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1.6. Zastava space Z as the total structure of transverse slices in S 13

1.7. The key points of the paper 13

1.8. Desiderata: 13

1.9. Thanks 13

2. Notations 14

2.1. Group G and its Weyl group Wf 14

2.2. Irreducible representations Vλ of G 14

2.3. Configuration spaces Cα of I-colored divisors 15

CHAPTER 1. Spaces Z⊆Q of (based) quasimaps from P
1 to the flag variety B 16

2.0. A summary of chapter 1. 16

3. Quasimaps from a curve to a flag manifold 16

3.1. Maps from a curve to the flag variety: the degree 16

3.2. Plucker model of maps of degree α 17

3.3. The spaces Qα = QMap(C,B) of quasimaps from a curve C to the flag variety B 17

3.4. Stratification of quasimaps Qα by Cγ shifts of maps 18

3.5. Smoothness of the moduli = Mapα(P1,B) of maps into the flag variety 19

3.6. Spaces Zα = QMap[(P1,∞), (B, b−)] of based quasimaps of degree α 19

4. “Quasimap” spaces Q⊆Q̃ for local curves d and d∗ 19

4.1. The vector and line versions S։Q = S/Ha of d-quasimaps 20

4.2. The local quasimap space Q̃ = S̃/Ha associated to the punctured disc d∗ 21

4.3. The closed embedding Qα →֒ Q of P1-quasimaps (global) into d-quasimaps (local) 22
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Part 1. Semiinfinite flags. I. Case of global curve P
1

Michael Finkelberg and Ivan Mirković

Summary

0.1. Chapter 1. The spaces of (based) quasimaps into a flag variety. The basic
objects are the spaces Qα

C⊆Z
α
C of (based) quasimaps from a curve C to the flag manifold

B. We first define these for a smooth projective curve C and later we introduce their

“quasimap” versions Q = Qd and Q̃ = Qd∗ for the local curves d, d∗.

For based quasimaps ZC we also introduce the Plucker model Z and the global Grass-
mannian model Z⊆GHC

called zastava space. The three models coincide when C = A1.

The quasimap model readily extends to affine groups. The zastava model has an evident
local property and it is the most general one. The data to define the zastava space are a

central extension TQ of the loop group TK of a torus T and a trivialization T
∼=
−→Gm

I . The
plucker model is the least abstract and convenient for calculations.

Here is a more detailed summary of the first chapter taken from 2.0.

In section 3 we define the spaces Qα⊆Zα of (based) quasimaps from a curve C to a flag manifold. We

define the shifts of quasimaps by finite subschemes. The basic stratification of quasimaps is by shifts of

maps. The moduli of maps are smooth and all quasimaps are shifts of maps.

In section 4 we introduce the local versions Q⊆Q̃ of quasimap spaces for the local curves
d and d∗. (These we call “quasimaps”. Precisely, these spaces are certain torsors (for
groups HO and Hd∗) over the true local quasimap stacks, which happen to suffice for
our purposes.) We also define the restriction map (a closed embedding) Q→֒Q of global
P
1-quasimaps into local d-“quasimaps”.

In section 5 we introduce the Plucker model Zα of space of based quasimaps.
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In section 6 we introduce the zastava model Zα of based quasimaps, in terms of the global
loop Grassmannian. In this model the locality property of based quasimaps is obvious.(1)

Finally, in section 7 we explain the equivalence of three constructions of space of based
quasimaps, which we now call zastava spaces.

0.2. Chapter 2. The category PS of semiinfinite perverse sheaves on ... For the
curve C = P1 with the distinguished points a = 0 and b =∞ we define the progressively
finer stratifications

S
0
≤ S

0,Gm
≤ S

0,Gm,I

called coarse, fine and Schubert stratifications. We formulate a conjecture on smoothness
of Schubert strata and establish it for the “sufficiently dominant” strata.(2)

0.3. Chapter 3. Convolution with affine Grassmannian.

A. Questions

0.4. The doubling from G to Q. This is the result of the second paper SF2.

It is really interesting (impressive) how a “brutal” realization of U ň on G (using Ext
of standard semiinfinite sheaves) becomes a sophiticated realization on Q (Ext of IC-
scheaves).

Question. What is the mechanism for this? (We know a proof of the fact and it should
lead us us.)

0.4.1. Rouquier categorigication of the doubling? To start with, where is U ǧ?

0.4.2. Extending the correspondence construction of ei, di actions to all types?

0.5. Twisted quasimaps as C-points.

0.5.1. The notion of P-twisted maps into flag variety as C-points of the P-flag variety
P/B. A G-torsor P on C has a flag variety P/B ∼= P×GB = PB. The notion of twisted
maps from C to PB is really the notion of C-points of the P-flag variety P/B.

Example. When C is a point the moduli of C-points of B is B itself.

1 Locality property implies that the construction is of local nature so that we do not need P
1 but only

HC !
2 The case of sufficiently dominant strata suffices for all of our purposes. However, the general conjec-

ture would make the arguments more natural.
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Remark. The connected components of C points in B are parametrized by the positive
(effective) cone N[I] in H2(B,Z). However, for C-points of PB we get another cone
H2(B,Z)P in H2(B,Z).

Question. What does this cone depend on. For T -fixed points T = Lη is this something
like eta + N[I] when T ∈ Gη? So, it is not constant on GO-orbits in G. What about
Iwahori or semiinfinite orbits?

Question. Could this be a geometric characterization of some class of orbits?

0.5.2. Quasimaps. This involves the compactification B
def
= [(G/N)aff ]/H of the flag va-

riety. Then the P-twisted quasimaps are the generic C-points of PB
def
= (P/N)aff/H . The

non-generic points seems to be discarded because they are stacky.

Remark. However, if we would like to consider maps into the spaces of C-points, we would
again need to reintroduce the stacky part.

0.5.3. Drinfeld compactification B = [(G/N)aff ]/H of B. One would like to explain this
better.

It is related to

0.5.4. The semigroup closure H of H. I do nor remember when does it exist?

It can be defined as the closure of H = B/N in B.

0.5.5. Affinization. It does the job but it has not been said well how that happens.

Question. Once we are in Y = G/N it is natural (say, “algebro-geometric” and functo-
rial) to complete it to its affinization Y aff . However, what is geometrically involved in
completing a qusiaffine scheme Y into an affine Y aff?

0.5.6. The mechanism of “P -torsors as a correspondence between torsors for G and for a
quotient of P”. This appears in SF3.

0.6. Vinberg. The Vinberg semigroup seems essential for the SF1 paper since one con-
structs restriction (“convolution”) functors P(Gη, I)

c
−→PS for one η at the time.

0.6.1. The η-untwisting map. It is defined for quasimaps twisted by T from Gη. Re-
membering η with Gη is clearly the feature of the loop Grassmannian of the the Vinberg
semigroup VG.
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0.6.2. Compatibility in η. For η′ ≤ η we have Gη′⊆Gη and

0.7. The convolution functor in A1. Here, G-torsor P twists the representation V =
L(1) of G to a rank two vector bundle over C and PB is the corresponding twisted P1-
bundle P(PV ).

