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1. Drinfeld Grassmannii GXn

For a group A Grassmannii GXn,A are certain ”rigidifications” of the stack MA(X) of
A-torsors on a curve X to ind-schemes. This is done in two steps: to a torsor one adds
a rational section and then also an effective divisor that bounds the location of section’s
singularity.

Let G be a simply connected semi-simple connected algebraic group. Let I⊆X∗(Ha) be
the set of simple coroots.

1.1. Grassmannii Gx, x ∈ X. Let X be a smooth curve over the complex numbers. Let
x ∈ X be a closed point and denote by Ox the completion of the local ring at x and by
Kx its fraction field. Then the Grassmannian Gx = G(Kx)/G(Ox) represents the following
functor from C-algebras to sets :

R 7→ {F a G-torsor on XR, ν : G×X∗
R→F|X∗

R a trivialization on X∗
R } .

Here the pairs (F , ν) are to be taken up to isomorphism, XR = X × Spec(R), and
X∗

R = (X − {x})× Spec(R).

Ind-scheme Gx depends only on the formal neighborhood of x in X .

Let us fix the isomorphism G(Kx)/G(Ox)
∼=
−→Gx. To g ∈ G(Kx) one attaches a torsor on X

obtained by glueing trivial torsors Gin on x̂ and Gout on X−x by say g : Gin|x̃ → Gout|x̃.

1.2. Ind-schemes GXn = G
(n)
X over Xn. We now globalize this construction and at the

same time form the Grassmannian at several points on the curve. Denote the n fold
product by Xn = X × · · · ×X and consider the functor

R 7→ {(x1, . . . , xn) ∈ Xn(R), F a G-torsor on XR , ν a trivialization of F on XR − ∪xi} .

Here we think of the points xi : Spec(R) → X as subschemes of XR by taking their
graphs. One sees that the functor in (3.2) is represented by an ind-scheme GXn .

1.3. Locality of the Grassmannii GXn. The ind-scheme GXn is obviously an ind-scheme

over Xn. Its fiber G(x1,...,xn)
def
= (GXn)(x1,...,xn) over the point x∗ = (x1, . . . , xn) is again of

local nature - restriction from X to a formal neighborhood of the support {x1, ..., xn}
gives an identification

G(x1,...,xn)
def
= (GXn)(x1,...,xn)

∼=
−→

∏

y∈{x1,...,xn}

(Gŷ)y.

The correspondence of (T , (x1, ..., xn), τ) and a system of (Ty, y, τy) ∈ (Gŷ)y, y ∈
{x1, ..., xn}; is given by:

(Ty, τy) = (T , τ) near y (i.e., on ŷ, while both are equal to the trivial torsor off {x1, ..., xn}.
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So by restriction, (Ty, τy) = (T , τ)|ŷ, while in the opposite direction one glues (T , τ) from
(Ty, τy) on ŷ, y ∈ {x1, ..., xn}; and from the trivial torsor G×X − {x1, ..., xn}, by using
trivialisaztions of the pair (Ty, τy) on ŷ ∩X − {x1, ..., xn} = ỹ, given by τy.

Because of this dependence on the formal neighborhood of {x1, ..., xn} (only), we will

often denote G(x1,...,xn)
def
= (GXn)(x1,...,xn), hence Gy

def
=(GX)y ∼= (Gŷ)y.

In particular, locality implies that for U open in X , restriction GXn |Un is really GUn.

1.3.1. The precise formulation of the locality property. For m,n ∈ Z denote by
Xm.n⊆Xm×Xn the open part where the factors are disjoint. There are canonical
”localization” isomorphisms GXm+n |Xm,n ∼= GXm×GXn |Xm,n.

So for any disjoint A,B⊆X , one has an isomorphism GXm+n |Am×Bn
∼= GXm |Am × GXn |Bn.

1.4. Group schemes GXn(O) ⊆ GXn(K) ⊇ GXn(O−). The global analog of G(O) is
the group-scheme GXn(O) which represents the functor

R 7→

{
(x1, ..., xn) ∈ Xn(R), F the trivial G-torsor on XR ,

µ a trivialization of F on (̂XR)(x1∪...∪xn)

}

.

