A. RELATIVE GRASSMANNIANS

MICHAEL FINKELBERG AND IVAN MIRKOVIĆ

Contents

1. Drinfeld Grassmannii \mathcal{G}_{X^n}		2
1.1.	Grassmannii $\mathcal{G}_x, \ x \in X$	2
1.2.	Ind-schemes $\mathcal{G}_{X^n} = \mathcal{G}_X^{(n)}$ over X^n	2
1.3.	Locality of the Grassmannii \mathcal{G}_{X^n}	2
1.4.	Group schemes $G_{X^n}(\mathcal{O}) \subseteq G_{X^n}(\mathcal{K}) \supseteq G_{X^n}(\mathcal{O})$	3
1.5.	The fixed point set $(\mathcal{G}_{X^n})^H$ of a Cartan subgroup H	4
1.6.	Gluing	5
2. S	${f tratifications} {f of} {\cal G}_{X^n}$	5
2.1.	Cofinite stratification by the isomorphism class of the torsor	5
2.2.	Semi-infinite stratifications	6
2.3.	Refined semi-infinite stratifications	7
2.4.	Finite stratification	7
2.5.	Relations between the strata	7
2.6.	Partial symmetrizations $\mathcal{G}_{X^{(\alpha)}}$ of \mathcal{G}_{X^n}	8
3. Restrictions		9
3.1.	Parabolic subgroup P defines a "map" $\mathcal{G}_{X^n} = \mathcal{G}_{X^n,G} \rightarrow \mathcal{G}_{X^n,\bar{P}}$	9
3.2.	Stratifications of \mathcal{G}_{X^n} defined by P	10
4. Poisson structures on $\mathcal{G}_{\mathbb{A}^n}$		10
4.1.	A Poisson structure relating finite and cofinite stratifications	10
5. Convolution		11

Date: ?

1. Drinfeld Grassmannii \mathcal{G}_{X^n}

For a group A Grassmannii $\mathcal{G}_{X^n,A}$ are certain "rigidifications" of the stack $\mathcal{M}_A(X)$ of A-torsors on a curve X to ind-schemes. This is done in two steps: to a torsor one adds a rational section and then also an effective divisor that bounds the location of section's singularity.

Let G be a simply connected semi-simple connected algebraic group. Let $I \subseteq X_*(H_a)$ be the set of simple coroots.

1.1. **Grassmannii** \mathcal{G}_x , $x \in X$. Let X be a smooth curve over the complex numbers. Let $x \in X$ be a closed point and denote by \mathcal{O}_x the completion of the local ring at x and by \mathcal{K}_x its fraction field. Then the Grassmannian $\mathcal{G}_x = G(\mathcal{K}_x)/G(\mathcal{O}_x)$ represents the following functor from C-algebras to sets :

 $R \mapsto \{\mathcal{F} \text{ a } G \text{-torsor on } X_R, \nu : G \times X_R^* \to \mathcal{F} | X_R^* \text{ a trivialization on } X_R^* \}.$

Here the pairs (\mathcal{F}, ν) are to be taken up to isomorphism, $X_R = X \times \operatorname{Spec}(R)$, and $X_R^* = (X - \{x\}) \times \operatorname{Spec}(R)$.

Ind-scheme \mathcal{G}_x depends only on the formal neighborhood of x in X.

Let us fix the isomorphism $G(\mathcal{K}_x)/G(\mathcal{O}_x) \xrightarrow{\cong} \mathcal{G}_x$. To $g \in G(\mathcal{K}_x)$ one attaches a torsor on X obtained by glueing trivial torsors G_{in} on \hat{x} and G_{out} on X-x by say $g : G_{in}|\tilde{x} \to G_{out}|\tilde{x}$.

1.2. Ind-schemes $\mathcal{G}_{X^n} = \mathcal{G}_X^{(n)}$ over X^n . We now globalize this construction and at the same time form the Grassmannian at several points on the curve. Denote the *n* fold product by $X^n = X \times \cdots \times X$ and consider the functor

 $R \mapsto \{(x_1, \ldots, x_n) \in X^n(R), \ \mathcal{F} \text{ a } G \text{-torsor on } X_R, \nu \text{ a trivialization of } \mathcal{F} \text{ on } X_R - \cup x_i\}$.

Here we think of the points x_i : Spec $(R) \to X$ as subschemes of X_R by taking their graphs. One sees that the functor in (3.2) is represented by an ind-scheme \mathcal{G}_{X^n} .

1.3. Locality of the Grassmannii \mathcal{G}_{X^n} . The ind-scheme \mathcal{G}_{X^n} is obviously an ind-scheme over X^n . Its fiber $\mathcal{G}_{(x_1,...,x_n)} \stackrel{\text{def}}{=} (\mathcal{G}_{X^n})_{(x_1,...,x_n)}$ over the point $x_* = (x_1,...,x_n)$ is again of local nature - restriction from X to a formal neighborhood of the support $\{x_1,...,x_n\}$ gives an identification

$$\mathcal{G}_{(x_1,\dots,x_n)} \stackrel{\text{def}}{=} (\mathcal{G}_{X^n})_{(x_1,\dots,x_n)} \xrightarrow{\cong} \prod_{y \in \{x_1,\dots,x_n\}} (\mathcal{G}_{\hat{y}})_y.$$

The correspondence of $(\mathcal{T}, (x_1, ..., x_n), \tau)$ and a system of $(\mathcal{T}_y, y, \tau_y) \in (\mathcal{G}_{\hat{y}})_y, y \in \{x_1, ..., x_n\}$; is given by:

 $(\mathcal{T}_y, \tau_y) = (\mathcal{T}, \tau)$ near y (i.e., on \hat{y} , while both are equal to the trivial torsor off $\{x_1, ..., x_n\}$.