Over C = P1 this means that P is isomorphic to one of P1-bundles Fn over P1. The
P-wisted quasimaps are the quasisections of Fn.

Without a twist the degree of a map into P
1 appears as d such that B = P

1 is rep-
resented as P(V⊗OC(n). For a torsor P induced from a Cartan subgroup T we have
PB = P[OC(a)⊕OC(b)]. What is the degree?

Remark. The spaces of quasimaps into P1 were the odd projective spaces. Now we get all
projective spaces as P[Γ

(
C, OC(a)⊕OC(b)

)
= P[L(a)⊕L(b)].

0.7.1. Dependence on the opposite stratification by the type of the G-torsor. It appears as
the G-torsor is used to twist the flag variety!

For isomorphic Pi the twisted flag varieties PiB will be isomorphic. So, the their theories
of quasimaps will again be isomorphic.

0.8. Richardson varieties. We are tensoring IC sheaves The use of Gλ and Gλ (here in-

carnated as Ĝλ seems to be drawing in the Richardson varieties. Moreover, the quasimaps
themselves – or at least the closed Zastava spaces – are again the semiinfinite Richardson
setting.

So, we may be having a double Richardson here?

Question. Is there a Fourier transform here alike MUV? Or a horocycle transform?

Question. Is Poisson structure a feature of Richardson? One would want the Richardson
cells to be exactly the symplectic leaves. This is precisely true on G for GO-orbits and
their duals.

0.9. The convolution (restriction) functor c. How does it see the difference of a sub
or a quotient 0→ V ′ → V → V ′′ → 0?

0.9.1.

Question. The open zastava space gives the based quasimap spaces. Can one see the
whole quasimap spaces in this group theoretic picture?
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0.10. What happens in FS1 when one replaces the open zastava space with the
closed one? Seemingly one recovers the global Grassmannian. This was also my model
of 2d Grassmannian at the critical level.

This seems to be the key example for my semiinfinite constructions.

0.11. Parameter χ ∈ Y . We could define more zastava subspaces of the global Grass-
mannian rather than define fewer and then formally add parameter χ.



9

Notation List.

• Section 2. Groups and configurations of points on a curve.
(1) G, Wf , Vλ and X = B.
(2) HC⊇H

α
C = Cα.

• Section 3. Quasimaps.
(1) The based quasimaps Zα = QMap[(P1,∞), (B, g−)] = QΓ[(P1,∞), (B, g−)]

contains zzz maps
◦

Zα =Map[(P1,∞), (B, g−)] = Γ[(P1,∞), (B, g−)].
(2) The quasimap Qα = QMap(P1,B) = QΓ(P1,B) contain maps

◦

Qα =Map(P1,B) = Γ(P1,B).
• Section 4. Local flag space Q.

(1) Instead of the true space Q(d) of d-quasimaps we consider first an (Ha)O-
torsor S over Q(d) called the “vector d-quasimaps” and then the space of
“line d-quasimaps” Q = S/Ha which is a torsor over Q(d) for the congruence
subgroup K(Ha) of (Ha)O.
The space of line d-quasimaps is also called “local flag space Q”.

(2) Instead of the true space Q(d∗) of d∗-quasimaps we consider first an (Ha)K-

torsor S̃ over Q(d∗) called the “vector d∗-quasimaps” and then the space of

“line d∗-quasimaps” Q̃ = S/Ha which is a torsor over Q(d∗) for (Ha)K/Ha.
(3)

• Section 5. Plucker models
•
•
•
•
• Section 6. Zastava space
•
•
• Section 7. Equivalence of three constructions of zastava spaces.
•
•
• Section 8. Schubert stratification of Zα⊆Qα.
•
•
•
• Section 9. Category PS of perverse sheaves on Z.
•
•
•
•
• Section 10. Plucker models, twisted quasimaps and parity of stalks of IC sheaves
•
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•
•
•
• Section 11. Convolution correspondence GQα

η between Gη and Qα+η.
•
•
•
• Section 12. Convolution
•
•
•
•
• Section 13. Examples of convolution.
•
•
•
•
•
•
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Abstract. The Semiinfinite Flag Space appeared in the works of B.Feigin and E.Frenkel,
and under different disguises was found by V.Drinfeld and G.Lusztig in the early 80-s.
Another recent discovery (Beilinson-Drinfeld Grassmannian) turned out to conceal a new
incarnation of Semiinfinite Flags. We write down these and other results scattered in
folklore. We define the local semiinfinite flag space attached to a semisimple group G as
the quotient G((z))/HN((z)) (an ind-scheme), where H and N are a Cartan subgroup
and the unipotent radical of a Borel subgroup of G. The global semiinfinite flag space
attached to a smooth complete curve C is a union of Quasimaps from C to the flag
variety of G. In the present work we use C = P 1 to construct the category PS of certain
collections of perverse sheaves on Quasimaps spaces, with factorization isomorphisms.
We construct an exact convolution functor from the category of perverse sheaves on affine
Grassmannian, constant along Iwahori orbits, to the category PS. Conjecturally, this
functor should correspond to the restriction functor from modules over quantum group
with divided powers to modules over the small quantum group.

1. Introduction

1.1. The origins of the idea of semi-infinite flag spaces. We learned of the Semi-
infinite Flag Space from B.Feigin and E.Frenkel in the late 80-s. Since then we tried to
understand this remarkable object. It appears that it was essentially constructed, but
under different disguises, by V.Drinfeld and G.Lusztig in the early 80-s. Another recent
discovery (Beilinson-Drinfeld Grassmannian) turned out to conceal a new incarnation of
Semiinfinite Flags. We write down these and other results scattered in the folklore.

1.2. S as an indscheme Q̃ = G((z))/HN((z)) and as systems Q and Z; the
category PS of perverse sheaves on Z. Let G be an almost simple simply-connected
group with a Cartan datum (I, ·) and a simply-connected simple root datum (Y,X, . . . )
of finite type as in [?], 2.2. We fix a Borel subgroup B ⊂ G, with a Cartan subgroup
H ⊂ B, and the unipotent radical N. B.Feigin and E.Frenkel define the Semiinfinite Flag
Space Z as the quotient of G((z)) modulo the connected component of B((z)) (see [?]).
Then they study the category PS of perverse sheaves on Z equivariant with respect to
the Iwahori subgroup I ⊂ G[[z]].

In the first two chapters we are trying to make sense of this definition. We encounter a
number of versions of this space. In order to give it a structure of an ind-scheme, we define

the (local) semiinfinite flag space as Q̃ = G((z))/HN((z)) (see section 4). The (global)
semiinfinite space attached to a smooth complete curve C is the system of varieties Qα

of “quasimaps” from C to the flag variety of G — the Drinfeld compactifications of the
degree α maps. In the present work we restrict ourselves to the case C = P1.