Similarly, the global analogue of G(C[z−1]) is the group-ind-scheme GXn(O−) which rep-
resents the functor

R 7→

{
(x1, ..., xn) ∈ Xn(R), F the trivial G-torsor on XR ,

µ a trivialization of F on (XR)− (x1 ∪ ... ∪ xn)

}

.

Finaly, the global analogue of G(Kx) is the group-ind-scheme GXn(K) which represents
the functor

R 7→

{
(x1, ..., xn) ∈ Xn(R), F the trivial G-torsor on XR ,

µ a trivialization of F on (̂XR)− (x1 ∪ ... ∪ xn)

}

.

One can state it simply by

GXn(O) (R) =
{

(x1, ..., xn, µ), (x1, ..., xn) ∈ Xn(R) and µ ∈ G( (̂XR)(x1∪...∪xn)
)
}

,

GXn(O−) (R) = {(x1, ..., xn, ν), (x1, ..., xn) ∈ Xn(R) and ν ∈ G( XR − (x1 ∪ ... ∪ xn) )} ,

GXn(K) (R) =
{

(x1, ..., xn, η), (x1, ..., xn) ∈ Xn(R) and η ∈ G( (̂XR)(x1∪...∪xn)
− (x1 ∪ ... ∪ xn) )

}

,

and the inclusions are given by restrictions.
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1.4.1. In terms of these groups

GXn
∼= GXn(K)/GXn(O).

The locality property of GXn can now be seen to come from the same property of groups
GXn(K) and GXn(O):

GXn(K)(x1,...,xn) = G( (̂XR)(x1∪...∪xm)−(x1 ∪ ... ∪ xm) )

restriction
∼=
−→

∏

y∈{x1,...,xn}

G( (̂XR)y−y ) =
∏

y∈{x1,...,xn}

G(Ky

which restricts to GXn(O)(x1,...,xn)

∼=
−→

∏

y∈{x1,...,xn}

G(Oy). (However GXn(O−) does not

factor.)

1.5. The fixed point set (GXn)H of a Cartan subgroup H. We see that GXn(K) acts
on GXn . In particular the constant subgroup G acts on the fibers G(x1,...,xn)

∼=
∏

y∈{x1,...,xn}

Gy

by acting on each factor Gy.

For any maximal torus H in G, there is a canonical identification X∗(H)
∼=
−→(Gx)

H , ν 7→νx.

[Description of νx in terms of G(Kx)/G(Ox) and (T = IndGH ν, τ |X̂x).] So

(G(x1,...,xn))
H ∼=

∏

y∈{x1,...,xn}

GH
y

∼= ⊕
y∈{x1,...,xn}

X∗(H)·y.

For a generic (x1, ..., xn) this is X∗(H)n and for x1 = · · · = xn one has only one copy
X∗(H).

1.5.1. Irreducible components and the connected components of (GXn)H.
The irreducible components of the ind-subscheme (GXn)H are sections (ν1, ..., νn)Xn of
GXn→Xn, indexed by (ν1, ..., νn) ∈ X∗(H)n. The value at a generic (x1, ..., xn) ∈ Xn

is ((ν1)x1 , ..., (νn)xn
) ∈

∏n
1 Gxi

= G(x1,...,xn). The value at any (x1, ..., xn) ∈ Xn lies in
G(x1,...,xn) =

∏

y∈{x1,...,xn}

Gy and equals ( (
∑

xi=y νi)y )y∈{x1,...,xn}.

The connected components νXn of (GXn)H are indexed by ν ∈ X∗(H): νXn is the union of
all (ν1, ..., νn)Xn with

∑
νi = ν. These sections all coincide above the diagonal in Xn since

the value at (x, ..., x) is always νx. For instance, for G = SL2 the connected component
is essentially the product of X = ∆X and a union of Z lines meeting at one point.