So by restriction, $(\mathcal{T}_y, \tau_y) = (\mathcal{T}, \tau) | \hat{y}$, while in the opposite direction one glues (\mathcal{T}, τ) from (\mathcal{T}_y, τ_y) on \hat{y} , $y \in \{x_1, ..., x_n\}$; and from the trivial torsor $G \times X - \{x_1, ..., x_n\}$, by using trivialisations of the pair (\mathcal{T}_y, τ_y) on $\hat{y} \cap X - \{x_1, ..., x_n\} = \tilde{y}$, given by τ_y .

Because of this dependence on the formal neighborhood of $\{x_1, ..., x_n\}$ (only), we will often denote $\mathcal{G}_{(x_1,...,x_n)} \stackrel{\text{def}}{=} (\mathcal{G}_{X^n})_{(x_1,...,x_n)}$, hence $\mathcal{G}_y \stackrel{\text{def}}{=} (\mathcal{G}_X)_y \cong (\mathcal{G}_{\hat{y}})_y$.

In particular, locality implies that for U open in X, restriction $\mathcal{G}_{X^n}|U^n$ is really \mathcal{G}_{U^n} .

1.3.1. The precise formulation of the locality property. For $m, n \in \mathbb{Z}$ denote by $X^{m,n} \subseteq X^m \times X^n$ the open part where the factors are disjoint. There are canonical "localization" isomorphisms $\mathcal{G}_{X^{m+n}}|X^{m,n} \cong \mathcal{G}_{X^m} \times \mathcal{G}_{X^n}|X^{m,n}$.

So for any disjoint $A, B \subseteq X$, one has an isomorphism $\mathcal{G}_{X^{m+n}}|_{A^m \times B^n} \cong \mathcal{G}_{X^m}|_{A^m} \times \mathcal{G}_{X^n}|_{B^n}$.

1.4. Group schemes $G_{X^n}(\mathcal{O}) \subseteq G_{X^n}(\mathcal{K}) \supseteq G_{X^n}(\mathcal{O}_-)$. The global analog of $G(\mathcal{O})$ is the group-scheme $G_{X^n}(\mathcal{O})$ which represents the functor

$$R \mapsto \left\{ \begin{array}{l} (x_1, \dots, x_n) \in X^n(R), \quad \mathcal{F} \text{ the trivial } G \text{-torsor on } X_R, \\ \mu \text{ a trivialization of } \mathcal{F} \text{ on } \widehat{(X_R)}_{(x_1 \cup \dots \cup x_n)} \end{array} \right\}$$

Similarly, the global analogue of $G(\mathbb{C}[z^{-1}])$ is the group-ind-scheme $G_{X^n}(\mathcal{O}_-)$ which represents the functor

$$R \mapsto \left\{ \begin{array}{ll} (x_1, \dots, x_n) \in X^n(R), \quad \mathcal{F} \text{ the trivial } G \text{-torsor on } X_R & , \\ \mu \text{ a trivialization of } \mathcal{F} \text{ on } (X_R) - (x_1 \cup \dots \cup x_n) & , \end{array} \right\}$$

Finaly, the global analogue of $G(\mathcal{K}_x)$ is the group-ind-scheme $G_{X^n}(\mathcal{K})$ which represents the functor

$$R \mapsto \left\{ \begin{array}{l} (x_1, \dots, x_n) \in X^n(R), \quad \mathcal{F} \text{ the trivial } G \text{-torsor on } X_R, \\ \mu \text{ a trivialization of } \mathcal{F} \text{ on } \widehat{(X_R)} - (x_1 \cup \dots \cup x_n) \end{array} \right\}$$

One can state it simply by

$$G_{X^{n}}(\mathcal{O})(R) = \left\{ (x_{1}, ..., x_{n}, \mu), (x_{1}, ..., x_{n}) \in X^{n}(R) \text{ and } \mu \in G(\widehat{(X_{R})}_{(x_{1} \cup ... \cup x_{n})}) \right\},\$$

$$G_{X^{n}}(\mathcal{O}_{-})(R) = \left\{ (x_{1}, ..., x_{n}, \nu), (x_{1}, ..., x_{n}) \in X^{n}(R) \text{ and } \nu \in G(X_{R} - (x_{1} \cup ... \cup x_{n})) \right\},\$$

$$G_{X^{n}}(\mathcal{K})(R) = \left\{ (x_{1}, ..., x_{n}, \eta), (x_{1}, ..., x_{n}) \in X^{n}(R) \text{ and } \eta \in G(\widehat{(X_{R})}_{(x_{1} \cup ... \cup x_{n})} - (x_{1} \cup ... \cup x_{n})) \right\}$$

and the inclusions are given by restrictions.

1.4.1. In terms of these groups

$$\mathcal{G}_{X^n} \cong G_{X^n}(\mathcal{K})/G_{X^n}(\mathcal{O}).$$

The locality property of \mathcal{G}_{X^n} can now be seen to come from the same property of groups $G_{X^n}(\mathcal{K})$ and $G_{X^n}(\mathcal{O})$:

$$G_{X^n}(\mathcal{K})_{(x_1,\dots,x_n)} = G(\widehat{(X_R)}_{(x_1\cup\dots\cup x_m)} - (x_1\cup\dots\cup x_m)) \xrightarrow{\cong} \prod_{y\in\{x_1,\dots,x_n\}} G(\widehat{(X_R)}_y - y) = \prod_{y\in\{x_1,\dots,x_n\}} G(X_R)_{(x_1\dots,x_n)} = \prod_{y\in\{x_1$$

which restricts to $G_{X^n}(\mathcal{O})_{(x_1,\dots,x_n)} \xrightarrow{\cong} \prod_{y \in \{x_1,\dots,x_n\}} G(\mathcal{O}_y)$. (However $G_{X^n}(\mathcal{O}_-)$ does not

factor.)

1.5. The fixed point set $(\mathcal{G}_{X^n})^H$ of a Cartan subgroup H. We see that $G_{X^n}(\mathcal{K})$ acts on \mathcal{G}_{X^n} . In particular the constant subgroup G acts on the fibers $\mathcal{G}_{(x_1,\ldots,x_n)} \cong \prod_{y \in \{x_1,\ldots,x_n\}} \mathcal{G}_y$

by acting on each factor \mathcal{G}_y .