The main incarnation of the semiinfinite flag space in this paper is a collection Z (for
zastava) of (affine irreducible finite dimensional) algebraic varieties Zα

χ⊆Q
α, together with

certain closed embeddings and factorizations. Our definition of Z follows the scheme
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suggested by G.Lusztig in [?], §11: we approximate the “closures” of Iwahori orbits by
their intersections with the transversal orbits of the opposite Iwahori subgroup. However,
since the set-theoretic intersections of the above “closures” with the opposite Iwahori
orbits can not be equipped with the structure of algebraic varieties, we postulate Zα

χ for
the “correct” substitutes of such intersections.

Having got the collection of Zα
χ with factorizations, we imitate the construction of [?] to

define the category PS (for polubeskrajni snopovi) of certain collections of perverse sheaves
with C-coefficients on Zα

χ with factorization isomorphisms. It is defined in chapter 2; this
category is the main character of the present work.

1.3. P(G, I) and the principal block C0 = PB(U, X) of the divided powers quan-
tum group at a root of unity q. If G is of type A,D,E we set d = 1; if G is of
type B,C, F we set d = 2; if G is of type G2 we set d = 3. Let q be a root of unity of
sufficiently large degree ℓ divisible by 2d. Let u be the small (finite-dimensional) quantum
group associated to q and the root datum (Y,X, . . . ) as in [?]. Let C be the category of
X-graded u-modules as defined in [?]. Let C0 be the block of C containing the trivial
u-module. B.Feigin and G.Lusztig conjectured (independently) that the category C0 is
equivalent to PS.

Let U ⊃ u be the quantum group with divided powers associated to q and the root
datum (Y,X, . . . ) as in [?]. Let C be the category of X-graded finite dimensional U-
modules, and let C0 be the block of C containing the trivial U-module. The works [?], [?]
and [?] establish an equivalence of C0 and the category P(G, I). Here G denotes the affine
Grassmannian G((z))/G[[z]], and P(G, I) stands for the category of perverse sheaves on
G with finite-dimensional support constant along the orbits of I.

1.4. The convolution (restriction) functor cZ : P(G, I) −→ PS. The chapter 3 is
devoted to the construction of the convolution functor cZ : P(G, I) −→ PS which is the
geometric counterpart of the restriction functor from C0 to C0, as suggested by V.Ginzburg
(cf. [?] §4). One of the main results of this chapter is the Theorem ?? which is the sheaf-
theoretic version of the classical Satake isomorphism. Recall that one has a Frobenius
homomorphism U −→ U(gL) (see [?]) where U(gL) stands for the universal enveloping
algebra of the Langlands dual Lie algebra gL. Thus the category of finite dimensional GL-
modules is naturally embedded into C (and in fact, into C0). On the geometric level this
corresponds to the embedding P(G,G[[z]]) ⊂ P(G, I). The Theorem ?? gives a natural
interpretation (suggested by V.Ginzburg) of the weight spaces of GL-modules in terms of
the composition

GL −mod ≃ P(G,G[[z]]) ⊂ P(G, I)
cZ−→ PS.

1.5. Conjectural realization of principal blocks of ǦFp
and its Frobenius kernel.

Let us also mention here the following conjecture which might be known to specialists
(characteristic p analogue of conjecture in 1.3). Let GL stand for the Langlands dual
Lie group. Let p be a prime number bigger than the Coxeter number of gL, and let Fp
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be the algebraic closure of finite field Fp. Let Cp be the category of algebraic GL(Fp)-
modules, and let C0

p be the block of Cp containing the trivial module. Let Cp be the

category of graded modules over the Frobenius kernel of GL(Fp), and let C0p be the block
of Cp containing the trivial module (see [?]). Finally, let PSp be the category of snops
with coefficients in Fp, and let P(G, I)p be the category of perverse sheaves on G con-

stant along I-orbits with coefficients in Fp. Then the categories C0p and PSp are equiv-

alent, the categories C0
p and P(G, I)p are equivalent, and under these equivalences the

restriction functor C0
p −→ C

0
p corresponds to the convolution functor P(G, I)p −→ PSp

(cf. 1.4). The equivalence P(G, I)p
∼
−→ C0

p should be an extension of the equivalence be-

tween P(G,G[[z]])p ⊂ P(G, I)p and the subcategory of C0
p formed by the GL(Fp)-modules

which factor through the Frobenius homomorphism Fr : GL(Fp) −→ GL(Fp). The latter
equivalence is the subject of forthcoming paper of K.Vilonen and the second author.

1.6. Zastava space Z as the total structure of transverse slices in S. The Zastava
space Z organizing all the “transversal slices” Zα

χ may seem cumbersome. At any rate
the existence of various models of the slices Zα

χ (chapter 1), is undoubtedly beautiful by
itself. Some of the wonderful properties of Qα and Zα

χ are demonstrated in [?], [?], [?] in
the case G = SLn. We expect all these properties to hold for the general G.

1.7. The key points of the paper. To guide the patient reader through the notation,
let us list the key points of this paper.

• The Theorem 7.3 identifies the different models of the zastava space Zα
χ (all es-

sentially due to V.Drinfeld) and states the factorization property.
• The exactness of the convolution functor cZ : P(G, I) −→ PS is proved in the
Theorem ?? and Corollary ??.
• The Theorem ?? computes the value of the convolution functor on G[[z]]-
equivariant sheaves modulo the parity vanishing conjecture 10.9.

1.8. Desiderata: In the next parts we plan to study

• D-modules on the local variety Q̃ (local construction of the category PS , global
sections as modules over affine Lie algebra ĝ, action of the affine Weyl group by
Fourier transforms),
• the relation of the local and global varieties (local and global Whittaker sheaves,
a version of the convolution functor twisted by a character of N((z))), and
• the sheaves on Drinfeld compactifications of maps into partial flag varieties.

1.9. Thanks. The present work owes its very existence to V.Drinfeld. It could not have
appeared without the generous help of many people who shared their ideas with the au-
thors. Thus, the idea of factorization (section 9) is due to V.Schechtman. A.Beilinson
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and V.Drinfeld taught us the Plücker picture of the (Beilinson-Drinfeld) affine Grassman-
nian (sections 6 and 10). G.Lusztig has computed the local singularities of the Schubert
strata closures in the spaces Zα

χ (unpublished, cf [?]). B.Feigin and V.Ginzburg taught
us their understanding of the Semiinfinite Flags for many years (in fact, we learned of
Drinfeld’s Quasimaps’ spaces from V.Ginzburg in the Summer 1995). A.Kuznetsov was
always ready to help us whenever we were stuck in the geometric problems (in fact, for
historical reasons, the section 3 has a lot in common with [?] §1). We have also ben-
efited from the discussions with R.Bezrukavnikov and M.Kapranov. Parts of this work
were done while the authors were enjoying the hospitality and support of the University
of Massachusetts at Amherst, the Independent Moscow University and the Sveučilǐste u
Zagrebu. It is a great pleasure to thank these institutions.

2. Notations

2.1. Group G and its Weyl group Wf . We fix a Cartan datum (I, ·) and a simply-
connected simple root datum (Y,X, . . . ) of finite type as in [?], 2.2.