1.5.2. A stratification of the fixed point set. The strata XK
∼ of the diagonal stratification

of XK are parameterized by equivalence relations ∼ on K. The strata of (GXn)H are
parameterized by pairs (∼,ν) of an equivalence class ∼ on K = {1, ..., n} and a map
ν : K/ ∼ →X∗(Ha). The stratum νXn

∼
is a section of GXn→Xn over Xn

∼, the value at
(x1, ..., xn) ∈ Xn

∼ is the family (ν(y)y)y∈{x1,...,xn} in the fiber (G(x1,...,xn))
H ∼=

∏

y∈{x1,...,xn}

GH
y .
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The closure of the (∼,ν)-stratum consists of the strata (∼′,ν ′) where ∼′ is coarser then
∼ and ν

′ = (K/ ∼ → K/ ∼′)∗ν, i.e., the value at c′ ∈ K/ ∼′ is ν ′(c′) =
∑

c⊆c′ ν(c).

1.6. Gluing. Let us explicate GXn(K)/GXn(O)
∼=
−→GXn .

2. Stratifications of GXn

Fix a curve C = X .

Let G(n) = GXn be the space classifying the triples (P, τ, d) where P is a left G-torsor over
C, d ∈ Cn and τ is a section of P off the support of d.

2.1. Cofinite stratification by the isomorphism class of the torsor. The projection
GXn→MG(X)×Xn can be written as GXn(K)/GXn(O)→GXn(O−)\GXn(K)/GXn(O), so
it simply records many ways of reconstructing torsors by gluing trivial torsors on X −
{(x1, ..., xn)} and X̂{x1,...,xn}.

Each of the strata, i.e., fibers of GXn→MG(X), is therefore a GXn(O−)-torsor, and the
action is given by permuting sections τ .

2.1.1. Case X = P1. The points of MG(X) are indexed by X∗(Ha)/W ∋ W ·λ 7→IndGH λ.
So we get strata Gλ

Xn = GW ·λ
Xn , W ·λ ∈ W\X∗(Ha) that consist of all triples with P ∼=

IndGH λ.

For X = P1, Gm acts on X hence on all spaces GXn . Observe that as Gm ∋ c→0, Gm-
action contracts An to 0n. So the fixed point set (GAn)Gm lies in the central fiber and
(GAn)Gm = (G0)

Gm = G·(G0)
H . Its connected components are G·ν0, ν ∈ W\X∗(H).

2.1.2. Lemma. (a) As Gm ∋ c→0, (i) Gm contracts GXn(O−) to 1 in the fiber G(C[z−1])
at 0n, (ii) Gm contracts νAn to ν0 ∈ G0n .

(b) map GXn→MG(X)×Xn is Gm-equivariant and the action on the points of MG(X) is
trivial.

(c) The ”cofinite” stratification of GAn is the Bialnicky-Birula stratification for the Gm-
action.

Proof. (i) O(A1) = C[z] and c ∈ Gm acts on functions by z 7→c◦z = c−1·z, so c◦(z−a)−1 =
(c−1·z − a)−1 = c·(z − ca)−1→0.

(ii) Gm commutes with H , so it preserves irreducible components (ν1, ..., νn)Xn of (GXn)H .
So, as it contracts An to 0n, it also contracts the section (ν1, ..., νn)An to its value ν0 at
0n.

(c) [Messy] Clearly, νXn lies in GWν
Xn , hence so does GXn(O−)·νXn . Actually, GWν

Xn =
GXn(O−)·νXn as the fibers of GXn→MG(X) are GXn(O−)-torsors. But (a) shows that
GXn(O−)·νXn contracts to a point ν0.
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2.1.3. Problem. Calculate IC-stalks.

2.2. Semi-infinite stratifications. A choice of a Borel subgroup B associates to each
triple (T, d, τ) an Ha-torsor N\B·τ . The semi-infinite stratification is given by this invari-
ant. For any ν ∈ X∗(H) let GXn(B, ν) consist of the triples (T, τ, d) with deg B·τ = ν.
Here, B·τ⊆P is the B-reduction defined by the meromorphic section τ and the degree is
the type of the Ha-torsor (B→Ha)∗B·τ = N\B·τ .

