A. RELATIVE GRASSMANNIANS

MICHAEL FINKELBERG AND IVAN MIRKOVIĆ

Contents

1. Drinfeld Grassmannii $\mathcal{G}_{X^{n}}$ 2
1.1. Grassmannii $\mathcal{G}_{x}, x \in X$ 2
1.2. Ind-schemes $\mathcal{G}_{X^{n}}=\mathcal{G}_{X}^{(n)}$ over X^{n} 2
1.3. Locality of the Grassmannii $\mathcal{G}_{X^{n}}$ 2
1.4. Group schemes $G_{X^{n}}(\mathcal{O}) \subseteq G_{X^{n}}(\mathcal{K}) \supseteq G_{X^{n}}\left(\mathcal{O}_{-}\right)$ 3
1.5. The fixed point set $\left(\mathcal{G}_{X^{n}}\right)^{H}$ of a Cartan subgroup H 4
1.6. Gluing 5
2. Stratifications of $\mathcal{G}_{X^{n}}$ 5
2.1. Cofinite stratification by the isomorphism class of the torsor 5
2.2. Semi-infinite stratifications 6
2.3. Refined semi-infinite stratifications 7
2.4. Finite stratification 7
2.5. Relations between the strata 7
2.6. Partial symmetrizations $\mathcal{G}_{X^{(\alpha)}}$ of $\mathcal{G}_{X^{n}}$ 8
3. Restrictions 9
3.1. Parabolic subgroup P defines a "map" $\mathcal{G}_{X^{n}}=\mathcal{G}_{X^{n}, G} \rightarrow \mathcal{G}_{X^{n}, \bar{P}}$ 9
3.2. \quad Stratifications of $\mathcal{G}_{X^{n}}$ defined by P 10
4. Poisson structures on $\mathcal{G}_{\mathbb{A}^{n}}$ 10
4.1. A Poisson structure relating finite and cofinite stratifications 10
5. Convolution 11

1. Drinfeld Grassmannii $\mathcal{G}_{X^{n}}$

For a group A Grassmannii $\mathcal{G}_{X^{n}, A}$ are certain "rigidifications" of the stack $\mathcal{M}_{A}(X)$ of A-torsors on a curve X to ind-schemes. This is done in two steps: to a torsor one adds a rational section and then also an effective divisor that bounds the location of section's singularity.
Let G be a simply connected semi-simple connected algebraic group. Let $I \subseteq X_{*}\left(H_{a}\right)$ be the set of simple coroots.
1.1. Grassmannii $\mathcal{G}_{x}, x \in X$. Let X be a smooth curve over the complex numbers. Let $x \in X$ be a closed point and denote by \mathcal{O}_{x} the completion of the local ring at x and by \mathcal{K}_{x} its fraction field. Then the Grassmannian $\mathcal{G}_{x}=G\left(\mathcal{K}_{x}\right) / G\left(\mathcal{O}_{x}\right)$ represents the following functor from C-algebras to sets :

$$
R \mapsto\left\{\mathcal{F} \text { a } G \text {-torsor on } X_{R}, \nu: G \times X_{R}^{*} \rightarrow \mathcal{F} \mid X_{R}^{*} \text { a trivialization on } X_{R}^{*}\right\} .
$$

Here the pairs (\mathcal{F}, ν) are to be taken up to isomorphism, $X_{R}=X \times \operatorname{Spec}(R)$, and $X_{R}^{*}=(X-\{x\}) \times \operatorname{Spec}(R)$.
Ind-scheme \mathcal{G}_{x} depends only on the formal neighborhood of x in X.
Let us fix the isomorphism $G\left(\mathcal{K}_{x}\right) / G\left(\mathcal{O}_{x}\right) \stackrel{\cong}{\rightrightarrows} \mathcal{G}_{x}$. To $g \in G\left(\mathcal{K}_{x}\right)$ one attaches a torsor on X obtained by glueing trivial torsors $G_{\text {in }}$ on \hat{x} and $G_{\text {out }}$ on $X-x$ by say $g: G_{\text {in }}\left|\tilde{x} \rightarrow G_{\text {out }}\right| \tilde{x}$.
1.2. Ind-schemes $\mathcal{G}_{X^{n}}=\mathcal{G}_{X}^{(n)}$ over X^{n}. We now globalize this construction and at the same time form the Grassmannian at several points on the curve. Denote the n fold product by $X^{n}=X \times \cdots \times X$ and consider the functor $R \mapsto\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n}(R), \mathcal{F}\right.$ a G-torsor on X_{R}, ν a trivialization of \mathcal{F} on $\left.X_{R}-\cup x_{i}\right\}$.

Here we think of the points $x_{i}: \operatorname{Spec}(R) \rightarrow X$ as subschemes of X_{R} by taking their graphs. One sees that the functor in (3.2) is represented by an ind-scheme $\mathcal{G}_{X^{n}}$.
1.3. Locality of the Grassmannii $\mathcal{G}_{X^{n}}$. The ind-scheme $\mathcal{G}_{X^{n}}$ is obviously an ind-scheme over X^{n}. Its fiber $\mathcal{G}_{\left(x_{1}, \ldots, x_{n}\right)} \stackrel{\text { def }}{=}\left(\mathcal{G}_{X^{n}}\right)_{\left(x_{1}, \ldots, x_{n}\right)}$ over the point $x_{*}=\left(x_{1}, \ldots, x_{n}\right)$ is again of local nature - restriction from X to a formal neighborhood of the support $\left\{x_{1}, \ldots, x_{n}\right\}$ gives an identification

$$
\mathcal{G}_{\left(x_{1}, \ldots, x_{n}\right)} \stackrel{\text { def }}{=}\left(\mathcal{G}_{X^{n}}\right)_{\left(x_{1}, \ldots, x_{n}\right)} \stackrel{\cong}{\rightrightarrows} \prod_{y \in\left\{x_{1}, \ldots, x_{n}\right\}}\left(\mathcal{G}_{\hat{y}}\right)_{y} .
$$

The correspondence of $\left(\mathcal{T},\left(x_{1}, \ldots, x_{n}\right), \tau\right)$ and a system of $\left(\mathcal{T}_{y}, y, \tau_{y}\right) \in\left(\mathcal{G}_{\hat{y}}\right)_{y}, y \in$ $\left\{x_{1}, \ldots, x_{n}\right\}$; is given by:
$\left(\mathcal{T}_{y}, \tau_{y}\right)=(\mathcal{T}, \tau)$ near y (i.e., on \hat{y}, while both are equal to the trivial torsor off $\left\{x_{1}, \ldots, x_{n}\right\}$.