For any maximal torus H in G, there is a canonical identification $X_*(H) \xrightarrow{\cong} (\mathcal{G}_x)^H$, $\nu \mapsto \nu_x$. [Description of ν_x in terms of $G(\mathcal{K}_x)/G(\mathcal{O}_x)$ and $(T = Ind_H^G \nu, \tau | \hat{X}_x)$.] So

$$(\mathcal{G}_{(x_1,\ldots,x_n)})^H \cong \prod_{y \in \{x_1,\ldots,x_n\}} \mathcal{G}_y^H \cong \bigoplus_{y \in \{x_1,\ldots,x_n\}} X_*(H) \cdot y$$

For a generic $(x_1, ..., x_n)$ this is $X_*(H)^n$ and for $x_1 = \cdots = x_n$ one has only one copy $X_*(H)$.

1.5.1. Irreducible components and the connected components of $(\mathcal{G}_{X^n})^H$. The irreducible components of the ind-subscheme $(\mathcal{G}_{X^n})^H$ are sections $(\nu_1, ..., \nu_n)_{X^n}$ of $\mathcal{G}_{X^n} \to X^n$, indexed by $(\nu_1, ..., \nu_n) \in X_*(H)^n$. The value at a generic $(x_1, ..., x_n) \in X^n$ is $((\nu_1)_{x_1}, ..., (\nu_n)_{x_n}) \in \prod_{1}^n \mathcal{G}_{x_i} = \mathcal{G}_{(x_1, ..., x_n)}$. The value at any $(x_1, ..., x_n) \in X^n$ lies in $\mathcal{G}_{(x_1, ..., x_n)} = \prod_{y \in \{x_1, ..., x_n\}} \mathcal{G}_y$ and equals $((\sum_{x_i = y} \nu_i)_y)_{y \in \{x_1, ..., x_n\}}$.

The connected components ν_{X^n} of $(\mathcal{G}_{X^n})^H$ are indexed by $\nu \in X_*(H)$: ν_{X^n} is the union of all $(\nu_1, ..., \nu_n)_{X^n}$ with $\sum \nu_i = \nu$. These sections all coincide above the diagonal in X^n since the value at (x, ..., x) is always ν_x . For instance, for $G = SL_2$ the connected component is essentially the product of $X = \Delta_X$ and a union of \mathbb{Z} lines meeting at one point.

1.5.2. A stratification of the fixed point set. The strata X_{\sim}^{K} of the diagonal stratification of X^{K} are parameterized by equivalence relations \sim on K. The strata of $(\mathcal{G}_{X^{n}})^{H}$ are parameterized by pairs $(\sim, \boldsymbol{\nu})$ of an equivalence class \sim on $K = \{1, ..., n\}$ and a map $\boldsymbol{\nu} : K/\sim \to X_{*}(H_{a})$. The stratum $\boldsymbol{\nu}_{X_{\sim}^{n}}$ is a section of $\mathcal{G}_{X^{n}}\to X^{n}$ over X_{\sim}^{n} , the value at $(x_{1}, ..., x_{n}) \in X_{\sim}^{n}$ is the family $(\boldsymbol{\nu}(y)_{y})_{y \in \{x_{1}, ..., x_{n}\}}$ in the fiber $(\mathcal{G}_{(x_{1}, ..., x_{n})})^{H} \cong \prod_{y \in \{x_{1}, ..., x_{n}\}} \mathcal{G}_{y}^{H}$. The closure of the (\sim, ν) -stratum consists of the strata (\sim', ν') where \sim' is coarser then \sim and $\nu' = (K/\sim \rightarrow K/\sim')_*\nu$, i.e., the value at $c' \in K/\sim'$ is $\nu'(c') = \sum_{c \subseteq c'} \nu(c)$.

1.6. **Gluing.** Let us explicate $G_{X^n}(\mathcal{K})/G_{X^n}(\mathcal{O}) \xrightarrow{\cong} \mathcal{G}_{X^n}$.

2. Stratifications of \mathcal{G}_{X^n}

Fix a curve C = X.

Let $\mathcal{G}^{(n)} = \mathcal{G}_{X^n}$ be the space classifying the triples (P, τ, d) where P is a left G-torsor over $C, d \in C^n$ and τ is a section of P off the support of d.

2.1. Cofinite stratification by the isomorphism class of the torsor. The projection $\mathcal{G}_{X^n} \to \mathcal{M}_G(X) \times X^n$ can be written as $G_{X^n}(\mathcal{K})/G_{X^n}(\mathcal{O}) \to G_{X^n}(\mathcal{O}_-) \setminus G_{X^n}(\mathcal{K})/G_{X^n}(\mathcal{O})$, so it simply records many ways of reconstructing torsors by gluing trivial torsors on $X - \{(x_1, ..., x_n)\}$ and $\hat{X}_{\{x_1, ..., x_n\}}$.

Each of the strata, i.e., fibers of $\mathcal{G}_{X^n} \to \mathcal{M}_G(X)$, is therefore a $G_{X^n}(\mathcal{O}_-)$ -torsor, and the action is given by permuting sections τ .

2.1.1. **Case** $X = \mathbb{P}^1$. The points of $\mathcal{M}_G(X)$ are indexed by $X_*(H_a)/W \ni W \cdot \lambda \mapsto Ind_H^G \lambda$. So we get strata $\mathcal{G}_{X^n}^{\lambda} = \mathcal{G}_{X^n}^{W \cdot \lambda}, W \cdot \lambda \in W \setminus X_*(H_a)$ that consist of all triples with $P \cong Ind_H^G \lambda$.

For $X = \mathbb{P}^1$, G_m acts on X hence on all spaces \mathcal{G}_{X^n} . Observe that as $G_m \ni c \to 0$, G_m action contracts \mathbb{A}^n to 0^n . So the fixed point set $(\mathcal{G}_{\mathbb{A}^n})^{G_m}$ lies in the central fiber and $(\mathcal{G}_{\mathbb{A}^n})^{G_m} = (\mathcal{G}_0)^{G_m} = G \cdot (\mathcal{G}_0)^H$. Its connected components are $G \cdot \nu_0$, $\nu \in W \setminus X_*(H)$.