2.2.1. H∗(Xa)-valued divisor div(τB). The next invariant defined using B is the X∗(Ha)-
valued divisor div(τB), the divisor of the section τB of N\B·τ , defined by τ .

First, we use GI
m

∼=
−→Ha given by I⊆X∗(Ha) to define a semigroup Ha

∼= GI
a, i.e., O(Ha) =

C[⊕i∈I Zωi] contains O(Ha) = C[⊕i∈I Z+ωi]. Now a rational function f from C to Ha is

a family of functions fi and div(f)
def
=

∑

i∈I div(fi)·i ∈ Z[I] = X∗(Ha).

A triple (T, τ, d) is in GXn(B, ν) iff the divisor of the section τB has degree ν (since
deg(τB) = deg div(τB) equals deg(N\B·τ)). So for n = 1, (T, τ, d) ∈ Gx lies in GX(B, ν)x
if the order of τB at x equals ν, and in general, the fiber GXn(B, ν)(x1,...,xn) is a disjoint
union of products of such strata in the ordinary Grassmannian

GXn(B, ν)(x1,...,xn)
∼= ⊔∑

νy=ν

∏

y∈{x1,...,xn}

Gy(B, νy).

2.2.2. Lemma. (a) [GXn(B, ν)]H = νXn .

(b) GXn(B, ν) = NXn(K) · νXn = {p ∈ GXn , lim
Gm∋c→0

(2ρň)(c) ·p ∈ νXn}.

So this is a Bialnicky-Birula stratification for the action of a Cartan subgroup H .

(c) GXn(B, ν) = ∪
µ≤ν

GXn(B, µ), where ≤ (or better ≤
B
) is the relation µ ≤ ν if ν − µ ∈

Z+[∆H(n)] (opposite to the ”geometric” order on characters of a Borel subgroup).

Proof. (a) An H-fixed point ( (νy)y )y∈{x1,...,xn} ∈ (G(x1,...,xn))
H , lies in GXn(B, ν) iff

deg τ̄ =
∑

νy equals ν.

Now (b) and then (c) follow from the same statements for the ordinary Grassmannian,
using (a) and the above decomposition of the fiber of GXn(B, ν).

2.2.3. Stratifications corresponding to opposite Borel subgroups B±. These are in some
sense opposite stratifications. Let B = B+, H = B+ ∩ B− and

SXn(ν) = GXn(B, νB) and TXn(ν) = GXn(B−, νB−
),

here ν ∈ X∗(H) defines νB±
∈ X∗(Ha) via H⊆B±→Ha. Since B− = w0·B− the two

versions νB±
∈ are related by w0.

Corollary. (a) SXn(ν) meets TXn(µ) iff µ ≤ ν, i.e., iff SXn(µ)⊆SXn(ν).
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(b) SXn(ν) ∩ TXn(ν) = SXn(ν)H = νXn , and in general

[SXn(ν) ∩ TXn(µ)](x1,...,xn) = ∪∑
µy=µ,

∑
νy=ν, µy≤νy

∏

y∈{x1,...,xn}

(Sy)µy
∩ (Ty)µy

.

Proof. One checks in each fiber G(x1,...,xn).

2.3. Refined semi-infinite stratifications. This stratification is based on the
invariant (∼,ν) of a triple (T, d, τ). Point d = (x1, ..., xn) ∈ Xn lies in some stratum
Xn

∼ of the diagonal stratification and canonically {1, ..., n}/ ∼ ∼= {x1, ..., xn}. The
I-colored divisor div(τB) is the same as a function ν : {1, ..., n}/ ∼ →X∗(H):
div(τB) =

∑

y∈{x1,...,xn}
ν(y)B·y. Recall the stratification of the H-fixed points by the

strata νXn
∼
.

AnH-fixed point p = (T, d, τ) with d = (x1, ..., xn), is of the form p = (ν(y)y)y∈{x1,...,xn} for
some ν : {x1, ..., xn}→X∗(H). At such point div(τB) =

∑

y∈{x1,...,xn}
ν(y)B·y. Actually,

div(τB) is N(K)(x1,...,xn)-invariant, so it is constant on the orbit thru p.