Let G be the corresponding simply-connected almost simple Lie group with the Cartan
subgroup H and the Borel subgroup B ⊃ H corresponding to the set of simple roots
I ⊂ X . We will denote by R+ ⊂ X the set of positive roots. We will denote by 2ρ ∈ X
the sum of all positive roots.

Let B+ = B and let B− ⊃ H be the opposite Borel subgroup. Let N (resp. N−) be the
radical of B (resp. B−). Let Ha = B/N = B−/N− be the abstract Cartan group. The
corresponding Lie algebras are denoted, respectively, by b, b−, n, n−, h.

Let B be the flag manifold G/B, and let A = G/N be the principal affine space. We
have canonically H2(B,Z) = Y ; H2(B,Z) = X .

For ν ∈ X let Lν denote the corresponding G-equivariant line bundle on B.

Let Wf be the Weyl group of G. We have a canonical bijection BH =Wf such that the
neutral element e ∈ Wf = BH ⊂ B forms a single B-orbit.

We have a Schubert stratification of B by N- (resp. N−-)orbits: B = ⊔w∈Wf
Bw (resp.

B = ⊔w∈Wf
Bw) such that for w ∈ Wf = BH ⊂ B we have Bw ∩ Bw = {w}.

We denote by Bw (resp. B
w
) the Schubert variety — the closure of Bw (resp. Bw). Note

that Bw = ⊔y≤wBy while B
w
= ⊔z≥wB

z where ≤ denotes the standard Bruhat order on
Wf .

Let e ∈ Wf be the shortest element (neutral element), let w0 ∈ Wf be the longest element,
and let si, i ∈ I, be the simple reflections in Wf .

2.2. Irreducible representations Vλ of G. We denote by X+ the cone of positive
weights (highest weights of finite dimensional G-modules). The fundamental weights
ωi : 〈i, ωj〉 = δij form the basis of X+.
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For λ ∈ X+ we denote by Vλ the finite dimensional irreducible representation of G with
highest weight λ.

We denote by V ∨λ the representation dual to Vλ; the pairing: V ∨λ × Vλ −→ C is denoted
by 〈, 〉.

For each λ ∈ X+ we choose a nonzero vector yλ ∈ V
N−

λ . We also choose a nonzero vector
xλ ∈ (V ∨λ )N such that 〈xλ, yλ〉 = 1.

2.3. Configuration spaces Cα of I-colored divisors. Let us fix α ∈ N[I] ⊂ Y, α =∑
i∈I aii. Given a curve C we consider the configuration space Cα def

=
∏

i∈I C
(ai) of colored

effective divisors of multidegree α (the set of colors is I). The dimension of Cα is equal
to the length |α| =

∑
i∈I ai.

2.3.1. The diagonal stratification of Hα
C. Define the multisubsets of a set S as elements

Γ =
∑

s∈S [Γ : s]·s of N[S]. If we think of Γ as an element of some symmetric power S(k)

then it can be denoted {{s1, ..., sk}} where the sequence contains Γ : s] copies of s.

Now onsider S = N[I] so that Γ is a formal sum Γ =
∑

β∈N[I]
[Γ : β]β, i.e., a finite

support function Γ : N[I]→ N. Then its integral is |Γ|
def
=

∑
β∈N[I][Γ : β]β ∈ N[I] which

is just its actual sum in N[I].

A multisubset Γ of N[I] defines the“Γ-diagonal” stratum CΓ in HC×I . An I-colored
configuration of points D =

∑
a∈C Da·a with Da ∈ N[I], lies in CΓ if the nonzero

coefficients Da form the multiset Γ.

2.3.2. Again. Multisubsets of a set S are defined as elements of some symmetric power
S(k) and we denote the image of (s1, ..., sk) ∈ S

k in S(k) by {{s1, ..., sk}}. We denote by
P(α) the set of all partitions of α, i.e multisubsets Γ = {{γ1, ..., γk}} of N[I] with γr 6= 0

and
∑k

r=1 γi = α.

For Γ ∈ P(α) the corresponding stratum Cα
Γ is defined as follows. It is formed by

configurations D which can be subdivided into m groups of points D = (Dr)1≤r≤k so
that

(1) the r-th group Dr contains γr points;
(2) all the points in one group equal to each other,
(3) the different groups being disjoint.

This means that D =
∑r

1 γr·ar for distinct points ar i C where for γ =
∑

i∈I γii, γ·a
means that eand we take the γi copies of a that are colored by i (i.e., from the ith copy
C×i of C.
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Example. (0) The main diagonal in Cα is the closed stratum given by partition α = α.

(1) The complement to all diagonals in Cα for α =
∑

i∈I aii is the open stratum given
by partition

α =
∑

i∈I

(i+ i+ . . .+ i︸ ︷︷ ︸
ai times

)

Evidently, Cα =
⊔

Γ∈P(α)

Cα
Γ .

CHAPTER 1. Spaces Z⊆Q of (based) quasimaps from P1 to the flag variety B

In section 3 we define the spaces Qα⊆Zα of (based) quasimaps from a curve C to a flag
manifold. We define the shifts of quasimaps by finite subschemes. The basic stratification
of quasimaps is by shifts of maps.(3)

2.0. A summary of chapter 1. In section 4 we introduce the local versions Q⊆Q̃ of
quasimap spaces for the local curves d and d∗.

These we call “quasimaps” since these spaces are certain torsors (for groups HO/H and
Hd∗/H) over the true local quasimap stacks. These torsors happen to suffice for our
purposes.)

We also define the restriction map (a closed embedding) Q→֒Q of global P1-quasimaps
into local d-“quasimaps”.

In section 5 we introduce the Plucker model Zα of space of based quasimaps.

In section 6 we introduce the zastava model Zα of based quasimaps, in terms of the global
loop Grassmannian. In this model the locality property of based quasimaps is obvious.(4)

Finally, in section 7 we explain the equivalence of three constructions of space of based
quasimaps, which we now call zastava spaces.

3. Quasimaps from a curve to a flag manifold

3.1. Maps from a curve to the flag variety: the degree. We fix a smooth projective
curve C and α ∈ N[I].

3 The moduli of maps are smooth and all quasimaps are shifts of maps.
4 Locality property implies that the construction is of local nature so that we do not need P1 but only

HC !
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3.1.1. Definition. An algebraic map f : C −→ B has degree α if the following equivalent
conditions hold:

a) For the fundamental class [C] ∈ H2(C,Z) we have f∗[C] = α ∈ Y = H2(B,Z);

b) For any ν ∈ X the line bundle f ∗Lν on C has degree 〈α, ν〉.

3.2. Plucker model of maps of degree α. The Plücker embedding of the flag manifold
B gives rise to the following interpretation of algebraic maps of degree α.

For any irreducible Vλ we consider the trivial vector bundle Vλ = Vλ ⊗O over C.

For any G-morphism φ : Vλ ⊗ Vµ −→ Vν we denote by the same letter the induced
morphism φ : Vλ ⊗ Vµ −→ Vν .