So by restriction, $\left(\mathcal{T}_{y}, \tau_{y}\right)=(\mathcal{T}, \tau) \mid \hat{y}$, while in the opposite direction one glues (\mathcal{T}, τ) from $\left(\mathcal{T}_{y}, \tau_{y}\right)$ on $\hat{y}, \quad y \in\left\{x_{1}, \ldots, x_{n}\right\}$; and from the trivial torsor $G \times X-\left\{x_{1}, \ldots, x_{n}\right\}$, by using trivialisaztions of the pair $\left(\mathcal{T}_{y}, \tau_{y}\right)$ on $\hat{y} \cap X-\left\{x_{1}, \ldots, x_{n}\right\}=\tilde{y}$, given by τ_{y}.
Because of this dependence on the formal neighborhood of $\left\{x_{1}, \ldots, x_{n}\right\}$ (only), we will often denote $\mathcal{G}_{\left(x_{1}, \ldots, x_{n}\right)} \stackrel{\text { def }}{=}\left(\mathcal{G}_{X^{n}}\right)_{\left(x_{1}, \ldots, x_{n}\right)}$, hence $\mathcal{G}_{y} \stackrel{\text { def }}{=}\left(\mathcal{G}_{X}\right)_{y} \cong\left(\mathcal{G}_{\hat{y}}\right)_{y}$.
In particular, locality implies that for U open in X, restriction $\mathcal{G}_{X^{n}} \mid U^{n}$ is really $\mathcal{G}_{U^{n}}$.
1.3.1. The precise formulation of the locality property. For $m, n \in \mathbb{Z}$ denote by $X^{m . n} \subseteq X^{m} \times X^{n}$ the open part where the factors are disjoint. There are canonical "localization" isomorphisms $\mathcal{G}_{X^{m+n}}\left|X^{m, n} \cong \mathcal{G}_{X^{m}} \times \mathcal{G}_{X^{n}}\right| X^{m, n}$.
So for any disjoint $A, B \subseteq X$, one has an isomorphism $\left.\left.\mathcal{G}_{X^{m+n}}\right|_{A^{m} \times B^{n}} \cong \mathcal{G}_{X^{m}}\right|_{A^{m}} \times\left.\mathcal{G}_{X^{n}}\right|_{B^{n}}$.
1.4. Group schemes $G_{X^{n}}(\mathcal{O}) \subseteq G_{X^{n}}(\mathcal{K}) \supseteq G_{X^{n}}\left(\mathcal{O}_{-}\right)$. The global analog of $G(\mathcal{O})$ is the group-scheme $G_{X^{n}}(\mathcal{O})$ which represents the functor

$$
R \mapsto\left\{\begin{array}{l}
\left(x_{1}, \ldots, x_{n}\right) \in X^{n}(R), \mathcal{F} \text { the trivial } G \text {-torsor on } X_{R}, \\
\mu \text { a trivialization of } \mathcal{F} \text { on }{\widehat{\left(X_{R}\right)}}_{\left(x_{1} \cup \ldots \cup x_{n}\right)}
\end{array}\right\} .
$$

Similarly, the global analogue of $G\left(\mathbb{C}\left[z^{-1}\right]\right)$ is the group-ind-scheme $G_{X^{n}}\left(\mathcal{O}_{-}\right)$which represents the functor

$$
R \mapsto\left\{\begin{array}{c}
\left(x_{1}, \ldots, x_{n}\right) \in X^{n}(R), \quad \mathcal{F} \text { the trivial } G \text {-torsor on } X_{R}, \\
\mu \text { a trivialization of } \mathcal{F} \text { on }\left(X_{R}\right)-\left(x_{1} \cup \ldots \cup x_{n}\right)
\end{array}\right\} .
$$

Finaly, the global analogue of $G\left(\mathcal{K}_{x}\right)$ is the group-ind-scheme $G_{X^{n}}(\mathcal{K})$ which represents the functor

$$
R \mapsto\left\{\begin{array}{l}
\left(x_{1}, \ldots, x_{n}\right) \in X^{n}(R), \quad \mathcal{F} \text { the trivial } G \text {-torsor on } X_{R}, \\
\mu \text { a trivialization of } \mathcal{F} \text { on } \widehat{\left(X_{R}\right)}-\left(x_{1} \cup \ldots \cup x_{n}\right)
\end{array}\right\}
$$

One can state it simply by

$$
\begin{aligned}
& G_{X^{n}}(\mathcal{O})(R)=\left\{\left(x_{1}, \ldots, x_{n}, \mu\right), \quad\left(x_{1}, \ldots, x_{n}\right) \in X^{n}(R) \quad \text { and } \quad \mu \in G\left({\widehat{\left(X_{R}\right)}}_{\left(x_{1} \cup \ldots \cup x_{n}\right)}\right)\right\}, \\
& G_{X^{n}}\left(\mathcal{O}_{-}\right)(R)=\left\{\left(x_{1}, \ldots, x_{n}, \nu\right), \quad\left(x_{1}, \ldots, x_{n}\right) \in X^{n}(R) \quad \text { and } \quad \nu \in G\left(X_{R}-\left(x_{1} \cup \ldots \cup x_{n}\right)\right)\right\} \\
& G_{X^{n}}(\mathcal{K})(R)=\left\{\left(x_{1}, \ldots, x_{n}, \eta\right), \quad\left(x_{1}, \ldots, x_{n}\right) \in X^{n}(R) \quad \text { and } \quad \eta \in G\left({\widehat{\left(X_{R}\right)}}_{\left(x_{1} \cup \ldots \cup x_{n}\right)}-\left(x_{1} \cup \ldots \cup x_{n}\right)\right)\right\},
\end{aligned}
$$ and the inclusions are given by restrictions.

1.4.1. In terms of these groups

$$
\mathcal{G}_{X^{n}} \cong G_{X^{n}}(\mathcal{K}) / G_{X^{n}}(\mathcal{O})
$$

The locality property of $\mathcal{G}_{X^{n}}$ can now be seen to come from the same property of groups $G_{X^{n}}(\mathcal{K})$ and $G_{X^{n}}(\mathcal{O})$:
$G_{X^{n}}(\mathcal{K})_{\left(x_{1}, \ldots, x_{n}\right)}=G\left(\widehat{\left(X_{R}\right)}{ }_{\left(x_{1} \cup \ldots \cup x_{m}\right)}-\left(x_{1} \cup \ldots \cup x_{m}\right)\right) \stackrel{\text { restriction }}{\Rightarrow} \prod_{y \in\left\{x_{1}, \ldots, x_{n}\right\}} G\left(\widehat{\left(X_{R}\right)} y_{y}-y\right)=\prod_{y \in\left\{x_{1}, \ldots, x_{n}\right\}} G(\mathcal{K}$
which restricts to $G_{X^{n}}(\mathcal{O})_{\left(x_{1}, \ldots, x_{n}\right)} \stackrel{\cong}{\rightrightarrows} \prod_{y \in\left\{x_{1}, \ldots, x_{n}\right\}} G\left(\mathcal{O}_{y}\right)$. (However $G_{X^{n}}\left(\mathcal{O}_{-}\right)$does not factor.)
1.5. The fixed point set $\left(\mathcal{G}_{X^{n}}\right)^{H}$ of a Cartan subgroup H. We see that $G_{X^{n}}(\mathcal{K})$ acts on $\mathcal{G}_{X^{n}}$. In particular the constant subgroup G acts on the fibers $\mathcal{G}_{\left(x_{1}, \ldots, x_{n}\right)} \cong \prod_{y \in\left\{x_{1}, \ldots, x_{n}\right\}} \mathcal{G}_{y}$ by acting on each factor \mathcal{G}_{y}.
For any maximal torus H in G, there is a canonical identification $X_{*}(H) \stackrel{\cong}{\leftrightharpoons}\left(\mathcal{G}_{x}\right)^{H}, \nu \mapsto \nu_{x}$. [Description of ν_{x} in terms of $G\left(\mathcal{K}_{x}\right) / G\left(\mathcal{O}_{x}\right)$ and $\left(T=\operatorname{Ind}_{H}^{G} \nu, \tau \mid \hat{X}_{x}\right)$.] So