2.3.1. Lemma. (a) Subscheme GXn
∼
(B,ν) consisting of all triples with the invariant (∼,ν)

is given in the Bialnicky-Birula terms as

{p ∈ GXn , lim
Gm∋c→0

(2ρň)(c) ·p ∈ νXn
∼
}.

(b) [GXn
∼
(B,ν)]H = νXn

∼
and GXn

∼
(B,ν) = N(K)Xn

∼
· νXn

∼
.

Therefore, the invariant div(τB) (encoded as ν above) of p = (T, d, τ) ∈ G(x1,...,xn), precisely
describes the N(K)(x1,...,xn)-orbit of p.

2.3.2. Irreducible components of the semi-infinite strata. The ind-subschemes of
the ind-scheme GXn(B, ν),

GXn(B, ν1, ..., νn)
def
= {p ∈ GXn , lim

Gm∋c→0
(2ρň)(c) ·p ∈ (ν1, ..., νn)Xn},

can be thought of as ”irreducible components”.

Component GXn(B, ν1, ..., νn) is the closure of the stratum GXn
reg

(B,ν) that lies above the
regular stratum of Xn and ν(xi) = νi(xi).

2.4. Finite stratification. Stratum GXn,λ, λ ∈ W\X∗(Ha) ∼= W\X∗(H), can be defined
as GXn(O) · λXn . These strata satisfy the locality property.

2.4.1. Lemma. The stalk of IC(GXn,λ) at a point (ν1, ..., νn)Xn(x1, ..., xn) =
( (

∑

xi=y νi)y )y∈{x1,...,xn} is ...

2.5. Relations between the strata. We would like to extend to this setting all relations
known in G. (But for instance, GXn(B, 0)⊆G0

Xn is not true.)
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2.6. Partial symmetrizations GX(α) of GXn. Let GX(n) be the space that classifies the
triples (T, τ,D) where T is a left G-torsor, D ∈ X(n) and τ is a section of T off the
support of D. This is an ind-scheme and GXn = Xn ×

X(n)

GX(n) . The canonical action of

the permutation group Σn on GXn is the action on the first factor Xn, hence GX(n) is the
invariant theory quotient GXn//Σn.

More generally, any map π : K→J with K a finite set, defines α =
∑

k∈K

π(k) ∈ Z+[J ] and

an intermediate ind-scheme GXK→GX(α)→GX(n) , for n = |K|. This is the invariant theory
quotient

GX(α)
def
= GXK//Σπ,

for the stabilizer Σπ of π in ΣK . One has GX(α) = X(α) ×
X(n)

GX(n) and GXn = Xn ×
X(α)

GX(α) .

It is an ind-scheme over X(α) def
= XK//Σπ =

∏

j∈J XKj/ΣKj
=

∏

j∈J X(kj), for kj = |Kj|.
We think of this as a subspace of effective J-valued divisors on X of a given degree
∑

kj·j = α. The fiber at D =
∑

j∈J Dj ·j ∈ X(α) is the same as the fiber of GXn at any

(x1, ..., xn) ∈ Xn above D, i.e.,
∏

y∈supp(D)

Gy.

2.6.1. The fixed point set (GX(α))H. Since GXn→GX(α) is finite (GX(α))H is the image
of (GXn)H and the irreducible components of (GX(α))H are the images of the irreducible
components of (GXn)H . Since the parameterization X∗(H)K ∋ ν 7→νXn ∈ Irr[(GXn)H ]
is ΣK-equivariant, irreducible components of (GX(α))H are parameterized by Σπ-orbits
in X∗(H)K, i.e. by X∗(H)(α). To the orbit Σπ·ν of ν = (νk)k∈K , there corresponds a
section νX(α) = (Σπ·ν)X(α) of GX(α)→X(α), with the value at D =

∑

k∈K xk·π(k) equal
( (

∑

xk=y νk)y )y∈supp(D) ∈
∏

y∈supp(D) Gy = (GX(α))D. Since ΣK preserves the connected
components νXK = ∪∑

k∈K νk=ν νXK , their images are the connected components νX(α) =

∪∑
k∈K νk=ν

νX(α) of (GX(α))H .

