) = D lim
→

H∗C∩S(G,DA) = lim
←

H∗c (C ∩ S,A).

However, we do not (co)represent the functor H∗c (S,−).

1.3. Coincidence of local and compactly supported cohomology.

1.3.1. Lemma. If A is a sheaf on GXn such that ..., then

(Sα1,...,αn
→Xn)! (Sα1,...,αn

→֒GXn)∗ A ∼= (Tα1,...,αn
→Xn)∗ (Tα1,...,αn

→֒GXn)! A.

When X = Ga a sufficient condition on the sheaf A is that it be monodromic for
T× Aut(X). In general, one should replace automorphism group with a more local
object, the groupoid of local isomorphisms.

1.3.2. Lemma. For X = A
1, the restriction of sheaves from GXn to G0 gives isomorphisms

Ext∗GXn
(kSα1,...,αn

,A)
∼=
−→ Ext∗G(kSα1+···+αn

,A|G0), and

Ext∗GXn
(kSν,Xn ,A)

∼=
−→ Ext∗G(kSν

,A|G0).

Proof. We will use
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1.4. Lemma. superlemma to pass to the compactly supported cohomology

Ext∗GXn
(kSα1,...,αn

,A) ∼= H∗Sα1,...,αn
(GXn ,A) = H∗[Xn, (Sα1,...,αn

→Xn)∗ (Sα1,...,αn
→֒GXn)! A]

as

∼= H∗[Xn, (Tα1,...,αn
→Xn)! (Tα1,...,αn

→֒GXn)∗ A].

For X = A
1, sheaves are Gm-monodromic. so the restriction from Xn to 0 identifies this

cohomology with the stalk

[(Tα1,...,αn
→Xn)! (Tα1,...,αn

→֒GXn)∗ A]0.

For α =
∑

αi, the intersection of Tα1,...,αn
∩ G0, i.e., the fiber of Tα1,...,αn

at 0, is Tα. So
the stalk is the same as

H∗c (Tα,A|G0)
∼= H∗Sα

(G,A|G0) ∼= Ext∗(kSα
,A|G0).

The proof for the second isomorphism is the same. ✷

1.5. Weight functors. We fix opposite Borel subalgebras b = b+ and b−, and let

h
def
=b+ ∩ b−. This defines semi-infinite orbits Sν , Tν⊆G as ind-subschemas. On D(G)

define the “weight functors”

Fν
def
= H∗c (Sν ,−)[2ht(ν)] = H∗c (G, kSν

[2ht(ν)]⊗−) and F ν def
= H∗c (Tν ,−)[−2ht(ν)].

On the subcategory of Ta-monodromic sheaves functors

Fν ∼= H∗Tν(G,−)[2ht(ν)]
∼= Ext∗(kTν [−2ht(ν)],−), and F ν ∼= H∗Sν

(G,−)[−2ht(ν)],

are represented by pro-objects kTν [−2ht(ν)] and kSν
[2ht(ν)]. We will regard functors

Fν as basic, while w0 : F ν
∼=
−→Fw0·ν .

1.6. Convolution [MV]. We recall the convolution construction of Drinfeld and show
that it is compatible with the weight functors.

Two perverse sheaves A,B ∈ PG(O)(G) define a perverse sheaf A∗B on GX2 which is
A⊠B[2] off the diagonal and a !∗-extension across the diagonal. The restriction to the

diagonal is non-characteristic and the perverse restriction i0
def
= i∗[−1] ∼= i![1] gives the

convolution A ∗ B spread over GX2 |∆X = GX as a perverse sheaf (so A∗B |G(a,a) ∼=
A ∗ B [2]).

One knows that the direct image to X2 is a constant sheaf. We will state this more
precisely.
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1.6.1. Lemma. (a) (Sν,X2→X2)!(Sν,X2 →֒GX2)∗A∗B is a constant sheaf in the degree
2ht(ν)− 2.

(b) There is a canonical decomposition

(GX2→X2)!A∗B ∼= ⊕ν (Sν,X2→X2)!(Sν,X2 →֒GX2)∗A∗B.

Proof. (a) Since we know that each cohomology of (GX2→X2)!A∗B is a constant sheaf,
its summands are also constant sheaves and (a) follows from (b).

(b) To see that (Sν,X2→X2)!(Sν,X2 →֒GX2)∗A∗B is a sheaf shifted to the degree 2ht(ν)−2,
we observe that the stalk [(Sν,X2→X2)!(Sν,X2 →֒GX2)∗A1∗A2](x1,x2) is isomorphic to

⊕
ν=

∑

y∈{x1,x2}

νy

⊗
y∈{x1,x2}

H∗c (Sνy , ∗
xi=y
Ai )[2],

and the summands are concentrated in the degree
∑

y 2ht(νy)− 2 = 2ht(ν)− 2.