For a generic $\left(x_{1}, \ldots, x_{n}\right)$ this is $X_{*}(H)^{n}$ and for $x_{1}=\cdots=x_{n}$ one has only one copy $X_{*}(H)$.
1.5.1. Irreducible components and the connected components of $\left(\mathcal{G}_{X^{n}}\right)^{H}$. The irreducible components of the ind-subscheme $\left(\mathcal{G}_{X^{n}}\right)^{H}$ are sections $\left(\nu_{1}, \ldots, \nu_{n}\right)_{X^{n}}$ of $\mathcal{G}_{X^{n}} \rightarrow X^{n}$, indexed by $\left(\nu_{1}, \ldots, \nu_{n}\right) \in X_{*}(H)^{n}$. The value at a generic $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ is $\left(\left(\nu_{1}\right)_{x_{1}}, \ldots,\left(\nu_{n}\right)_{x_{n}}\right) \in \prod_{1}^{n} \mathcal{G}_{x_{i}}=\mathcal{G}_{\left(x_{1}, \ldots, x_{n}\right)}$. The value at any $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ lies in $\mathcal{G}_{\left(x_{1}, \ldots, x_{n}\right)}=\prod_{y \in\left\{x_{1}, \ldots, x_{n}\right\}} \mathcal{G}_{y}$ and equals $\left(\left(\sum_{x_{i}=y} \nu_{i}\right)_{y}\right)_{y \in\left\{x_{1}, \ldots, x_{n}\right\}}$.

The connected components $\nu_{X^{n}}$ of $\left(\mathcal{G}_{X^{n}}\right)^{H}$ are indexed by $\nu \in X_{*}(H): \nu_{X^{n}}$ is the union of all $\left(\nu_{1}, \ldots, \nu_{n}\right)_{X^{n}}$ with $\sum \nu_{i}=\nu$. These sections all coincide above the diagonal in X^{n} since the value at (x, \ldots, x) is always ν_{x}. For instance, for $G=S L_{2}$ the connected component is essentially the product of $X=\Delta_{X}$ and a union of \mathbb{Z} lines meeting at one point.
1.5.2. A stratification of the fixed point set. The strata X_{\sim}^{K} of the diagonal stratification of X^{K} are parameterized by equivalence relations \sim on K. The strata of $\left(\mathcal{G}_{X^{n}}\right)^{H}$ are parameterized by pairs $(\sim, \boldsymbol{\nu})$ of an equivalence class \sim on $K=\{1, \ldots, n\}$ and a map $\boldsymbol{\nu}: K / \sim \rightarrow X_{*}\left(H_{a}\right)$. The stratum $\boldsymbol{\nu}_{X_{\sim}^{n}}$ is a section of $\mathcal{G}_{X^{n}} \rightarrow X^{n}$ over X_{\sim}^{n}, the value at $\left(x_{1}, \ldots, x_{n}\right) \in X_{\sim}^{n}$ is the family $\left(\boldsymbol{\nu}(y)_{y}\right)_{y \in\left\{x_{1}, \ldots, x_{n}\right\}}$ in the fiber $\left(\mathcal{G}_{\left(x_{1}, \ldots, x_{n}\right)}\right)^{H} \cong \prod_{y \in\left\{x_{1}, \ldots, x_{n}\right\}} \mathcal{G}_{y}^{H}$.

The closure of the $(\sim, \boldsymbol{\nu})$-stratum consists of the strata $\left(\sim^{\prime}, \boldsymbol{\nu}^{\prime}\right)$ where \sim^{\prime} is coarser then \sim and $\boldsymbol{\nu}^{\prime}=\left(K / \sim \rightarrow K / \sim^{\prime}\right)_{*} \boldsymbol{\nu}$, i.e., the value at $c^{\prime} \in K / \sim^{\prime}$ is $\boldsymbol{\nu}^{\prime}\left(c^{\prime}\right)=\sum_{c \subseteq c^{\prime}} \boldsymbol{\nu}(c)$.
1.6. Gluing. Let us explicate $G_{X^{n}}(\mathcal{K}) / G_{X^{n}}(\mathcal{O}) \stackrel{\cong}{\rightrightarrows} \mathcal{G}_{X^{n}}$.

2. Stratifications of $\mathcal{G}_{X^{n}}$

Fix a curve $C=X$.
Let $\mathcal{G}^{(n)}=\mathcal{G}_{X^{n}}$ be the space classifying the triples (P, τ, d) where P is a left G-torsor over $C, d \in C^{n}$ and τ is a section of P off the support of d.
2.1. Cofinite stratification by the isomorphism class of the torsor. The projection $\mathcal{G}_{X^{n}} \rightarrow \mathcal{M}_{G}(X) \times X^{n}$ can be written as $G_{X^{n}}(\mathcal{K}) / G_{X^{n}}(\mathcal{O}) \rightarrow G_{X^{n}}\left(\mathcal{O}_{-}\right) \backslash G_{X^{n}}(\mathcal{K}) / G_{X^{n}}(\mathcal{O})$, so it simply records many ways of reconstructing torsors by gluing trivial torsors on X $\left\{\left(x_{1}, \ldots, x_{n}\right)\right\}$ and $\hat{X}_{\left\{x_{1}, \ldots, x_{n}\right\}}$.
Each of the strata, i.e., fibers of $\mathcal{G}_{X^{n}} \rightarrow \mathcal{M}_{G}(X)$, is therefore a $G_{X^{n}}\left(\mathcal{O}_{-}\right)$-torsor, and the action is given by permuting sections τ.
2.1.1. Case $X=\mathbb{P}^{1}$. The points of $\mathcal{M}_{G}(X)$ are indexed by $X_{*}\left(H_{a}\right) / W \ni W \cdot \lambda \mapsto \operatorname{Ind} d_{H}^{G} \lambda$. So we get strata $\mathcal{G}_{X^{n}}^{\lambda}=\mathcal{G}_{X^{n}}^{W \cdot \lambda}, W \cdot \lambda \in W \backslash X_{*}\left(H_{a}\right)$ that consist of all triples with $P \cong$ $\operatorname{Ind} d_{H}^{G} \lambda$.
For $X=\mathbb{P}^{1}, G_{m}$ acts on X hence on all spaces $\mathcal{G}_{X^{n}}$. Observe that as $G_{m} \ni c \rightarrow 0, G_{m^{-}}$ action contracts \mathbb{A}^{n} to 0^{n}. So the fixed point set $\left(\mathcal{G}_{\mathbb{A}^{n}}\right)^{G_{m}}$ lies in the central fiber and $\left(\mathcal{G}_{\mathbb{A}^{n}}\right)^{G_{m}}=\left(\mathcal{G}_{0}\right)^{G_{m}}=G \cdot\left(\mathcal{G}_{0}\right)^{H}$. Its connected components are $G \cdot \nu_{0}, \nu \in W \backslash X_{*}(H)$.
2.1.2. Lemma. (a) As $G_{m} \ni c \rightarrow 0$, (i) G_{m} contracts $G_{X^{n}}\left(\mathcal{O}_{-}\right)$to 1 in the fiber $G\left(\mathbb{C}\left[z^{-1}\right]\right)$ at 0^{n}, (ii) G_{m} contracts $\nu_{\mathbb{A}^{n}}$ to $\nu_{0} \in \mathcal{G}_{0^{n}}$.
(b) map $\mathcal{G}_{X^{n}} \rightarrow \mathcal{M}_{G}(X) \times X^{n}$ is G_{m}-equivariant and the action on the points of $\mathcal{M}_{G}(X)$ is trivial.
(c) The "cofinite" stratification of $\mathcal{G}_{\mathbb{A}^{n}}$ is the Bialnicky-Birula stratification for the $G_{m^{-}}$ action.