2.1.2. Lemma. (a) As $G_m \ni c \to 0$, (i) G_m contracts $G_{X^n}(\mathcal{O}_-)$ to 1 in the fiber $G(\mathbb{C}[z^{-1}])$ at 0^n , (ii) G_m contracts $\nu_{\mathbb{A}^n}$ to $\nu_0 \in \mathcal{G}_{0^n}$.

(b) map $\mathcal{G}_{X^n} \to \mathcal{M}_G(X) \times X^n$ is G_m -equivariant and the action on the points of $\mathcal{M}_G(X)$ is trivial.

(c) The "cofinite" stratification of $\mathcal{G}_{\mathbb{A}^n}$ is the Bialnicky-Birula stratification for the G_m -action.

Proof. (i) $\mathcal{O}(\mathbb{A}^1) = \mathbb{C}[z]$ and $c \in G_m$ acts on functions by $z \mapsto c \circ z = c^{-1} \cdot z$, so $c \circ (z-a)^{-1} = (c^{-1} \cdot z - a)^{-1} = c \cdot (z - ca)^{-1} \rightarrow 0$.

(ii) G_m commutes with H, so it preserves irreducible components $(\nu_1, ..., \nu_n)_{X^n}$ of $(\mathcal{G}_{X^n})^H$. So, as it contracts \mathbb{A}^n to 0^n , it also contracts the section $(\nu_1, ..., \nu_n)_{\mathbb{A}^n}$ to its value ν_0 at 0^n .

(c) [Messy] Clearly, ν_{X^n} lies in $\mathcal{G}_{X^n}^{W\nu}$, hence so does $\mathcal{G}_{X^n}(\mathcal{O}_-)\cdot\nu_{X^n}$. Actually, $\mathcal{G}_{X^n}^{W\nu} = \mathcal{G}_{X^n}(\mathcal{O}_-)\cdot\nu_{X^n}$ as the fibers of $\mathcal{G}_{X^n} \to \mathcal{M}_G(X)$ are $\mathcal{G}_{X^n}(\mathcal{O}_-)$ -torsors. But (a) shows that $\mathcal{G}_{X^n}(\mathcal{O}_-)\cdot\nu_{X^n}$ contracts to a point ν_0 .

2.1.3. Problem. Calculate IC-stalks.

2.2. Semi-infinite stratifications. A choice of a Borel subgroup B associates to each triple (T, d, τ) an H_a -torsor $N \setminus \overline{B \cdot \tau}$. The semi-infinite stratification is given by this invariant. For any $\nu \in X_*(H)$ let $\mathcal{G}_{X^n}(B, \nu)$ consist of the triples (T, τ, d) with deg $\overline{B \cdot \tau} = \nu$. Here, $\overline{B \cdot \tau} \subseteq P$ is the B-reduction defined by the meromorphic section τ and the degree is the type of the H_a -torsor $(B \to H_a)_* \overline{B \cdot \tau} = N \setminus \overline{B \cdot \tau}$.

2.2.1. $H_*(X_a)$ -valued divisor $div(\tau_B)$. The next invariant defined using B is the $X_*(H_a)$ -valued divisor $div(\tau_B)$, the divisor of the section τ_B of $N \setminus \overline{B \cdot \tau}$, defined by τ .

First, we use $G_m^I \xrightarrow{\cong} H_a$ given by $I \subseteq X_*(H_a)$ to define a semigroup $\overline{H_a} \cong G_a^I$, i.e., $\mathcal{O}(H_a) = \mathbb{C}[\bigoplus_{i \in I} \mathbb{Z} \omega_i]$ contains $\mathcal{O}(\overline{H_a}) = \mathbb{C}[\bigoplus_{i \in I} \mathbb{Z}_+ \omega_i]$. Now a rational function f from C to H_a is a family of functions f_i and $div(f) \stackrel{\text{def}}{=} \sum_{i \in I} div(f_i) \cdot i \in \mathbb{Z}[I] = X_*(H_a)$.

A triple (T, τ, d) is in $\mathcal{G}_{X^n}(B, \nu)$ iff the divisor of the section τ_B has degree ν (since $\deg(\tau_B) = \deg \operatorname{div}(\tau_B)$ equals $\deg(N \setminus \overline{B \cdot \tau})$). So for n = 1, $(T, \tau, d) \in \mathcal{G}_x$ lies in $\mathcal{G}_X(B, \nu)_x$ if the order of τ_B at x equals ν , and in general, the fiber $\mathcal{G}_{X^n}(B, \nu)_{(x_1,\dots,x_n)}$ is a disjoint union of products of such strata in the ordinary Grassmannian

$$\mathcal{G}_{X^n}(B,\nu)_{(x_1,\ldots,x_n)} \cong \bigsqcup_{\sum \nu_y = \nu} \prod_{y \in \{x_1,\ldots,x_n\}} \mathcal{G}_y(B,\nu_y)$$

2.2.2. Lemma. (a) $[\mathcal{G}_{X^n}(B,\nu)]^H = \nu_{X^n}.$ (b) $\mathcal{G}_{X^n}(B,\nu) = N_{X^n}(\mathcal{K}) \cdot \nu_{X^n} = \{p \in \mathcal{G}_{X^n}, \lim_{G_m \ni c \to 0} (2\rho_{\check{\mathfrak{n}}})(c) \cdot p \in \nu_{X^n}\}.$

So this is a Bialnicky-Birula stratification for the action of a Cartan subgroup H.

(c) $\overline{\mathcal{G}_{X^n}(B,\nu)} = \bigcup_{\mu \leq \nu} \mathcal{G}_{X^n}(B,\mu)$, where \leq (or better $\leq B$) is the relation $\mu \leq \nu$ if $\nu - \mu \in \mathbb{Z}_+[\Delta_H(\mathfrak{n})]$ (opposite to the "geometric" order on characters of a Borel subgroup).