If we partition a finite locally closed union X of Sν,X2 ’s into open and closed sub-unions
U and Y , the exact gluing triangle

(U→X2)!(U →֒GX2)∗A∗B → (X→X2)!(X →֒GX2)∗A∗B → (Y→X2)!(Y →֒GX2)∗A∗B

splits canonically. This is proved by induction in the numbers of Sν,X2 ’s involved. The
splitting comes from the dual gluing triangle using

1.7. Lemma. superlemma. ✷

1.7.1. Corollary. There are canonical isomorphisms

Fν(A ∗ B) ∼= ⊕α+β=ν FαA⊗FβB.

Proof. The left hand side is the stalk on the diagonal

Fν(A ∗ B)[−2ht(ν)] ∼= H∗c (G, kSν
⊗[A ∗ B]) ∼= H∗c (G(0,0), kSν,X2⊗[A∗B])[2]

∼= [(Sν,X2→X2)!(Sν,X2 →֒GX2)∗A∗B](x,x)[2].

The RHS is the stalk at (a, b) for distinct a, b ∈ X . Under the identification G(a,b) ∼= G×G
one has Sν,X2 ∩ G(a,b) ∼= ⊔α+β=ν Sα×Sβ, so

[(Sν,X2→X2)!(Sν,X2 →֒GX2)∗A∗B](a,b)[2] ∼= ⊕α+β=ν H∗c (Sα,A)⊗H
∗
c (Sβ,B)

∼= ⊕α+β=ν FαA[−2ht(α)]⊗FβB[−2ht(β)].

2. Algebra U̇+

2.1. Maps between constant sheaves. To start with we calculate the maps between
weight functors that come from the maps between representing objects.
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2.1.1. Lemma. (a) For two co-weights ν, µ

Ext∗(kSµ
, kSν

) ∼= H∗c (Sν ∩ Tµ, k) ∼= Ext∗(kTν , kTµ).

(b) There is a canonical commutative diagram

k[Irr(Sν ∩ Tµ)]
∼=
−−−→ Hom(kSµ

[2ht(µ)], kSν
[2ht(ν)]) −−−→ Hom[Fµ, Fν ]

=





y

=





y

=





y

k[Irr(Sν ∩ Tµ)]
∼=
−−−→ Hom(kTν [−2ht(ν)], kTµ [−2ht(µ)]) −−−→ Hom[Fµ, Fν ]

.

Proof. (a) One can choose G-filling compact subvarieties of the form D = Gλ and large
enough to contain Tν∩Sµ. Since Tµ∩D is Ta-invariant, Ext

∗(kTν , kTµ∩D)
∼= H∗Tν (G, kTµ∩D)

can be identified with H∗c (Sν , kTµ ∩D) = H∗c (Sν ∩ Tµ ∩D, k) = H∗c (Sν ∩ Tµ, k). The other
identification is obtained by switching S and T .

(b) Recall that Sν ∩ Tµ 6= ∅ ⇔ µ ≤ ν, and then the intersection is of pure dimension
ht(ν − µ).

So, in this case,

Hom(kTν [−2ht(ν)], kTµ [−2ht(µ)]) = Ext2ht(ν−µ)(kTν , kTµ) = H2ht(ν−µ)
c (Sν∩Tµ, k) ∼= k[Irr(Sν∩Tµ)].

2.1.2. In this way we get maps of functors Fµ→Fν , but only for µ ≤ ν. These are
precisely the maps between weight functors that one keeps when the weight functors are
extended from PG(O)(G) to all of D(G).

2.2. Algebra U̇+. Let U̇+ = ⊕
µ,ν∈X∗(T )

U̇+(µ, ν) for

U̇+(µ, ν)
def
= Hom(kSν

[2ht(ν)], kSµ
[2ht(µ)]) ∼= k[Irr(Sµ∩Tν)] ∼= Hom(kTµ [−2ht(µ)], kTν [2ht(ν)]).

2.2.1. Canonical basis. So U̇+(µ, ν) has a canonical basis Ḃ(µ, ν)
def
= Irr(Tν ∩ Sµ), and

Ḃ+ = ⊔η Ḃ(µ, ν) is a canonical basis of U̇+.

2.2.2. Q̌+-grading. This is obviously an algebra graded by Q̌+ via U̇+(η)
def
= ⊕

µ−ν=η
U̇+(µ, ν).