Proof. (i) $\mathcal{O}\left(\mathbb{A}^{1}\right)=\mathbb{C}[z]$ and $c \in G_{m}$ acts on functions by $z \mapsto c \circ z=c^{-1} \cdot z$, so $c \circ(z-a)^{-1}=$ $\left(c^{-1} \cdot z-a\right)^{-1}=c \cdot(z-c a)^{-1} \rightarrow 0$.
(ii) G_{m} commutes with H, so it preserves irreducible components $\left(\nu_{1}, \ldots, \nu_{n}\right)_{X^{n}}$ of $\left(\mathcal{G}_{X^{n}}\right)^{H}$. So, as it contracts \mathbb{A}^{n} to 0^{n}, it also contracts the $\operatorname{section}\left(\nu_{1}, \ldots, \nu_{n}\right)_{\mathbb{A}^{n}}$ to its value ν_{0} at 0^{n}.
(c) [Messy] Clearly, $\nu_{X^{n}}$ lies in $\mathcal{G}_{X^{n}}^{W}$, hence so does $\mathcal{G}_{X^{n}}\left(\mathcal{O}_{-}\right) \cdot \nu_{X^{n}}$. Actually, $\mathcal{G}_{X^{n}}^{W}=$ $\mathcal{G}_{X^{n}}\left(\mathcal{O}_{-}\right) \cdot \nu_{X^{n}}$ as the fibers of $\mathcal{G}_{X^{n}} \rightarrow \mathcal{M}_{G}(X)$ are $\mathcal{G}_{X^{n}}\left(\mathcal{O}_{-}\right)$-torsors. But (a) shows that $\mathcal{G}_{X^{n}}\left(\mathcal{O}_{-}\right) \cdot \nu_{X^{n}}$ contracts to a point ν_{0}.

2.1.3. Problem. Calculate $I C$-stalks.

2.2. Semi-infinite stratifications. A choice of a Borel subgroup B associates to each triple (T, d, τ) an H_{a}-torsor $N \backslash \overline{B \cdot \tau}$. The semi-infinite stratification is given by this invariant. For any $\nu \in X_{*}(H)$ let $\mathcal{G}_{X^{n}}(B, \nu)$ consist of the triples (T, τ, d) with $\operatorname{deg} \overline{B \cdot \tau}=\nu$. Here, $\overline{B \cdot \tau} \subseteq P$ is the B-reduction defined by the meromorphic section τ and the degree is the type of the H_{a}-torsor $\left(B \rightarrow H_{a}\right)_{*} \overline{B \cdot \tau}=N \backslash \overline{B \cdot \tau}$.
2.2.1. $H_{*}\left(X_{a}\right)$-valued divisor $\operatorname{div}\left(\tau_{B}\right)$. The next invariant defined using B is the $X_{*}\left(H_{a}\right)$ valued divisor $\operatorname{div}\left(\tau_{B}\right)$, the divisor of the section τ_{B} of $N \backslash \overline{B \cdot \tau}$, defined by τ.
First, we use $G_{m}^{I} \xlongequal{\cong} H_{a}$ given by $I \subseteq X_{*}\left(H_{a}\right)$ to define a semigroup $\overline{H_{a}} \cong G_{a}^{I}$, i.e., $\mathcal{O}\left(H_{a}\right)=$ $\mathbb{C}\left[\oplus_{i \in I} \mathbb{Z} \omega_{i}\right]$ contains $\mathcal{O}\left(\overline{H_{a}}\right)=\mathbb{C}\left[\oplus_{i \in I} \mathbb{Z}_{+} \omega_{i}\right]$. Now a rational function f from C to H_{a} is a family of functions f_{i} and $\operatorname{div}(f) \stackrel{\text { def }}{=} \sum_{i \in I} \operatorname{div}\left(f_{i}\right) \cdot i \in \mathbb{Z}[I]=X_{*}\left(H_{a}\right)$.
A triple (T, τ, d) is in $\mathcal{G}_{X^{n}}(B, \nu)$ iff the divisor of the section τ_{B} has degree ν (since $\operatorname{deg}\left(\tau_{B}\right)=\operatorname{deg} \operatorname{div}\left(\tau_{B}\right)$ equals $\left.\operatorname{deg}(N \backslash \overline{B \cdot \tau})\right)$. So for $n=1,(T, \tau, d) \in \mathcal{G}_{x}$ lies in $\mathcal{G}_{X}(B, \nu)_{x}$ if the order of τ_{B} at x equals ν, and in general, the fiber $\mathcal{G}_{X^{n}}(B, \nu)_{\left(x_{1}, \ldots, x_{n}\right)}$ is a disjoint union of products of such strata in the ordinary Grassmannian

$$
\mathcal{G}_{X^{n}}(B, \nu)_{\left(x_{1}, \ldots, x_{n}\right)} \cong \sum_{\sum \nu_{y}=\nu}^{\sqcup} \prod_{y \in\left\{x_{1}, \ldots, x_{n}\right\}} \mathcal{G}_{y}\left(B, \nu_{y}\right) .
$$

2.2.2. Lemma. (a) $\left[\mathcal{G}_{X^{n}}(B, \nu)\right]^{H}=\nu_{X^{n}}$.
(b) $\mathcal{G}_{X^{n}}(B, \nu)=N_{X^{n}}(\mathcal{K}) \cdot \nu_{X^{n}}=\left\{p \in \mathcal{G}_{X^{n}}, \lim _{G_{m} \ni c \rightarrow 0}\left(2 \rho_{\mathfrak{n}}\right)(c) \cdot p \in \nu_{X^{n}}\right\}$.