2.6.2. Examples in X∗(Ha)
(α). If α =

∑

j∈J αj·j, then X∗(Ha)
(α) =

∏

j∈J X∗(Ha)
(αj) con-

sists of J-families (νj)j∈J with νj =
∑

ζ∈X∗(Ha)
nj,ζ·e

ζ in Z+[X∗(Ha)] and
∑

ζ∈X∗(Ha)
nj,ζ =

αj . Map X∗(Ha)
K→X∗(Ha)

(α) sends K-family (ζk)k∈K to a J-family (
∑

π(k)=j eζk)j∈J .

So, the image of 0(α) of 0K ∈ X∗(H)K in X∗(H)(α) is 0(α) = (αj·e
0)j∈J .

If the case J = I, there is a canonical map Z+[I]→ Z+[X∗(Ha)]
I , α 7→α̃. For α =

∑

i∈I αi·i
we pick an unfolding π : K→I,

∑

k∈K π(k) = α. It lies in IK⊆X∗(Ha)
K and its image in

X∗(Ha)
(α) is α̃

def
=(

∑

π(k)=i eπ(k))i∈I = (αi·e
i)i∈I .

2.6.3. All of the stratifications of GXn that we have considered, are really defined over
X(n), i.e., they are the pull-backs of the stratifications of GX(n) for which we use similar
notation. In particular, one has such stratifications of each GX(α). The only difference
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is that the irreducible components of SX(α)(ν) (for ν ∈ X∗(H)), are now ind-subschemes

SX(α)(Σπ·ν)
def
= {p ∈ GX(α) , lim

Gm∋c→0
(2ρň)(c) ·p ∈ (Σπ·ν)X(α)}, indexed by X∗(H)(α) rather

then X∗(H)K.

2.6.4. Locality property. If for α, β ∈ Z+[I] we denote by X(α,β)⊆X(α)×X(β) the open
part where the factors are disjoint, then there are canonical ”localization” isomorphisms

[X(α,β) +
→X(α+β)]∗ GX(α+β)

∼= [X(α,β)⊆X(α)×X(β)]∗ GX(α)×GX(β).

In particular, for U open in X , restriction GX(α)|Un is just GU (n) .

2.6.5. The diagonal stratification of X(α). The multi-subsets of a set S are defined as
elements of some symmetric power S(k), we denote the image of (s1, ..., sk) ∈ Sk in S(k)

by {{s1, ..., sk}}. Denote by P(α) the set of all partitions of α, i.e multi-subsets Γ =
{{γ1, ..., γk}} of Z+[I] with

∑

i∈I γi = α.

To define the diagonal stratification of X
(α)
, observe that for each D =

∑

y∈|X| Dy·y ∈

X(α), the nontrivial Dy’s form a partition of α. In this way each partition Γ ∈ P(α)
defines a stratum XΓ

(α) = XΓ and X(α) =
⊔

Γ∈P(α) XΓ
(α).

For example, the main diagonal in X(α) is the closed stratum given by partition α = α,
while the complement to all diagonals in X(α) is the open stratum given by partition

α =
∑

i∈I

i+ i+ . . .+ i
︸ ︷︷ ︸

ai times

.

3. Restrictions

3.1. Parabolic subgroup P defines a ”map” GXn = GXn,G→GXn,P̄ . Let P be a para-
bolic subgroup with a unipotent radical U and the Levi group P̄ = P/U . One would like
to define a map

r : GXn = GXn,G→GXn,P̄ , r(T, τ, d) = (TP , τP , d), by TP
def
=U\P ·τ and τP = image of τ .

However, operation (T, τ, d) 7→P ·τ is only continuous on certain strata. (Is it a morphism
of functors?)