Observe that U̇+(0) is a semi-simple algebra ⊕
µ
k·eµ = O[X∗(T )] for orthogonal idempo-

tents eµ ∈ Ḃ(µ, µ), µ ∈ X∗(T ).
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2.2.3. Abstract formulation of the dot-construction ?? We want to localize a module M

for a semigroup S on a space X where S acts. The localization Ṁ will be a module for
the action semigroupoid S defined by S:

Ṁ
def
= OX

L

⊗
S
M = OX⊗

S↑
M0, for M0def= OX⊗

k

M.

Consider the case when M is an S-graded k-module (it does not mean that S acts on M?)
M = ⊕s∈S M(s), and X is the group associated to S with the left multiplication action,

and assume that S embeds into X . IfX is discrete Ṁ is the k-module Ṁ = ⊕(u,v)∈X Mv,u

with Mv,u = M(s) if v = s·u for some (unique) s ∈ S and otherwise Mv,u = 0. In

particular, Ṁ is again S-graded by Ṁ(s)
def
= ⊕(u,v)∈X, v=s·u Mv,u.

If A is an S-graded algebra, localization Ȧ is again an S-graded algebra, and it is an
O(X)-ring for the commutative algebra O(X) = Ȧ(0) = ⊕u∈X Mu,u = ⊕u∈X k1u
(semi-simple if X is discrete, without unit if X is discrete and infinite).

In our case S = Q̌+, hence X = Q̌.

2.3. Algebra U+. Let U+ = ⊕
η≥0

U+(η) for

U+(η)
def
= Hom(kS0 , kSη

[2ht(η)]) ∼= k[Irr(Sη ∩ T0)] ∼= Hom(kTη [−2ht(η)], kT0).

So U+(η) has a canonical basis B(η)
def
= Irr(T0 ∩ Sη), and B+ = ⊔η B(η) is a canonical

basis of U+.

2.3.1. A realization of algebra on a global curve X. Using

2.4. Lemma. glob we can place the algebra on the BD-Grassmannian

U+(η1 + · · ·+ ηn) ∼= Ext2ht(
∑
ηi)(kS(0,...,0)

, kS(η1,...,ηn)
).

2.4.1. Theorem. (a) U+ is a Hopf algebra isomorphic to U(ň).

(b) U+ acts faithfully on the fiber functor F , hence ň embeds into the Lie algebra g̃ of

the group G̃
def
= Aut(F ).

2.5. Algebra structure. Periodicity α(z) : (G, Sν)
∼=
−→(G, Sν+α), gives

α(z)∗ : Ext2ht(ν−µ)(kSν
, kSµ

)
∼=
−→Ext2ht([ν+α]−[µ+α])(kSν+α

, kTµ+α
). So the composition of

maps in the category of projective systems over D(G) gives an associative (since α(z)∗ is
an automorphism of the category D(G)) algebra structure

U+(α)⊗U+(β)
β(z)∗⊗1
∼= Ext2ht(α)(kSβ

, kSα+β
)⊗Ext2ht(β)(kS0 , kSβ

)→ Ext2ht(α+β)(kS0 , kSα+β
) = U+(α+β).
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2.6. Coalgebra structure. In order to define ∆α1,...,αn
: U+(α1+ · · ·+αn)→⊗i U+(αi),

we will use the decomposition α = α1 + · · · + αn to reformulate U+(α) globally, i.e., on
the BD-Grassmannian GXn for say, X = Ga. Then the comultiplication is given by the
restriction to a generic point of Xn.

So we choose distinct points ai in X and we follow

U+(α) = Ext2ht(α)(kS0, kSα
)
∼=
←− Ext2ht(α)(kS0,...,0 , kSα1,...,αn

),

with the restriction of sheaves to the fiber of GXn above (a1, ..., an):

Ext∗(kS0,...,0, kSα1,...,αn
)→Ext∗(kS0,...,0 |a1×· · ·×an, kSα1,...,αn

|a1×· · ·×an) ∼= ⊗i Ext∗(kS0 , kSαi
) = ⊗i U+(αi)

The resulting map ∆α1,...,αn
is independent of the choice of points ai (??). This comulti-

plication is clearly cocommutative and coassociative.

2.7. The action of U+ on the fiber functor F . The action of the algebra U+ on F is
obvious

U+(α)⊗FνA
ν(z)∗⊗1
∼= Hom(kSν

[2ht(ν)], kSα+ν
[2ht(ν + α)])⊗H2ht(β)

c (G, kSν
[2ht(ν)]⊗A)

→ H2ht(α+β)
c (G, kSα+ν

[2ht(ν + α)]⊗A) = Fα+ν(A).

[[[ Observe that a similar use of U+(η) ∼= Hom(kTη [−2ht(η)], kT0) yields a right action!]]]

2.8. U+ acts on the fiber functor as a bialgebra. For u ∈ U+(η) and η = α+β,
we want

Fφ+ψ(A ∗ B)
u

−−−→ Fφ+ψ+η(A ∗ B)

⊆

x





x





⊆

Fφ(A)⊗Fψ(B)
∆α,βu
−−−→ Fφ+α(A)⊗Fψ+β(B)

.