So this is a Bialnicky-Birula stratification for the action of a Cartan subgroup H.
(c) $\overline{\mathcal{G}_{X^{n}}(B, \nu)}=\underset{\mu \leq \nu}{\cup} \mathcal{G}_{X^{n}}(B, \mu)$, where \leq (or better ${\underset{B}{B}}$) is the relation $\mu \leq \nu$ if $\nu-\mu \in$ $\mathbb{Z}_{+}\left[\Delta_{H}(\mathfrak{n})\right]$ (opposite to the "geometric" order on characters of a Borel subgroup).
Proof. (a) An H-fixed point $\left(\left(\nu_{y}\right)_{y}\right)_{y \in\left\{x_{1}, \ldots, x_{n}\right\}} \in\left(\mathcal{G}_{\left(x_{1}, \ldots, x_{n}\right)}\right)^{H}$, lies in $\mathcal{G}_{X^{n}}(B, \nu)$ iff $\operatorname{deg} \bar{\tau}=\sum \nu_{y}$ equals ν.
Now (b) and then (c) follow from the same statements for the ordinary Grassmannian, using (a) and the above decomposition of the fiber of $\mathcal{G}_{X^{n}}(B, \nu)$.
2.2.3. Stratifications corresponding to opposite Borel subgroups $B_{ \pm}$. These are in some sense opposite stratifications. Let $B=B_{+}, H=B_{+} \cap B_{-}$and

$$
\mathcal{S}_{X^{n}}(\nu)=\mathcal{G}_{X^{n}}\left(B, \nu_{B}\right) \quad \text { and } \quad \mathcal{T}_{X^{n}}(\nu)=\mathcal{G}_{X^{n}}\left(B_{-}, \nu_{B_{-}}\right)
$$

here $\nu \in X_{*}(H)$ defines $\nu_{B_{ \pm}} \in X_{*}\left(H_{a}\right)$ via $H \subseteq B_{ \pm} \rightarrow H_{a}$. Since $B_{-}=w_{0} \cdot B_{-}$the two versions $\nu_{B_{ \pm}} \in$ are related by w_{0}.

Corollary. (a) $\mathcal{S}_{X^{n}}(\nu)$ meets $\mathcal{T}_{X^{n}}(\mu)$ iff $\mu \leq \nu$, i.e., iff $\mathcal{S}_{X^{n}}(\mu) \subseteq \overline{\mathcal{S}_{X^{n}}(\nu)}$.
(b) $\mathcal{S}_{X^{n}}(\nu) \cap \mathcal{T}_{X^{n}}(\nu)=\mathcal{S}_{X^{n}}(\nu)^{H}=\nu_{X^{n}}$, and in general

$$
\left[\mathcal{S}_{X^{n}}(\nu) \cap \mathcal{T}_{X^{n}}(\mu)\right]_{\left(x_{1}, \ldots, x_{n}\right)}=\prod_{\sum \mu_{y}=\mu, \sum \nu_{y}=\nu, \mu_{y} \leq \nu_{y}} \prod_{y \in\left\{x_{1}, \ldots, x_{n}\right\}}\left(\mathcal{S}_{y}\right)_{\mu_{y}} \cap\left(\mathcal{T}_{y}\right)_{\mu_{y}}
$$

Proof. One checks in each fiber $\mathcal{G}_{\left(x_{1}, \ldots, x_{n}\right)}$.
2.3. Refined semi-infinite stratifications. This stratification is based on the invariant $(\sim, \boldsymbol{\nu})$ of a triple (T, d, τ). Point $d=\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ lies in some stratum X_{\sim}^{n} of the diagonal stratification and canonically $\{1, \ldots, n\} / \sim \cong\left\{x_{1}, \ldots, x_{n}\right\}$. The I-colored divisor $\operatorname{div}\left(\tau_{B}\right)$ is the same as a function $\boldsymbol{\nu}:\{1, \ldots, n\} / \sim \rightarrow X_{*}(H)$: $\operatorname{div}\left(\tau_{B}\right)=\sum_{y \in\left\{x_{1}, \ldots, x_{n}\right\}} \boldsymbol{\nu}(y)_{B} \cdot y$. Recall the stratification of the H-fixed points by the strata $\boldsymbol{\nu}_{X_{\sim}^{n}}$.
An H-fixed point $p=(T, d, \tau)$ with $d=\left(x_{1}, \ldots, x_{n}\right)$, is of the form $p=\left(\boldsymbol{\nu}(y)_{y}\right)_{y \in\left\{x_{1}, \ldots, x_{n}\right\}}$ for some $\boldsymbol{\nu}:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow X_{*}(H)$. At such point $\operatorname{div}\left(\tau_{B}\right)=\sum_{y \in\left\{x_{1}, \ldots, x_{n}\right\}} \boldsymbol{\nu}(y)_{B} \cdot y$. Actually, $\operatorname{div}\left(\tau_{B}\right)$ is $N(\mathcal{K})_{\left(x_{1}, \ldots, x_{n}\right)}$-invariant, so it is constant on the orbit thru p.
2.3.1. Lemma. (a) Subscheme $\mathcal{G}_{X_{\sim}^{n}}(B, \boldsymbol{\nu})$ consisting of all triples with the invariant $(\sim, \boldsymbol{\nu})$ is given in the Bialnicky-Birula terms as

$$
\left\{p \in \mathcal{G}_{X^{n}}, \quad \lim _{G_{m} \ni c \rightarrow 0}\left(2 \rho_{\mathfrak{n}}\right)(c) \cdot p \in \boldsymbol{\nu}_{X_{\sim}^{n}}\right\}
$$

(b) $\left[\mathcal{G}_{X_{\sim}^{n}}(B, \boldsymbol{\nu})\right]^{H}=\boldsymbol{\nu}_{X_{\sim}^{n}} \quad$ and $\quad \mathcal{G}_{X_{\sim}^{n}}(B, \boldsymbol{\nu})=N(\mathcal{K})_{X_{\sim}^{n}} \cdot \boldsymbol{\nu}_{X_{\sim}^{n}}$.