Proof. (a) An *H*-fixed point $((\nu_y)_y)_{y \in \{x_1,...,x_n\}} \in (\mathcal{G}_{(x_1,...,x_n)})^H$, lies in $\mathcal{G}_{X^n}(B,\nu)$ iff $\deg \bar{\tau} = \sum \nu_y$ equals ν .

Now (b) and then (c) follow from the same statements for the ordinary Grassmannian, using (a) and the above decomposition of the fiber of $\mathcal{G}_{X^n}(B,\nu)$.

2.2.3. Stratifications corresponding to opposite Borel subgroups B_{\pm} . These are in some sense opposite stratifications. Let $B = B_+$, $H = B_+ \cap B_-$ and

$$\mathcal{S}_{X^n}(\nu) = \mathcal{G}_{X^n}(B,\nu_B)$$
 and $\mathcal{T}_{X^n}(\nu) = \mathcal{G}_{X^n}(B_-,\nu_{B_-})$

here $\nu \in X_*(H)$ defines $\nu_{B_{\pm}} \in X_*(H_a)$ via $H \subseteq B_{\pm} \to H_a$. Since $B_- = w_0 \cdot B_-$ the two versions $\nu_{B_{\pm}} \in$ are related by w_0 .

Corollary. (a) $\mathcal{S}_{X^n}(\nu)$ meets $\mathcal{T}_{X^n}(\mu)$ iff $\mu \leq \nu$, i.e., iff $\mathcal{S}_{X^n}(\mu) \subseteq \overline{\mathcal{S}_{X^n}(\nu)}$.

(b)
$$\mathcal{S}_{X^n}(\nu) \cap \mathcal{T}_{X^n}(\nu) = \mathcal{S}_{X^n}(\nu)^H = \nu_{X^n}$$
, and in general

$$[\mathcal{S}_{X^n}(\nu) \cap \mathcal{T}_{X^n}(\mu)]_{(x_1,\dots,x_n)} = \bigcup_{\substack{\bigcup \\ \sum \mu_y = \mu, \sum \nu_y = \nu, \ \mu_y \le \nu_y}} \prod_{y \in \{x_1,\dots,x_n\}} (\mathcal{S}_y)_{\mu_y} \cap (\mathcal{T}_y)_{\mu_y}.$$

Proof. One checks in each fiber $\mathcal{G}_{(x_1,\ldots,x_n)}$.

2.3. Refined semi-infinite stratifications. This stratification is based on the invariant $(\sim, \boldsymbol{\nu})$ of a triple (T, d, τ) . Point $d = (x_1, ..., x_n) \in X^n$ lies in some stratum X^n_{\sim} of the diagonal stratification and canonically $\{1, ..., n\}/\sim \cong \{x_1, ..., x_n\}$. The *I*-colored divisor $div(\tau_B)$ is the same as a function $\boldsymbol{\nu} : \{1, ..., n\}/\sim \to X_*(H)$: $div(\tau_B) = \sum_{y \in \{x_1, ..., x_n\}} \boldsymbol{\nu}(y)_B \cdot y$. Recall the stratification of the *H*-fixed points by the strata $\boldsymbol{\nu}_{X^n_{\sim}}$.

An *H*-fixed point $p = (T, d, \tau)$ with $d = (x_1, ..., x_n)$, is of the form $p = (\boldsymbol{\nu}(y)_y)_{y \in \{x_1, ..., x_n\}}$ for some $\boldsymbol{\nu} : \{x_1, ..., x_n\} \rightarrow X_*(H)$. At such point $div(\tau_B) = \sum_{y \in \{x_1, ..., x_n\}} \boldsymbol{\nu}(y)_B \cdot y$. Actually, $div(\tau_B)$ is $N(\mathcal{K})_{(x_1, ..., x_n)}$ -invariant, so it is constant on the orbit thru p.

2.3.1. Lemma. (a) Subscheme $\mathcal{G}_{X^n_{\sim}}(B, \boldsymbol{\nu})$ consisting of all triples with the invariant $(\sim, \boldsymbol{\nu})$ is given in the Bialnicky-Birula terms as

{
$$p \in \mathcal{G}_{X^n}, \lim_{G_m \ni c \to 0} (2\rho_{\check{\mathfrak{n}}})(c) \cdot p \in \boldsymbol{\nu}_{X^n_{\sim}}$$
}.

(b) $[\mathcal{G}_{X^n_{\sim}}(B,\boldsymbol{\nu})]^H = \boldsymbol{\nu}_{X^n_{\sim}}$ and $\mathcal{G}_{X^n_{\sim}}(B,\boldsymbol{\nu}) = N(\mathcal{K})_{X^n_{\sim}} \cdot \boldsymbol{\nu}_{X^n_{\sim}}.$

Therefore, the invariant $div(\tau_B)$ (encoded as $\boldsymbol{\nu}$ above) of $p = (T, d, \tau) \in \mathcal{G}_{(x_1, \dots, x_n)}$, precisely describes the $N(\mathcal{K})_{(x_1, \dots, x_n)}$ -orbit of p.

2.3.2. Irreducible components of the semi-infinite strata. The ind-subschemes of the ind-scheme $\mathcal{G}_{X^n}(B,\nu)$,

$$\mathcal{G}_{X^n}(B,\nu_1,...,\nu_n) \stackrel{\text{def}}{=} \{ p \in \mathcal{G}_{X^n}, \lim_{G_m \ni c \to 0} (2\rho_{\check{\mathfrak{n}}})(c) \cdot p \in (\nu_1,...,\nu_n)_{X^n} \},\$$

can be thought of as "irreducible components".

Component $\mathcal{G}_{X^n}(B,\nu_1,...,\nu_n)$ is the closure of the stratum $\mathcal{G}_{X^n_{reg}}(B,\boldsymbol{\nu})$ that lies above the regular stratum of X^n and $\boldsymbol{\nu}(x_i) = \nu_i(x_i)$.