2.9. Primitive elements. U+ is a cocommutative bialgebra - comultiplication is based
on the restriction functors and the contraction isomorphisms of functors, and these are
compatible with the composition of maps in categories, which is used to define the mul-
tiplication.

Let ñ be the Lie algebra of primitive elements in U+. Since the torus H̃⊆G̃ defined by
F = ⊕ Fν (H̃ ∼= Ȟ), acts on U+, it also acts on n = ⊕η n(η) and one can define a Lie

algebra b̃ = ñ⋉ h̃.
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2.9.1. u ∈ U+(α) is primitive iff it is killed by all ∆β,γ for β + γ = α and β, γ ≥ 0 but
β, γ 6= 0. This is equivalent to the condition that u is killed by the restriction

u ∈ U+(α) ∼= Ext∗(kS0,0, kSβ,γ
) → Ext∗(kS0,0 |X

2 −∆X , kSβ,γ
|X2 −∆X).

If ∆β,γu = 0, i.e., u is killed by restriction to (a, b) for any two distinct a, b ∈ X , then u

is killed by restriction to A×B for any two disjoint open convex A,B⊆X . One can cover
X2 −∆X with such products and use Leray type argument.

2.9.2. Theorem. (a) (Compatibility of canonical bases.) For any co-weight λ let
Cλ(ν) be the canonical basis of the ν-weight space in IH(Gλ, k). If λ is anti-dominant
let Bλ(λ) = {cλ} and denote by B(η, λ)⊆B(η) all elements b ∈ B(η) with b·cλ 6= 0. The
action of U+ on IH(Gλ, k) gives a bijection

B(η, λ) ∋ b7→b·cλ ∈ Cλ(λ+ η).

(b) Over integers, U+(Z) is the Kostant’s form of U(ň).

(c) The basis has the same type of parameterization as in Lusztig’s parameterization of
his canonical basis.

Proof. (a) is the stabilization property of intersections Sν ∩ Gλ in the Grassmannian. (b)
follows.

(c) is a reformulation of G.Lusztig, An algebro geometric parameterization of the canonical

bases.

2.9.3. Conjecture. The above “Grassmannian” canonical bases is the same as the bases
in Nakajima’s setting.

2.9.4. Conjecture. Verdier duality on G gives an anti-involution ι of U+ with D(ei) =
e−w0·i.

[So the U
opp
+ -action on F obtained as the adjoint of the U+ action is just the ι-twist of

the U+-action.]

2.10. Positivity property of the canonical basis.

2.10.1. Lemma. Z+[B]⊆U+ is closed for (co)multiplication. (The action of U(ň) on Lλ
has the same positivity property.)

2.10.2. Remarks. Jared Anderson proved half of the statement and conjectured the other
half in a different formulation.

Proof. Comultiplication is obvious. One intersects Sν,Xn ∩ T0,Xn with the open set which
is the restriction of GXn to the regular part (Xn)r of X

n. This gives a bundle over (Xn)r
and one then restricts to one point in (Xn)r.
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Multiplication goes in the opposite direction. At (a, b) in (Xn)r one considers (Sµ,ν ∩

T0,0)(a,b)
def
= Sµ,a ∩ T0,a×Sν,b ∩ T0,b. This is then a bundle over (Xn)r and it extends across

the diagonals to Sµ,ν , Xn∩T(0,0),Xn⊆ (G ∗G)X2 over X2. Intersection with the fiber on the
diagonal gives multiplication. Positive multiplicities (in the canonical basis of the tensor
product) come form the properness of the intersection.

The proof for the action is the same.

2.10.3. Conjecture. The same positivity holds for the canonical basis of U(ǧ). This gives
a Z+-form of the group G, i.e., reductive groups are defined over commutative semir-
ings. (For R+ this is Lusztig’s positivity theory, for the polar semifield there should be a
combinatorial meaning.)

2.10.4. Conjecture. The above construction of U̇(ň) is the same as the one in [FFKM], so

it extends to a construction of U̇(ǧ).

3. Remarks

3.0.5. Inversion ι does not seem geometric on U+ since it is −1 on on the canonical basis
elements of simple root spaces g̃i.

Lie algebra ñ - the primitive part of U+ does not seem geometric since g̃(α)⊆U+(α) need
not be compatible with the canonical basis of U+(α). Say, for G = SL3 and α = i + j,
g̃(α) is the kernel of the comultiplication map ∆i,j : U+(α)→U+(il)⊗U+(j) from k⊕k to
k, which is symmetric in the canonical basis of U+(α).
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