One would rather try to cook up a well defined (on a subscheme) operation by modifying
TP by d.

3.1.1. More precisely, for a curve C and groups A and B, one has maps GCn,A→GCn,B,
when either (i) A maps to B, or (ii) B is a cocompact subgroup of A (but in this case the
map should be defined on a subscheme of GCn,A only).
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3.1.2. How much wrong is the claim that

GXn,G→GXn,P

is an inverse to the induction given by P →֒G? Map GXn,P→GXn,P is a retraction with
the section given by any Levi factor L of P . Therefore, the fiber of r at (S, σ,D) consists
of all P -torsors Q...?

3.2. Stratifications of GXn defined by P . This may actually work sometimes? Any
stratification of GXn,P̄ defines now a stratification of GXn = GXn,G. The basic one is by
the connected components of G(P̄ ) (the same as the connected components of GXn,P̄ ):
GXn = ∪

ν∈X∗[Z(P̄ )]
GXn(P, ν).

It can be refined using the cofinite stratification of GXn,P̄ : GXn(P )λ, λ ∈ X∗(T )//WL, or
the finite stratification of GXn,P̄ : GXn(P )λ, λ ∈ X∗(T )//WL.

4. Poisson structures on GAn

4.1. A Poisson structure relating finite and cofinite stratifications. In order to
construct a Manin triple (imitating Drinfeld), we choose an invariant symmetric non-
degenerate bilinear form κ on g and a meromorphic 1-form ω on X, this gives an invariant
symmetric non-degenerate bilinear form on gXn(K) given by the sum of residues at y’s:

〈a, b〉
def
=

∑

y∈{x1,...,xn}

Resy κ(a, b) ω (should be continuous in Xn).

If we calculate H∗(X, g) using the affine cover of X by X − (x1 ∪ · · · ∪xn) and the formal
neighborhood of x1 ∪ · · · ∪ xn, we get

0→g→gXn(O) + gXn(O−)→gXn(K)→g⊗ωX(X)→0.

If X = P1 the last term is absent.

In order to make the above sum direct we choose a point ∞ ∈ X and restrict the Grass-
mannian to G(X −∞)n. Then ∞ is disjoint from xi’s and we can define a congruence

subgroup GXn(O−)1 = Ker[GXn(O−)
g 7→g(∞)
−−−−→ G]. Then gXn(O) ⊕ gXn(O−)1 = gXn(K)

should be a Manin pair of Lie algebras over An.

In order for gAn(O) to be isotropic and we choose ω = dx which is regular on A1. Finaly,
gAn(O−) is isotropic since the sum of residues of a rational meromorphic form is 0.

4.1.1. The leaves are the fibers of intersections of finite strata and a modification of the
cofinite strata where one replaces GXn(O−) by the congruence subgroup.
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4.1.2. This Poisson structure is ”fiber-wise” (i.e., the fibers G(x1,...,xn) are Poisson

subspaces). The more interesting structure should involve G+
Xn

def
=NXn(K)·TXn(O),

G−
Xn

def
=NXn(K)·TXn(O−) and something like a groupoid on Xn consisting of isomorphisms

of formal neighborhoods of subschemes x1 ∪ · · · ∪ xn⊆X (or maybe (x1, ..., xn) ∈ Xn ?)
(something like this is needed in order to get the Xn-direction involved).

More generally, for a parabolic P = LU one can use G+
Xn

def
=UXn(K)·LXn(O),

G−
Xn

def
=UXn(K)·LXn(O−).

5. Convolution

5.0.3. Is there a general convolution action of Pn
def
= PGXn(O)(GXn) on P(GXm) by fusion

along the diagonal in Xn×Xm consisting all (x, y) with {x1, ..., xn}⊆{y1, ..., ym) ?

5.0.4. Or at least, does PGX(O)(GX) acts on P(GXn) by fusion along the diagonal inX×Xn

consisting all (x, (x1, ..., xn)) with x ∈ {x1, ..., xn} ?

5.0.5. This should in particular give the preservation of perversity result from [FM] (action
on sheaves on the semi-infinite flags).