2.4. Finite stratification. Stratum $\mathcal{G}_{X^n,\lambda}$, $\lambda \in W \setminus X_*(H_a) \cong W \setminus X_*(H)$, can be defined as $G_{X^n}(\mathcal{O}) \cdot \lambda_{X^n}$. These strata satisfy the locality property.

2.4.1. Lemma. The stalk of $IC(\overline{\mathcal{G}_{X^n,\lambda}})$ at a point $(\nu_1, ..., \nu_n)_{X^n}(x_1, ..., x_n) = (\sum_{x_i=y} \nu_i)_y |_{y \in \{x_1,...,x_n\}}$ is ...

2.5. Relations between the strata. We would like to extend to this setting all relations known in \mathcal{G} . (But for instance, $\mathcal{G}_{X^n}(B,0) \subseteq \mathcal{G}_{X^n}^0$ is not true.)

2.6. Partial symmetrizations $\mathcal{G}_{X^{(\alpha)}}$ of \mathcal{G}_{X^n} . Let $\mathcal{G}_{X^{(n)}}$ be the space that classifies the triples (T, τ, D) where T is a left G-torsor, $D \in X^{(n)}$ and τ is a section of T off the support of D. This is an ind-scheme and $\mathcal{G}_{X^n} = X^n \times \mathcal{G}_{X^{(n)}}$. The canonical action of the permutation group Σ_n on \mathcal{G}_{X^n} is the action on the first factor X^n , hence $\mathcal{G}_{X^{(n)}}$ is the invariant theory quotient $\mathcal{G}_{X^n}/\Sigma_n$.

More generally, any map $\pi: K \to J$ with K a finite set, defines $\alpha = \sum_{k \in K} \pi(k) \in \mathbb{Z}_+[J]$ and an intermediate ind-scheme $\mathcal{G}_{X^K} \to \mathcal{G}_{X^{(\alpha)}} \to \mathcal{G}_{X^{(n)}}$, for n = |K|. This is the invariant theory quotient

$$\mathcal{G}_{X^{(\alpha)}} \stackrel{\text{def}}{=} \mathcal{G}_{X^K} / \Sigma_{\pi},$$

for the stabilizer Σ_{π} of π in Σ_K . One has $\mathcal{G}_{X^{(\alpha)}} = X^{(\alpha)} \underset{X^{(n)}}{\times} \mathcal{G}_{X^{(n)}}$ and $\mathcal{G}_{X^n} = X^n \underset{X^{(\alpha)}}{\times} \mathcal{G}_{X^{(\alpha)}}$.

It is an ind-scheme over $X^{(\alpha)} \stackrel{\text{def}}{=} X^K / \Sigma_{\pi} = \prod_{j \in J} X^{K_j} / \Sigma_{K_j} = \prod_{j \in J} X^{(k_j)}$, for $k_j = |K_j|$. We think of this as a subspace of effective *J*-valued divisors on *X* of a given degree $\sum k_j \cdot j = \alpha$. The fiber at $D = \sum_{j \in J} D_j \cdot j \in X^{(\alpha)}$ is the same as the fiber of \mathcal{G}_{X^n} at any $(x_1, ..., x_n) \in X^n$ above *D*, i.e., $\prod_{y \in \text{supp}(D)} \mathcal{G}_y$.

2.6.1. The fixed point set $(\mathcal{G}_{X^{(\alpha)}})^H$. Since $\mathcal{G}_{X^n} \to \mathcal{G}_{X^{(\alpha)}}$ is finite $(\mathcal{G}_{X^{(\alpha)}})^H$ is the image of $(\mathcal{G}_{X^n})^H$ and the irreducible components of $(\mathcal{G}_{X^{(\alpha)}})^H$ are the images of the irreducible components of $(\mathcal{G}_{X^n})^H$. Since the parameterization $X_*(H)^K \ni \nu \mapsto \nu_{X^n} \in Irr[(\mathcal{G}_{X^n})^H]$ is Σ_K -equivariant, irreducible components of $(\mathcal{G}_{X^{(\alpha)}})^H$ are parameterized by Σ_{π} -orbits in $X_*(H)^K$, i.e. by $X_*(H)^{(\alpha)}$. To the orbit $\Sigma_{\pi} \cdot \boldsymbol{\nu}$ of $\boldsymbol{\nu} = (\nu_k)_{k \in K}$, there corresponds a section $\boldsymbol{\nu}_{X^{(\alpha)}} = (\Sigma_{\pi} \cdot \boldsymbol{\nu})_{X^{(\alpha)}}$ of $\mathcal{G}_{X^{(\alpha)}} \to X^{(\alpha)}$, with the value at $D = \sum_{k \in K} x_k \cdot \pi(k)$ equal $((\sum_{x_k=y} \nu_k)_y)_{y \in \text{supp}(D)} \in \prod_{y \in \text{supp}(D)} \mathcal{G}_y = (\mathcal{G}_{X^{(\alpha)}})_D$. Since Σ_K preserves the connected components $\nu_{X^{(\alpha)}} = \bigcup_{X_k \in K} \boldsymbol{\nu}_{k=\nu} \boldsymbol{\nu}_{X^{K}}$, their images are the connected components $\nu_{X^{(\alpha)}} = \bigcup_{X_k \in K} \boldsymbol{\nu}_{k=\nu} \mathbf{\nu}$.

2.6.2. Examples in $X_*(H_a)^{(\alpha)}$. If $\alpha = \sum_{j \in J} \alpha_j \cdot j$, then $X_*(H_a)^{(\alpha)} = \prod_{j \in J} X_*(H_a)^{(\alpha_j)}$ consists of J-families $(\nu_j)_{j \in J}$ with $\nu_j = \sum_{\zeta \in X_*(H_a)} n_{j,\zeta} \cdot e^{\zeta}$ in $\mathbb{Z}_+[X_*(H_a)]$ and $\sum_{\zeta \in X_*(H_a)} n_{j,\zeta} = \alpha_j$. Map $X_*(H_a)^K \to X_*(H_a)^{(\alpha)}$ sends K-family $(\zeta_k)_{k \in K}$ to a J-family $(\sum_{\pi(k)=j} e^{\zeta_k})_{j \in J}$.