Therefore, the invariant $\operatorname{div}\left(\tau_{B}\right)$ (encoded as $\boldsymbol{\nu}$ above) of $p=(T, d, \tau) \in \mathcal{G}_{\left(x_{1}, \ldots, x_{n}\right)}$, precisely describes the $N(\mathcal{K})_{\left(x_{1}, \ldots, x_{n}\right)}$-orbit of p.
2.3.2. Irreducible components of the semi-infinite strata. The ind-subschemes of the ind-scheme $\mathcal{G}_{X^{n}}(B, \nu)$,

$$
\mathcal{G}_{X^{n}}\left(B, \nu_{1}, \ldots, \nu_{n}\right) \stackrel{\text { def }}{=}\left\{p \in \mathcal{G}_{X^{n}}, \quad \lim _{G_{m} \ni c \rightarrow 0}\left(2 \rho_{\mathfrak{n}}\right)(c) \cdot p \in\left(\nu_{1}, \ldots, \nu_{n}\right)_{X^{n}}\right\}
$$

can be thought of as "irreducible components".
Component $\mathcal{G}_{X^{n}}\left(B, \nu_{1}, \ldots, \nu_{n}\right)$ is the closure of the stratum $\mathcal{G}_{X_{\text {reg }}^{n}}(B, \boldsymbol{\nu})$ that lies above the regular stratum of X^{n} and $\boldsymbol{\nu}\left(x_{i}\right)=\nu_{i}\left(x_{i}\right)$.
2.4. Finite stratification. Stratum $\mathcal{G}_{X^{n}, \lambda}, \lambda \in W \backslash X_{*}\left(H_{a}\right) \cong W \backslash X_{*}(H)$, can be defined as $G_{X^{n}}(\mathcal{O}) \cdot \lambda_{X^{n}}$. These strata satisfy the locality property.
2.4.1. Lemma. The stalk of $I C\left(\overline{\mathcal{G}_{X^{n}, \lambda}}\right)$ at a point $\left(\nu_{1}, \ldots, \nu_{n}\right)_{X^{n}}\left(x_{1}, \ldots, x_{n}\right)=$ $\left(\left(\sum_{x_{i}=y} \nu_{i}\right)_{y}\right)_{y \in\left\{x_{1}, \ldots, x_{n}\right\}}$ is ...
2.5. Relations between the strata. We would like to extend to this setting all relations known in \mathcal{G}. (But for instance, $\mathcal{G}_{X^{n}}(B, 0) \subseteq \mathcal{G}_{X^{n}}^{0}$ is not true.)
2.6. Partial symmetrizations $\mathcal{G}_{X^{(\alpha)}}$ of $\mathcal{G}_{X^{n}}$. Let $\mathcal{G}_{X^{(n)}}$ be the space that classifies the triples (T, τ, D) where T is a left G-torsor, $D \in X^{(n)}$ and τ is a section of T off the support of D. This is an ind-scheme and $\mathcal{G}_{X^{n}}=X_{X^{(n)}}^{\times} \mathcal{G}_{X^{(n)}}$. The canonical action of the permutation group Σ_{n} on $\mathcal{G}_{X^{n}}$ is the action on the first factor X^{n}, hence $\mathcal{G}_{X^{(n)}}$ is the invariant theory quotient $\mathcal{G}_{X^{n}} / / \Sigma_{n}$.
More generally, any map $\pi: K \rightarrow J$ with K a finite set, defines $\alpha=\sum_{k \in K} \pi(k) \in \mathbb{Z}_{+}[J]$ and an intermediate ind-scheme $\mathcal{G}_{X^{K}} \rightarrow \mathcal{G}_{X^{(\alpha)}} \rightarrow \mathcal{G}_{X^{(n)}}$, for $n=|K|$. This is the invariant theory quotient

$$
\mathcal{G}_{X^{(\alpha)}} \stackrel{\text { def }}{=} \mathcal{G}_{X^{K}} / / \Sigma_{\pi},
$$

for the stabilizer Σ_{π} of π in Σ_{K}. One has $\mathcal{G}_{X^{(\alpha)}}=X_{X^{(\alpha)}}^{\times \mathcal{G}_{X^{(n)}}}$ and $\mathcal{G}_{X^{n}}=X^{n} \underset{X^{(\alpha)}}{\times \mathcal{G}_{X^{(\alpha)}}}$. It is an ind-scheme over $X^{(\alpha)} \stackrel{\text { def }}{=} X^{K} / / \Sigma_{\pi}=\prod_{j \in J} X^{K_{j}} / \Sigma_{K_{j}}=\prod_{j \in J} X^{\left(k_{j}\right)}$, for $k_{j}=\left|K_{j}\right|$. We think of this as a subspace of effective J-valued divisors on X of a given degree $\sum k_{j} \cdot j=\alpha$. The fiber at $D=\sum_{j \in J} D_{j} \cdot j \in X^{(\alpha)}$ is the same as the fiber of $\mathcal{G}_{X^{n}}$ at any $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$ above D, i.e., $\prod_{y \in \operatorname{supp}(D)} \mathcal{G}_{y}$.
2.6.1. The fixed point set $\left(\mathcal{G}_{X^{(\alpha)}}\right)^{H}$. Since $\mathcal{G}_{X^{n}} \rightarrow \mathcal{G}_{X^{(\alpha)}}$ is finite $\left(\mathcal{G}_{X^{(\alpha)}}\right)^{H}$ is the image of $\left(\mathcal{G}_{X^{n}}\right)^{H}$ and the irreducible components of $\left(\mathcal{G}_{X^{(\alpha)}}\right)^{H}$ are the images of the irreducible components of $\left(\mathcal{G}_{X^{n}}\right)^{H}$. Since the parameterization $X_{*}(H)^{K} \ni \nu \mapsto \nu_{X^{n}} \in \operatorname{Irr}\left[\left(\mathcal{G}_{X^{n}}\right)^{H}\right]$ is $\Sigma_{K^{-}}$-equivariant, irreducible components of $\left(\mathcal{G}_{X^{(\alpha)}}\right)^{H}$ are parameterized by Σ_{π}-orbits in $X_{*}(H)^{K}$, i.e. by $X_{*}(H)^{(\alpha)}$. To the orbit $\Sigma_{\pi} \cdot \boldsymbol{\nu}$ of $\boldsymbol{\nu}=\left(\nu_{k}\right)_{k \in K}$, there corresponds a section $\boldsymbol{\nu}_{X^{(\alpha)}}=\left(\Sigma_{\pi} \cdot \boldsymbol{\nu}\right)_{X^{(\alpha)}}$ of $\mathcal{G}_{X^{(\alpha)}} \rightarrow X^{(\alpha)}$, with the value at $D=\sum_{k \in K} x_{k} \cdot \pi(k)$ equal $\left(\left(\sum_{x_{k}=y} \nu_{k}\right)_{y}\right)_{y \in \operatorname{supp}(D)} \in \prod_{y \in \operatorname{supp}(D)} \mathcal{G}_{y}=\left(\mathcal{G}_{X^{(\alpha)}}\right)_{D}$. Since Σ_{K} preserves the connected components $\nu_{X^{K}}=\cup_{\sum_{k \in K} \boldsymbol{\nu}_{k}=\nu} \boldsymbol{\nu}_{X^{K}}$, their images are the connected components $\nu_{X^{(\alpha)}}=$ $\underset{\sum_{k \in K} \boldsymbol{\nu}_{k}=\nu}{\cup} \boldsymbol{\nu}_{X^{(\alpha)}}$ of $\left(\mathcal{G}_{X^{(\alpha)}}\right)^{H}$.
2.6.2. Examples in $X_{*}\left(H_{a}\right)^{(\alpha)}$. If $\alpha=\sum_{j \in J} \alpha_{j} \cdot j$, then $X_{*}\left(H_{a}\right)^{(\alpha)}=\prod_{j \in J} X_{*}\left(H_{a}\right)^{\left(\alpha_{j}\right)}$ consists of J-families $\left(\nu_{j}\right)_{j \in J}$ with $\nu_{j}=\sum_{\zeta \in X_{*}\left(H_{a}\right)} n_{j, \zeta} \cdot e^{\zeta}$ in $\mathbb{Z}_{+}\left[X_{*}\left(H_{a}\right)\right]$ and $\sum_{\zeta \in X_{*}\left(H_{a}\right)} n_{j, \zeta}=$ α_{j}. Map $X_{*}\left(H_{a}\right)^{K} \rightarrow X_{*}\left(H_{a}\right)^{(\alpha)}$ sends K-family $\left(\zeta_{k}\right)_{k \in K}$ to a J-family $\left(\sum_{\pi(k)=j} e^{\zeta_{k}}\right)_{j \in J \text {. }}$.
So, the image of $0^{(\alpha)}$ of $0^{K} \in X_{*}(H)^{K}$ in $X_{*}(H)^{(\alpha)}$ is $0^{(\alpha)}=\left(\alpha_{j} \cdot e^{0}\right)_{j \in J}$.
If the case $J=I$, there is a canonical map $\mathbb{Z}_{+}[I] \rightarrow \mathbb{Z}_{+}\left[X_{*}\left(H_{a}\right)\right]^{I}, \alpha \mapsto \tilde{\alpha}$. For $\alpha=\sum_{i \in I} \alpha_{i} \cdot i$ we pick an unfolding $\pi: K \rightarrow I, \sum_{k \in K} \pi(k)=\alpha$. It lies in $I^{K} \subseteq X_{*}\left(H_{a}\right)^{K}$ and its image in $X_{*}\left(H_{a}\right)^{(\alpha)}$ is $\tilde{\alpha} \stackrel{\text { def }}{=}\left(\sum_{\pi(k)=i} e^{\pi(k)}\right)_{i \in I}=\left(\alpha_{i} \cdot e^{i}\right)_{i \in I}$.
2.6.3. All of the stratifications of $\mathcal{G}_{X^{n}}$ that we have considered, are really defined over $X^{(n)}$, i.e., they are the pull-backs of the stratifications of $\mathcal{G}_{X^{(n)}}$ for which we use similar notation. In particular, one has such stratifications of each $\mathcal{G}_{X^{(\alpha)}}$. The only difference
is that the irreducible components of $\mathcal{S}_{X^{(\alpha)}}(\nu)$ (for $\nu \in X_{*}(H)$), are now ind-subschemes $\mathcal{S}_{X^{(\alpha)}}\left(\Sigma_{\pi} \cdot \boldsymbol{\nu}\right) \stackrel{\text { def }}{=}\left\{p \in \mathcal{G}_{X^{(\alpha)}}, \lim _{G_{m} \ni c \rightarrow 0}\left(2 \rho_{\mathfrak{n}}\right)(c) \cdot p \in\left(\Sigma_{\pi} \cdot \boldsymbol{\nu}\right)_{X^{(\alpha)}}\right\}$, indexed by $X_{*}(H)^{(\alpha)}$ rather then $X_{*}(H)^{K}$.
2.6.4. Locality property. If for $\alpha, \beta \in \mathbb{Z}_{+}[I]$ we denote by $X^{(\alpha, \beta)} \subseteq X^{(\alpha)} \times X^{(\beta)}$ the open part where the factors are disjoint, then there are canonical "localization" isomorphisms