Then a map of degree α is a collection of line subbundles Lλ ⊂ Vλ, λ ∈ X
+ such that:

a) degLλ = −〈α, λ〉;

b) For any surjective G-morphism φ : Vλ ⊗ Vµ −→ Vν such that ν = λ + µ we have
φ(Lλ ⊗ Lµ) = Lν ;

c) For any G-morphism φ : Vλ⊗ Vµ −→ Vν such that ν < λ+µ we have φ(Lλ⊗Lµ) = 0.

Since the surjections Vλ⊗Vµ → Vλ+µ form one C∗-orbit, systems Lλ satisfying (b) are
determined by a choice of Lωi

for the fundamental weights ωi, i ∈ I.

If we replace the curve C by a point, we get the Plücker description of the flag variety
B as the set of collections of lines Lλ⊆Vλ satisfying conditions of type (b) and (c). Here,
a Borel subgroup B in B corresponds to a system of lines (Lλ, λ ∈ X

+) if the lines are
the fixed points of the unipotent radical N of B, Lλ = (Vλ)

N , or equivalently, if N is the
common stabilizer for all lines N = ∩

λ∈X+
GLλ

.

The space of degree α quasimaps from C to B will be denoted by
◦

Qα.

3.3. The spaces Qα = QMap(C,B) of quasimaps from a curve C to the flag
variety B. (V.Drinfeld) The space Qα = Qα

C of quasimaps of degree α from C to B is
the space of collections of invertible subsheaves Lλ ⊂ Vλ, λ ∈ X

+ such that:

a) degLλ = −〈α, λ〉;

b) For any surjective G-morphism φ : Vλ ⊗ Vµ −→ Vν such that ν = λ + µ we have
φ(Lλ ⊗ Lµ) = Lν ;

c) For any G-morphism φ : Vλ⊗ Vµ −→ Vν such that ν < λ+µ we have φ(Lλ⊗Lµ) = 0.

3.3.1. Lemma. a) The evident inclusion
◦

Qα ⊂ Qα is an open embedding;

b) Qα is a projective variety.

Proof. Obvious. ✷
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3.3.2. Here is another version of the Definition, also due to V.Drinfeld. The principal
affine space A = G/N is an Ha-torsor over B. We consider its affine closure A, that is,
the spectrum of the ring of functions on A. Recall that A is the space of collections of
vectors vλ ∈ Vλ, λ ∈ X

+, satisfying the following Plücker relations:

a) For any surjective G-morphism φ : Vλ ⊗ Vµ −→ Vν such that ν = λ + µ, and
φ(yλ ⊗ yµ) = yν, we have φ(vλ ⊗ vµ) = vν ;

b) For any G-morphism φ : Vλ⊗ Vµ −→ Vν such that ν < λ+ µ we have φ(vλ ⊗ vµ) = 0.

The action of Ha extends to A but it is not free anymore. Consider the quotient stack
B̂ = A/Ha. The flag variety B is an open substack in B̂. A map φ̂ : C → B̂ is nothing
else than an Ha-torsor Φ over C along with an Ha-equivariant morphism f : Φ → A.
The degree of this map is defined as follows.

Let λ : Ha → C∗ be the character of Ha corresponding to a weight λ ∈ X . Let Hλ ⊂ Ha

be the kernel of the morphism λ. Consider the induced C∗-torsor Φλ = Φ/Hλ over C.

The map φ̂ has degree α ∈ N[I] if

for any λ ∈ X we have deg(Φλ) = 〈λ, α〉.

Definition. The space Qα is the space of maps φ̂ : C → B̂ of degree α such that the
generic point of C maps into B ⊂ B̂.

The equivalence of the two versions of Definition follows by comparing their Plücker
descriptions.

3.4. Stratification of quasimaps Qα by Cγ shifts of maps. In this subsection we
describe a stratification of Qα according to the singularities of quasimaps.

3.4.1. Given β, γ ∈ N[I] such that β+γ = α, we define the proper map σβ,γ : Qβ×Cγ −→
Qα.

Namely, let f = (Lλ)λ∈X+ ∈ Qβ be a quasimap of degree β; and let D =
∑

i∈I Di· · ·i
be an effective colored divisor of multidegree γ =

∑
i∈I dii, that is, deg(Di) = di. We

define σβ,γ(f,D)
def
= f(−D)

def
= (Lλ(− < D, λ >))λ∈X+ ∈ Qα, where we use the pairing

DivI(C)⊗
Z

X → Div(C) given by < D, λ >=
∑

i∈I < i, λ > · · ·Di.

3.4.2. Theorem. Qα =
⊔

0≤β≤α

σβ,α−β(
◦

Qβ × Cα−β)

Proof. Any invertible subsheaf Lλ⊆Vλ lies in a unique line subbundle L̃λ⊆Vλ called the
normalization of L. So any quasimap L defines a map L̃ (called the normalization of L)
of degree β ≤ α and an I-colored effective divisor D (called the defect of L) corresponding

to the torsion sheaf L̃/L, such that L = L̃(−D). ✷
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3.4.3. Definition. Given a quasimap f = (Lλ)λ∈X+ ∈ Qα, its domain of definition U(f)
is the maximal Zariski open U(f) ⊂ C such that for any λ the invertible subsheaf Lλ ⊂ Vλ
restricted to U(f) is actually a line subbundle.

3.4.4. Corollary. For a quasimap f = (Lλ)λ∈X+ ∈ Qα of degree α the complement
C − U(f) of its domain of definition consists of at most |α| points. ✷

3.5. Smoothness of the moduli = Mapα(P1,B) of maps into the flag variety.
From now on, unless explicitly stated otherwise, C = P1.

Proposition. (V.Drinfeld)
◦

Qα is a smooth manifold of dimension 2|α|+ dim(B).

Proof. We have to check that at a map f ∈
◦

Qα the first cohomology H1(P1, f ∗T B)

vanishes (where T B stands for the tangent bundle of B), and then the tangent space Θf

◦

Qα

equals H0(P1, f ∗T B). As T B is generated by the global sections, f ∗T B is generated by

global sections as well, hence H1(P1, f ∗T B) = 0. To compute the dimension of Θf

◦

Qα =
H0(P1, f ∗T B) it remains to compute the Euler characteristic χ(P1, f ∗T B). To this end
we may replace T B with its associated graded bundle ⊕θ∈R+Lθ. Then

χ(P1, f ∗(
⊕

θ∈R+

Lθ)) =
∑

θ∈R+

(〈α, θ〉+ 1) = 〈α, 2ρ〉+ ♯R+ = 2|α|+ dimB ✷

3.6. Spaces Zα = QMap[(P1,∞), (B, b−)] of based quasimaps of degree α. Now we
are able to introduce our main character. First we consider the open subspace Uα ⊂ Qα

formed by the quasimaps containing ∞ ∈ P1 in their domain of definition (see 3.4.3).
Next we define the closed subspace Zα ⊂ Uα formed by quasimaps with value at∞ equal
to B− ∈ B:

Zα def
= {f ∈ Uα|f(∞) = B−}

We will see below that Zα is an affine algebraic variety.