So, the image of $0^{(\alpha)}$ of $0^K \in X_*(H)^K$ in $X_*(H)^{(\alpha)}$ is $0^{(\alpha)} = (\alpha_j \cdot e^0)_{j \in J}$.

If the case J = I, there is a canonical map $\mathbb{Z}_+[I] \to \mathbb{Z}_+[X_*(H_a)]^I$, $\alpha \mapsto \tilde{\alpha}$. For $\alpha = \sum_{i \in I} \alpha_i \cdot i$ we pick an unfolding $\pi : K \to I$, $\sum_{k \in K} \pi(k) = \alpha$. It lies in $I^K \subseteq X_*(H_a)^K$ and its image in $X_*(H_a)^{(\alpha)}$ is $\tilde{\alpha} \stackrel{\text{def}}{=} (\sum_{\pi(k)=i} e^{\pi(k)})_{i \in I} = (\alpha_i \cdot e^i)_{i \in I}$.

2.6.3. All of the stratifications of \mathcal{G}_{X^n} that we have considered, are really defined over $X^{(n)}$, i.e., they are the pull-backs of the stratifications of $\mathcal{G}_{X^{(n)}}$ for which we use similar notation. In particular, one has such stratifications of each $\mathcal{G}_{X^{(\alpha)}}$. The only difference

is that the irreducible components of $\mathcal{S}_{X^{(\alpha)}}(\nu)$ (for $\nu \in X_*(H)$), are now ind-subschemes $\mathcal{S}_{X^{(\alpha)}}(\Sigma_{\pi} \cdot \boldsymbol{\nu}) \stackrel{\text{def}}{=} \{ p \in \mathcal{G}_{X^{(\alpha)}}, \lim_{G_m \ni c \to 0} (2\rho_{\check{\mathfrak{n}}})(c) \cdot p \in (\Sigma_{\pi} \cdot \boldsymbol{\nu})_{X^{(\alpha)}} \}$, indexed by $X_*(H)^{(\alpha)}$ rather then $X_*(H)^K$.

2.6.4. Locality property. If for $\alpha, \beta \in \mathbb{Z}_+[I]$ we denote by $X^{(\alpha,\beta)} \subseteq X^{(\alpha)} \times X^{(\beta)}$ the open part where the factors are disjoint, then there are canonical "localization" isomorphisms

$$[X^{(\alpha,\beta)} \xrightarrow{+} X^{(\alpha+\beta)}]^* \mathcal{G}_{X^{(\alpha+\beta)}} \cong [X^{(\alpha,\beta)} \subseteq X^{(\alpha)} \times X^{(\beta)}]^* \mathcal{G}_{X^{(\alpha)}} \times \mathcal{G}_{X^{(\beta)}}.$$

In particular, for U open in X, restriction $\mathcal{G}_{X^{(\alpha)}}|U^n$ is just $\mathcal{G}_{U^{(n)}}$.

2.6.5. The diagonal stratification of $X^{(\alpha)}$. The multi-subsets of a set S are defined as elements of some symmetric power $S^{(k)}$, we denote the image of $(s_1, ..., s_k) \in S^k$ in $S^{(k)}$ by $\{\{s_1, ..., s_k\}\}$. Denote by $\mathcal{P}(\alpha)$ the set of all partitions of α , i.e multi-subsets $\Gamma = \{\{\gamma_1, ..., \gamma_k\}\}$ of $\mathbb{Z}_+[I]$ with $\sum_{i \in I} \gamma_i = \alpha$.

To define the *diagonal* stratification of $X^{(\alpha)}$, observe that for each $D = \sum_{y \in |X|} D_y \cdot y \in X^{(\alpha)}$, the nontrivial D_y 's form a partition of α . In this way each partition $\Gamma \in \mathcal{P}(\alpha)$ defines a stratum $X_{\Gamma}^{(\alpha)} = X_{\Gamma}$ and $X^{(\alpha)} = \bigsqcup_{\Gamma \in \mathcal{P}(\alpha)} X_{\Gamma}^{(\alpha)}$.

For example, the main diagonal in $X^{(\alpha)}$ is the closed stratum given by partition $\alpha = \alpha$, while the complement to all diagonals in $X^{(\alpha)}$ is the open stratum given by partition

$$\alpha = \sum_{i \in I} \underbrace{i + i + \ldots + i}_{a_i \text{ times}}.$$

3. Restrictions

3.1. Parabolic subgroup P defines a "map" $\mathcal{G}_{X^n} = \mathcal{G}_{X^n,G} \rightarrow \mathcal{G}_{X^n,\bar{P}}$. Let P be a parabolic subgroup with a unipotent radical U and the Levi group $\bar{P} = P/U$. One would like to define a map

 $r: \mathcal{G}_{X^n} = \mathcal{G}_{X^n,G} \to \mathcal{G}_{X^n,\overline{P}}, r(T,\tau,d) = (T_P,\tau_P,d), \text{ by } T_P \stackrel{\text{def}}{=} U \setminus \overline{P \cdot \tau} \text{ and } \tau_P = \text{ image of } \tau.$ However, operation $(T,\tau,d) \mapsto \overline{P \cdot \tau}$ is only continuous on certain strata. (Is it a morphism of functors?)

One would rather try to cook up a well defined (on a subscheme) operation by modifying T_P by d.

3.1.1. More precisely, for a curve C and groups A and B, one has maps $\mathcal{G}_{C^n,A} \to \mathcal{G}_{C^n,B}$, when either (i) A maps to B, or (ii) B is a cocompact subgroup of A (but in this case the map should be defined on a subscheme of $\mathcal{G}_{C^n,A}$ only).