$$
\left[X^{(\alpha, \beta)} \xrightarrow{\rightarrow} X^{(\alpha+\beta)}\right]^{*} \mathcal{G}_{X^{(\alpha+\beta)}} \cong\left[X^{(\alpha, \beta)} \subseteq X^{(\alpha)} \times X^{(\beta)}\right]^{*} \mathcal{G}_{X^{(\alpha)}} \times \mathcal{G}_{X^{(\beta)}} .
$$

In particular, for U open in X, restriction $\mathcal{G}_{X^{(\alpha)}} \mid U^{n}$ is just $\mathcal{G}_{U^{(n)}}$.
2.6.5. The diagonal stratification of $X^{(\alpha)}$. The multi-subsets of a set S are defined as elements of some symmetric power $S^{(k)}$, we denote the image of $\left(s_{1}, \ldots, s_{k}\right) \in S^{k}$ in $S^{(k)}$ by $\left\{\left\{s_{1}, \ldots, s_{k}\right\}\right\}$. Denote by $\mathcal{P}(\alpha)$ the set of all partitions of α, i.e multi-subsets $\Gamma=$ $\left\{\left\{\gamma_{1}, \ldots, \gamma_{k}\right\}\right\}$ of $\mathbb{Z}_{+}[I]$ with $\sum_{i \in I} \gamma_{i}=\alpha$.
To define the diagonal stratification of $X^{(\alpha)}$, observe that for each $D=\sum_{y \in|X|} D_{y} \cdot y \in$ $X^{(\alpha)}$, the nontrivial D_{y} 's form a partition of α. In this way each partition $\Gamma \in \mathcal{P}(\alpha)$ defines a stratum $X_{\Gamma}{ }^{(\alpha)}=X_{\Gamma}$ and $X^{(\alpha)}=\bigsqcup_{\Gamma \in \mathcal{P}(\alpha)} X_{\Gamma}{ }^{(\alpha)}$.
For example, the main diagonal in $X^{(\alpha)}$ is the closed stratum given by partition $\alpha=\alpha$, while the complement to all diagonals in $X^{(\alpha)}$ is the open stratum given by partition

$$
\alpha=\sum_{i \in I} \underbrace{i+i+\ldots+i}_{a_{i} \text { times }} .
$$

3. Restrictions

3.1. Parabolic subgroup P defines a "map" $\mathcal{G}_{X^{n}}=\mathcal{G}_{X^{n}, G} \rightarrow \mathcal{G}_{X^{n}, \bar{P}}$. Let P be a parabolic subgroup with a unipotent radical U and the Levi group $\bar{P}=P / U$. One would like to define a map
$r: \mathcal{G}_{X^{n}}=\mathcal{G}_{X^{n}, G} \rightarrow \mathcal{G}_{X^{n}, \bar{P}}, r(T, \tau, d)=\left(T_{P}, \tau_{P}, d\right), \quad$ by $T_{P} \stackrel{\text { def }}{=} U \backslash \overline{P \cdot \tau} \quad$ and $\quad \tau_{P}=$ image of τ. However, operation $(T, \tau, d) \mapsto \overline{P \cdot \tau}$ is only continuous on certain strata. (Is it a morphism of functors?)
One would rather try to cook up a well defined (on a subscheme) operation by modifying T_{P} by d.
3.1.1. More precisely, for a curve C and groups A and B, one has maps $\mathcal{G}_{C^{n}, A} \rightarrow \mathcal{G}_{C^{n}, B}$, when either (i) A maps to B, or (ii) B is a cocompact subgroup of A (but in this case the map should be defined on a subscheme of $\mathcal{G}_{C^{n}, A}$ only).
3.1.2. How much wrong is the claim that