3.6.1. It follows from Proposition ?? that dimZα = 2|α|.

4. “Quasimap” spaces Q⊆Q̃ for local curves d and d∗

In this section we define a d-version Q of Qα. Here one replaces the global curve C by
the formal neighborhood d of a point however, we will replace quasimaps by “quasimaps”
(also called line quasimaps), meaning elements of a certain torsor (for (Ha)O/Ha) over
the true space Q(d) of d-quasimaps. So, Q(d) is really the stack quotient Q/[(Ha)O/Ha].

Similarly for d∗ we will consider an [(Ha)K/Ha]-torsor Q̃ over Q(d∗).
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The use of these torsors suffices for the restriction construction. The restriction in question
takes quasimaps on P1 to quasimaps on d but it happens to factor through “quasimaps”
on d.

We set O = C[[z]]
pn
−→ On = C[[z]]/zn,K = C((z)).

4.1. The vector and line versions S։Q = S/Ha of d-quasimaps. Here we define
the local quasimap space for the local curve d as a closed subscheme Q of

∏
i∈I P(Vωi

⊗O)
given by Plucker equations. We start with a certain Ha-torsor S⊆

∏
i∈I Vωi

⊗O over Q.

4.1.1. Vectors and quasimaps. The vectors v ∈
∏

i∈I(Vi)O that we consider are generators
of invertible subsheaves Li of trivial vector bundles (Vi)d on the disc. In order to pass
from v to the quasimap L on D we should really divide by (Ha)O (so that each vi can
be adjusted by an O∗ factor). However, we will only take the quotient by Ha which will
keep us in schemes rather than stacks. [It will also suffice for our need to restrict global
quasimaps to local ones, see 4.3.]

xxx Inside the scheme
∏

i∈I P[(Vi)On
] we will define the projective subscheme Q(dn) by

Plucker equations. It comes with anHa-torsor S(dn) which is locally closed in
∏

i∈I (Vi)On
.

4.1.2. The C-projective space of UO. For a finite dimensional vector space U let U∗⊆U
be the open subscheme which is a Gm-torsor over P(U). So, for a commutative algebra k

let U∗(k)consists of vectors u ∈ U(k) such that kv is a projective k-module of rank one.

Now, for any n we can pull back via UO → UOn
the open subscheme U∗On

of the evctor
space UOn

to an open subscheme (UO)
∗
n of UO. This is an incrasing open filtratin of UO

and we let U∗O
def
= ∪n (UO)

∗
n. This defines the scheme

P(UO)
def
= U∗O/Gm = lim

→
(UO)

∗
n/GmP

where the limit is under open inclusions. It arries the Gm-torsor U
∗
O.

4.1.3. The vector and line version S։Q of d-quasimaps. Now, for a system of vector
spaces Vi we have

∏

i∈I

P(Vi⊗O) =
∏

i∈I

(Vi)
∗
O/Gm = [

∏

i∈I

(Vi)
∗
O]/Ha = ∪n [

∏

i∈I

(Vi)O]
∗
n]/Ha.

Inside
∏

i∈I P(Vi⊗O) there is a subscheme Q with an Ha-torsor S which is a closed
subscheme of the scheme

∏
i∈I (Vi)

∗
O given by the Plucker equations.

Old Version.

4.1.4. Subscheme A(O) of
∏

i∈I Vωi
⊗ O given by Plücker equations. We define the scheme A(O) (of

infinite type): its points are the collections of vectors vλ ∈ Vλ ⊗ O, λ ∈ X+, satisfying the Plücker
equations like in 3.3.2. It is a closed subscheme of

∏
i∈I Vωi

⊗O.
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4.1.5. Open increasing filtration A(O)n ⊂ A(O) by vectors that survive O։On. We define the open
subscheme A(O)n ⊂ A(O): it is formed by the collections (vλ)λ∈X+ such that pn(vωi

) 6= 0 for all i ∈ I.
Evidently, for 0 ≤ n ≤ m, one has A(O)n ⊂ A(O)m.

4.1.6. The vector version S of d-quasimaps. This is the open subscheme S
def
=

⋃
n≥0

A(O)n ⊂ A(O) of

vectors that survive on some finite level. One has S = A(O).

4.1.7. The line version Q of d-quasimaps. This is the closed subscheme Q = S/Ha ⊆
∏

i∈I P(Vωi
⊗O)

given by Plucker equations. The scheme S is equipped with the free action of Ha : h(vλ)λ∈X+ =
(λ(h)vλ)λ∈X+ . The quotient scheme Q = S/Ha is a closed subscheme in

∏
i∈I P(Vωi

⊗O). It is formed
by the collections of lines satisfying the Plücker equations. We denote the natural projection S −→ Q
by pr.

4.2. The local quasimap space Q̃ = S̃/Ha associated to the punctured disc d∗.

Now we define the K-level local quasimap space as a closed subindscheme Q̃ = S/Ha of
the indscheme

∏
i∈I P[Vωi

)K ⊗ O], given by the Plucker equations. Again, we start with

the Ha-torsor S̃ over Q̃ given by Plucker equations in
∏

i∈I(Vωi
)K ⊗O.

The ind-scheme Q̃ is filtered by closed subschemes Qη, η ∈ Y and there is the corre-

sponding stratifications
•

Qη of Q. Similarly one has
•

Sη⊆Sη⊆S̃.

4.2.1. A decreasing filtration of S by closed subschemes S−η ⊂ S (η ∈ N[I]), given by
vectors that vanish to order η. For η ∈ N[I] we define the closed subscheme S−η ⊂ S
formed by the collections (vλ)λ∈X+ such that vλ = 0 mod z〈η,λ〉. Notice that

zη : S
∼
−→ S−η, by (vλ)λ∈X+ 7→ (z〈η,λ〉vλ)λ∈X+ .

4.2.2. The semiinfinite system of schemes Sχ ⊆
∏

i∈I (Vi)K, χ ∈ Y . Now we can extend
the definition of Sχ to arbitrary χ ∈ Y . Namely, we define Sχ to be formed by the
collections (vλ ∈ Vλ⊗K)λ∈X+ such that (z〈χ,λ〉vλ)λ∈X+ ∈ S. Evidently, Sχ ⊂ Sη iff χ ≤ η,
and then the inclusion is the closed embedding. The filtration of Sη Sχ, χ < η gives a

stratification of Sη by
•

Sχ, χ ≤ η where
•

Sχ is the open subscheme Sχ −
⋃

χ′<χ S
χ′

in Sχ.

4.2.3. The ind-scheme S̃ = lim
→ η∈Y

Sη. The ind-scheme S̃ is equipped with the natural

action of the proalgebraic group G(O) (coming from the action on
∏

i∈I Vωi
⊗K.