3.1.2. How much wrong is the claim that

$$\mathcal{G}_{X^n,G} \rightarrow \mathcal{G}_{X^n,P}$$

is an inverse to the induction given by $P \hookrightarrow G$? Map $\mathcal{G}_{X^n,P} \to \mathcal{G}_{X^n,\overline{P}}$ is a retraction with the section given by any Levi factor L of P. Therefore, the fiber of r at (S, σ, D) consists of all P-torsors Q...?

3.2. Stratifications of \mathcal{G}_{X^n} defined by P. This may actually work sometimes? Any stratification of $\mathcal{G}_{X^n,\bar{P}}$ defines now a stratification of $\mathcal{G}_{X^n} = \mathcal{G}_{X^n,G}$. The basic one is by the connected components of $\mathcal{G}(\bar{P})$ (the same as the connected components of $\mathcal{G}_{X^n,\bar{P}}$): $\mathcal{G}_{X^n} = \bigcup_{\nu \in X_*[Z(\bar{P})]} \mathcal{G}_{X^n}(P,\nu).$

It can be refined using the cofinite stratification of $\mathcal{G}_{X^n,\bar{P}}$: $\mathcal{G}_{X^n}(P)^{\lambda}$, $\lambda \in X_*(T)//W_L$, or the finite stratification of $\mathcal{G}_{X^n,\bar{P}}$: $\mathcal{G}_{X^n}(P)_{\lambda}$, $\lambda \in X_*(T)//W_L$.

4. Poisson structures on $\mathcal{G}_{\mathbb{A}^n}$

4.1. A Poisson structure relating finite and cofinite stratifications. In order to construct a Manin triple (imitating Drinfeld), we choose an invariant symmetric non-degenerate bilinear form κ on \mathfrak{g} and a meromorphic 1-form ω on X, this gives an invariant symmetric non-degenerate bilinear form on $\mathfrak{g}_{X^n}(\mathcal{K})$ given by the sum of residues at y's: $\langle a, b \rangle \stackrel{\text{def}}{=} \sum_{y \in \{x_1, \dots, x_n\}} \operatorname{Res}_y \kappa(a, b) \omega$ (should be continuous in X^n).

If we calculate $H^*(X, \mathfrak{g})$ using the affine cover of X by $X - (x_1 \cup \cdots \cup x_n)$ and the formal neighborhood of $x_1 \cup \cdots \cup x_n$, we get

$$0 \to \mathfrak{g} \to \mathfrak{g}_{X^n}(\mathcal{O}) + \mathfrak{g}_{X^n}(\mathcal{O}_-) \to \mathfrak{g}_{X^n}(\mathcal{K}) \to \mathfrak{g} \otimes \omega_X(X) \to 0.$$

If $X = \mathbb{P}^1$ the last term is absent.

In order to make the above sum direct we choose a point $\infty \in X$ and restrict the Grassmannian to $\mathcal{G}(X - \infty)^n$. Then ∞ is disjoint from x_i 's and we can define a congruence subgroup $G_{X^n}(\mathcal{O}_-)_1 = \operatorname{Ker}[G_{X^n}(\mathcal{O}_-) \xrightarrow{g \mapsto g(\infty)} G]$. Then $\mathfrak{g}_{X^n}(\mathcal{O}) \oplus \mathfrak{g}_{X^n}(\mathcal{O}_-)_1 = \mathfrak{g}_{X^n}(\mathcal{K})$ should be a Manin pair of Lie algebras over \mathbb{A}^n .

In order for $\mathfrak{g}_{\mathbb{A}^n}(\mathcal{O})$ to be isotropic and we choose $\omega = dx$ which is regular on \mathbb{A}^1 . Finaly, $\mathfrak{g}_{\mathbb{A}^n}(\mathcal{O}_-)$ is isotropic since the sum of residues of a rational meromorphic form is 0.

4.1.1. The leaves are the fibers of intersections of finite strata and a modification of the cofinite strata where one replaces $G_{X^n}(\mathcal{O}_-)$ by the congruence subgroup.

4.1.2. This Poisson structure is "fiber-wise" (i.e., the fibers $\mathcal{G}_{(x_1,...,x_n)}$ are Poisson subspaces). The more interesting structure should involve $G_{X^n}^+ \stackrel{\text{def}}{=} N_{X^n}(\mathcal{K}) \cdot T_{X^n}(\mathcal{O})$, $G_{X^n}^- \stackrel{\text{def}}{=} N_{X^n}(\mathcal{K}) \cdot T_{X^n}(\mathcal{O}_-)$ and something like a groupoid on X^n consisting of isomorphisms of formal neighborhoods of subschemes $x_1 \cup \cdots \cup x_n \subseteq X$ (or maybe $(x_1, ..., x_n) \in X^n$?) (something like this is needed in order to get the X^n -direction involved).

More generally, for a parabolic P = LU one can use $G_{X^n}^+ \stackrel{\text{def}}{=} U_{X^n}(\mathcal{K}) \cdot L_{X^n}(\mathcal{O}),$ $G_{X^n}^- \stackrel{\text{def}}{=} U_{X^n}(\mathcal{K}) \cdot L_{X^n}(\mathcal{O}_-).$

5. Convolution

5.0.3. Is there a general convolution action of $\mathcal{P}_n \stackrel{\text{def}}{=} \mathcal{P}_{G_{X^n}(\mathcal{O})}(\mathcal{G}_{X^n})$ on $\mathcal{P}(\mathcal{G}_{X^m})$ by fusion along the diagonal in $X^n \times X^m$ consisting all (x, y) with $\{x_1, ..., x_n\} \subseteq \{y_1, ..., y_m\}$?

5.0.4. Or at least, does $\mathcal{P}_{G_X(\mathcal{O})}(\mathcal{G}_X)$ acts on $\mathcal{P}(\mathcal{G}_{X^n})$ by fusion along the diagonal in $X \times X^n$ consisting all $(x, (x_1, ..., x_n))$ with $x \in \{x_1, ..., x_n\}$?

5.0.5. This should in particular give the preservation of perversity result from [FM] (action on sheaves on the semi-infinite flags).