$$
\mathcal{G}_{X^{n}, G} \rightarrow \mathcal{G}_{X^{n}, P}
$$

is an inverse to the induction given by $P \hookrightarrow G$? Map $\mathcal{G}_{X^{n}, P} \rightarrow \mathcal{G}_{X^{n}, \bar{P}}$ is a retraction with the section given by any Levi factor L of P. Therefore, the fiber of r at (S, σ, D) consists of all P-torsors $Q \ldots$?
3.2. Stratifications of $\mathcal{G}_{X^{n}}$ defined by P. This may actually work sometimes? Any stratification of $\mathcal{G}_{X^{n}, \bar{P}}$ defines now a stratification of $\mathcal{G}_{X^{n}}=\mathcal{G}_{X^{n}, G}$. The basic one is by the connected components of $\mathcal{G}(\bar{P})$ (the same as the connected components of $\mathcal{G}_{X^{n}, \bar{P}}$): $\mathcal{G}_{X^{n}}=\underset{\nu \in X_{*}[Z(\bar{P})]}{\cup} \mathcal{G}_{X^{n}}(P, \nu)$.
It can be refined using the cofinite stratification of $\mathcal{G}_{X^{n}, \bar{P}}: \mathcal{G}_{X^{n}}(P)^{\lambda}, \lambda \in X_{*}(T) / / W_{L}$, or the finite stratification of $\mathcal{G}_{X^{n}, \bar{P}}: \mathcal{G}_{X^{n}}(P)_{\lambda}, \lambda \in X_{*}(T) / / W_{L}$.

4. Poisson structures on $\mathcal{G}_{\mathbb{A}^{n}}$

4.1. A Poisson structure relating finite and cofinite stratifications. In order to construct a Manin triple (imitating Drinfeld), we choose an invariant symmetric nondegenerate bilinear form κ on \mathfrak{g} and a meromorphic 1-form ω on X, this gives an invariant symmetric non-degenerate bilinear form on $\mathfrak{g}_{X^{n}}(\mathcal{K})$ given by the sum of residues at y 's: $\langle a, b\rangle \stackrel{\text { def }}{=} \sum_{y \in\left\{x_{1}, \ldots, x_{n}\right\}} \operatorname{Res}_{y} \kappa(a, b) \omega$ (should be continuous in X^{n}).
If we calculate $H^{*}(X, \mathfrak{g})$ using the affine cover of X by $X-\left(x_{1} \cup \cdots \cup x_{n}\right)$ and the formal neighborhood of $x_{1} \cup \cdots \cup x_{n}$, we get

$$
0 \rightarrow \mathfrak{g} \rightarrow \mathfrak{g}_{X^{n}}(\mathcal{O})+\mathfrak{g}_{X^{n}}\left(\mathcal{O}_{-}\right) \rightarrow \mathfrak{g}_{X^{n}}(\mathcal{K}) \rightarrow \mathfrak{g} \otimes \omega_{X}(X) \rightarrow 0
$$

If $X=\mathbb{P}^{1}$ the last term is absent.
In order to make the above sum direct we choose a point $\infty \in X$ and restrict the Grassmannian to $\mathcal{G}(X-\infty)^{n}$. Then ∞ is disjoint from x_{i} 's and we can define a congruence subgroup $G_{X^{n}}\left(\mathcal{O}_{-}\right)_{1}=\operatorname{Ker}\left[G_{X^{n}}\left(\mathcal{O}_{-}\right) \xrightarrow{g \mapsto g(\infty)} G\right]$. Then $\mathfrak{g}_{X^{n}}(\mathcal{O}) \oplus \mathfrak{g}_{X^{n}}\left(\mathcal{O}_{-}\right)_{1}=\mathfrak{g}_{X^{n}}(\mathcal{K})$ should be a Manin pair of Lie algebras over \mathbb{A}^{n}.
In order for $\mathfrak{g}_{\mathbb{A}^{n}}(\mathcal{O})$ to be isotropic and we choose $\omega=d x$ which is regular on \mathbb{A}^{1}. Finaly, $\mathfrak{g}_{\mathbb{A}^{n}}\left(\mathcal{O}_{-}\right)$is isotropic since the sum of residues of a rational meromorphic form is 0 .
4.1.1. The leaves are the fibers of intersections of finite strata and a modification of the cofinite strata where one replaces $G_{X^{n}}\left(\mathcal{O}_{-}\right)$by the congruence subgroup.
4.1.2. This Poisson structure is "fiber-wise" (i.e., the fibers $\mathcal{G}_{\left(x_{1}, \ldots, x_{n}\right)}$ are Poisson subspaces). The more interesting structure should involve $G_{X^{n}}^{+} \stackrel{\text { def }}{=} N_{X^{n}}(\mathcal{K}) \cdot T_{X^{n}}(\mathcal{O})$, $G_{X^{n}}^{-} \stackrel{\text { def }}{=} N_{X^{n}}(\mathcal{K}) \cdot T_{X^{n}}\left(\mathcal{O}_{-}\right)$and something like a groupoid on X^{n} consisting of isomorphisms of formal neighborhoods of subschemes $x_{1} \cup \cdots \cup x_{n} \subseteq X$ (or maybe (x_{1}, \ldots, x_{n}) $\in X^{n}$?) (something like this is needed in order to get the X^{n}-direction involved).

More generally, for a parabolic $P=L U$ one can use $G_{X^{n}}^{+} \stackrel{\text { def }}{=} U_{X^{n}}(\mathcal{K}) \cdot L_{X^{n}}(\mathcal{O})$, $G_{X^{n}}^{-} \stackrel{\text { def }}{=} U_{X^{n}}(\mathcal{K}) \cdot L_{X^{n}}\left(\mathcal{O}_{-}\right)$.

5. Convolution

5.0.3. Is there a general convolution action of $\mathcal{P}_{n} \stackrel{\text { def }}{=} \mathcal{P}_{G_{X^{n}}(\mathcal{O})}\left(\mathcal{G}_{X^{n}}\right)$ on $\mathcal{P}\left(\mathcal{G}_{X^{m}}\right)$ by fusion along the diagonal in $X^{n} \times X^{m}$ consisting all (x, y) with $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq\left\{y_{1}, \ldots, y_{m}\right)$?
5.0.4. Or at least, does $\mathcal{P}_{G_{X}(\mathcal{O})}\left(\mathcal{G}_{X}\right)$ acts on $\mathcal{P}\left(\mathcal{G}_{X^{n}}\right)$ by fusion along the diagonal in $X \times X^{n}$ consisting all $\left(x,\left(x_{1}, \ldots, x_{n}\right)\right)$ with $x \in\left\{x_{1}, \ldots, x_{n}\right\}$?
5.0.5. This should in particular give the preservation of perversity result from [FM] (action on sheaves on the semi-infinite flags).