Lemma. The orbits G(O) in S are exactly the strata
•

Sη, η ∈ Y . �

4.2.4. Closed subschemes Qη = Sη/Ha, η ∈ Y , of the ind-scheme
∏

i∈I P(Vωi
⊗ K). All

the above (ind)schemes are equipped with the free action of Ha, and taking quotients
we obtain the schemes Qη = Sη/Ha, η ∈ Y . They are all closed subschemes of the
ind-scheme

∏
i∈I P(Vωi

⊗K).
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4.2.5. The indscheme Q̃ = S̃/Ha = lim
→ η∈Y

Qη. We have Qχ ⊂ Qη iff χ ≤ η, and then the

inclusion is the closed embedding. The ind-scheme Q̃ = S̃/Ha is the union Q̃ =
⋃

η∈Y Qη.

The ind-scheme Q̃ is equipped with the natural action of the proalgebraic group G(O)

(coming from the action on
∏

i∈I P(Vωi
⊗K)). The orbits are exactly

•

Qη def
=
•

Sη/Ha, η ∈ Y .

4.3. The closed embedding Qα →֒ Q of P1-quasimaps (global) into d-quasimaps
(local). The closed embedding is given by restricting a global quasimap L on P1 to a
quasimap on d.

This is first done on the level of Ha-torsors Q̂
α →֒ S over Qα →֒ Q. So, we first construct

an Ha-torsor Q̂
α → Qα by adding to the quasimap L on P

1 a choice of a trivialization v
off ∞ ∈ P1. (then one restricts the trivializations

∏
i∈I(Vi)[z] ∋ v 7→ v|d ∈

∏
i∈I(Vi)[[z]]).

We consider C = P1 with two marked points 0,∞ ∈ C. We choose a coordinate z on C
such that z(0) = 0, z(∞) =∞.

4.3.1. The Ha-torsor Q̂
α → Qα. Here we refine the invertible subsheaves Lλ ⊂ Vλ by

adding a trivialization vλ of Lλ off ∞P1, i.e., on A1 = P1 −∞.

For α ∈ N[I] we define the space Q̂α pr
−→ Qα formed by the collections (vλ ∈ Lλ ⊂ Vλ)λ∈X+

such that

a) (Lλ ⊂ Vλ)λ∈X+ ∈ Qα;

b) vλ is a regular non-vanishing section of Lλ on A
1 = P

1 −∞;

c) (vλ)λ∈X+ satisfy the Plücker equations like in 3.3.2.

It is easy to see that Q̂α pr
−→ Qα is a Ha-torsor: h(vλ,Lλ) = (λ(h)vλ,Lλ).

4.3.2. Taking a formal expansion at 0 ∈ C we obtain the closed embedding sα : Q̂α →֒ S.
Evidently, sα is compatible with the Ha-action, so it descends to the same named closed
embedding sα : Qα →֒ Q.

4.3.3. Lemma. Let β ∈ N[I]. Then codimQQ
−β ≥ 2|β|.

Proof. Choose α ≥ β, and consider the closed embedding sα : Qα →֒ Q. Then
s−1α (Q−β) = Qα−β embedded into Qα as follows: (Lλ ⊂ Vλ)λ∈X+ 7→ (Lλ(−〈β, λ〉0) ⊂
Vλ)λ∈X+ . Now codimQQ

−β ≥ codimQαQα−β = 2|β|. ✷

4.3.4. Remark. One can show that for β ∈ N[I] we have codimQQ
−β = 2|β|. We postpone

the proof till Part II.



23

5. The Plücker model Zα of based quasimaps (Plücker sections)

In this section we describe another model of the space Zα introduced in 3.6.

5.1. Colored configuration spaces A(α) as spaces of unitary polynomials. We fix
a coordinate z on the affine line A1 = P1 −∞. We will also view the configuration space

A
α def
= (A1)α (see 2.3) as the space of collections of unitary polynomials (Qλ)λ∈X+ in z,

such that (a) deg(Qλ) = 〈α, λ〉, and (b) Qλ+µ = QλQµ.

5.2. Plucker sections of degree α. Recall the notations of 2.2. For each λ ∈ X+ we
will use the decomposition Vλ = Cyλ ⊕ (Kerxλ) = (Vλ)

N ⊕ n−Vλ, compatible with the
action of h = b− ∩ b, i.e., with the weight decomposition. For a section vλ ∈ Γ(A1,Vλ) =

Vλ⊗C[z]
def
= Vλ[z], we will use a polynomial Qλ

def
= 〈xλ, vλ〉 ∈ C[z], to write down the

decomposition vλ = Qλ· · ·yλ⊕v
′′
λ ∈ C[z]· · ·yλ⊕(Kerxλ)[z] = Vλ[z].

Definition. (V.Drinfeld) The space Zα of Plücker sections of degree α is the space

of collections of sections vλ ∈ Γ(A1,Vλ) = Vλ⊗C[z]
def
= Vλ[z], λ ∈ X+; such that for

vλ = Qλ· · ·yλ⊕v
′′
λ ∈ C[z]· · ·yλ⊕(Kerxλ)[z], one has

a) Polynomial Qλ is unitary of degree 〈α, λ〉;

b) Component v′′λ of vλ in (Kerxλ)[z] has degree strictly less than 〈α, λ〉;

c) For any G-morphism φ : Vλ ⊗ Vµ −→ Vν such that ν = λ + µ and φ∨(xν) = xλ ⊗ xµ
we have φ(vλ ⊗ vµ) = vν ;

d) For any G-morphism φ : Vλ⊗ Vµ −→ Vν such that ν < λ+ µ we have φ(vλ ⊗ vµ) = 0.

5.2.1. Collections (vλ)λ∈X+ that satisfy (c), are determined by a choice of vωi
, i ∈ I.

Hence Zα is an affine algebraic variety.

5.2.2. Due to the properties a),c) above, the collection of polynomials Qλ defined in a)
satisfies the conditions of 5.1. Hence we have the map

πα : Zα −→ A
α

6. The global Grassmannian model (zastava model) Zα⊆GA(α) of based
quasimaps

In this section we describe yet another model of the space Zα introduced in 3.6.

6.1. The B-type of a rational section of a G-torsor (a measure of singularity).
Let C be an arbitrary smooth projective curve; let T be a left G-torsor over C, and let τ
be a section of T defined over a Zariski open subset U ⊂ C, i.e., a trivialization of T over
U . We will define a B- (resp. B−-) type d(τ) (resp. d−(τ)): a measure of singularity of
τ at C − U .
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6.1.1. Section τ defines a B-subtorsor B· · ·τ⊆T . This reduction of T to B over U is
the same as a section of B\T over U . Since G/B is proper, this reduction (i.e. section),
extends uniquely to the whole C. Thus we obtain a B-subtorsor B· · ·τ⊆T (the closure
of B· · ·τ⊆T |U in T ), equipped with a section τ defined over U .

Using the projection B −→ Ha we can induce B· · ·τ to a torsor over C for the abstract

Cartan group Ha
∼= B/N of G; namely, Tτ,B

def
= N\B· · ·τ , equipped with a section τB

defined over U .

The choice of simple coroots (cocharacters of Ha) I ⊂ Y identifies Ha with (C∗)I . Thus
the section τB of Tτ,B produces an I-colored divisor d(τ) supported at C − U . We will
call d(τ) the B-type of τ .

Replacing B by B− in the above construction we define the B−-type d−(τ).

6.2. Subspace Zα of the relative Grassmannian GA(α)/A(α). Recall that A.Beilinson

and V.Drinfeld have introduced the relative Grassmannian G
(n)
C over Cn for any n ∈ N

(see [?]): its fiber p−1n (x1, . . . , xn) over an n-tuple (x1, . . . , xn) ∈ C
n is the space of iso-

morphism classes of G-torsors T equipped with a section τ defined over C−{x1, . . . , xn}.

We will consider a certain finite-dimensional subspace of a partially symmetrized version
of the relative Grassmannian.

Definition. (A.Beilinson and V.Drinfeld) Zα is the space of isomorphism classes of the
following data:

a) an I-colored effective divisor D ∈ Aα;

b) G-torsor T over P1 equipped with a section τ defined over P1 − supp(D) such that:

i) B-type d(τ) = 0;

ii) B−-type d−(τ) is a negative divisor (opposite to effective) such that d−(τ) + D is
effective.

6.2.1. By the definition, the space Zα is equipped with a projection pα to
Aα : (D, T , τ) 7→ D. For a subset U ⊂ A1 we will denote by Zα

U the preimage p−1α (U).

6.2.2. The reader may find another realization of Zα in 10.3 below.

6.3. Factorization (locality) property of spaces Zα. We will formulate the factor-
ization property of spaces Zα −→Cα, i.e., of Z −→HC for C = A1.

• (Complex geometry.) For disjoint open U, V⊆C there is a canonical isomor-
phism

Zβ|Uβ × Zγ |V γ
∼= Zβ+γ |(Uβ×V γ).
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• (Algebraic Geometry.) For the embedding Cβ,γ⊆Cβ×Cγ and the (etale) union
map ⊔ : Cβ,γ −→Cβ+γ there is a canonical isomorphism of pull backs to

(Zβ × Zγ)|Cβ,γ
∼= Zβ+γ |Cβ,γ .

6.3.1. Recall the following property of the Beilinson-Drinfeld relative Grassmannian

G
(n)
C

pn
−→ Cn (see [?]). Suppose an n-tuple (x1, . . . , xn) ∈ Cn is represented as a union

of an m-tuple (y1, . . . , ym) ∈ Cm and a k-tuple (z1, . . . , zk) ∈ Ck, k + m = n, such
that all the points of the m-tuple are disjoint from all the points of the k-tuple. Then
p−1n (x1, . . . , xn) is canonically isomorphic to the product p−1m (y1, . . . , ym)×p

−1
k (z1, . . . , zk)

6.3.2. Suppose we are given a decomposition α = β + γ, β, γ ∈ N[I] and two disjoint
subsets U,Υ ⊂ A1. Then Uβ×Υγ lies in Aα, and we will denote the preimage p−1α (Uβ×Υγ)

in Zα by Zβ,γ
U,Υ = Zα|(Uβ×Υγ) (cf. 6.2.1).

The above property of relative Grassmannian immediately implies the following

Factorization structure. There is a canonical factorization isomorphism Zβ,γ
U,Υ
∼= Zβ

U ×
Zγ

Υ, i.e.,
Zα|(Uβ×Υγ)

∼= Zβ |Uβ × Zγ |Υγ .

6.4. The fibers of Zα/A(α) as intersections of dual semiinfinite Schubert cells in
the loop Grassmannian. Let us describe the fibers of pα in terms of the normal slices
to the semiinfinite Schubert cells in the loop Grassmannian.

6.4.1. Let G be the usual affine Grassmannian G((z))/G[[z]]. It is naturally identified

with the fiber of G
(1)

P1 over the point 0 ∈ P1. Due to the Iwasawa decomposition in p-adic
groups, there is a natural bijection between Y and the set of orbits of the group N((z))
(resp. N−((z))) in G; for γ ∈ Y we will denote the corresponding orbit by Sγ (resp. Tγ).
We will denote by T γ the “closure” of Tγ , that is, the union ∪β≥γTγ.

It is proved in [?] that the intersection T γ ∩Sβ is not empty iff γ ≤ β. Then it is an affine

algebraic variety, a kind of a normal slice to Tβ in T γ. Let us call it TSγ,β
def
= T γ ∩ Sβ

for short. If rank(G) > 1 then TSγ,β = T γ ∩ Sβ is not necessarily irreducible. But it is
always equidimensional of dimension |β − γ|. There is a natural bijection between the
set of irreducible components of TSγ,β = T γ ∩ Sβ and the canonical basis of U+

β−γ (the
weight β−γ component of the quantum universal enveloping algebra of n) (see [?] for the
definition of canonical basis of U+).

6.4.2. Recall the diagonal stratification of Aα defined in 2.3 and the map pα : Zα → Aα.
We consider a partition Γ : α =

∑m
k=1 γk and a divisor D in the stratum Aα

Γ. The
interested reader will check readily the following

Claim. p−1α (D) is isomorphic to the product
∏m

k=1 TS−γk,0 =
∏m

k=1 T−γk ∩S0
∼=

∏m
k=1 T 0∩

Sγk .
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In particular, the fiber over a point in the closed stratum is isomorphic to TS−α,0 =
T−α ∩ S0

∼= T 0 ∩ Sα, while the fiber over a generic point is isomorphic to the product of
affine lines TS−i,0 ∼= T 0 ∩ S−i ∼= A1, that is, the affine space A|α|.

6.4.3. Corollary. Zα is irreducible.

7. Equivalence of three constructions of zastava spaces: Zα ∼= Zα ∼= Zα

7.1. Quasimaps and Plucker sections: Zα ∼= Zα. In this subsection we construct an
isomorphism ̟ : Zα ∼

−→ Zα, i.e., from the subsheaves Lλ⊆Vλ we construct the sections
vλ ∈ Γ(A1,Vλ).

7.1.1. Let f ∈ Zα be a quasimap given by a collection (Lλ ⊂ Vλ = Vλ⊗OP1)λ∈X+ . Since
Lλ|A1 is trivial, it has a unique up to proportionality section vλ generating it over A1.

We claim that the pairing 〈xλ, vλ〉 does not vanish identically. In effect, since deg(f) = α,
the meromorphic section vλ

z〈α,λ〉 of Vλ is regular non-vanishing at ∞ ∈ P1. Moreover, since

f(∞) = B−, we have vλ
z〈α,λ〉 (∞) ∈ V N−

λ . Thus, 〈xλ,
vλ

z〈α,λ〉 〉(∞) 6= 0.

Now we can normalize vλ (so far defined up to a multiplication by a constant) by the
condition that 〈xλ, vλ〉 is a unitary polynomial. Let us denote this polynomial by Qλ. It

has degree dλ ≤ 〈α, λ〉 since deg(f) = α. Since vλ
z〈α,λ〉 (∞) ∈ V

N−

λ , we see that deg〈e, vλ〉 <
dλ for any e ⊥ yλ. Moreover, since deg(f) = α we must then have dλ = 〈α, λ〉.

Thus we have checked that the collection (vλ)λ∈X+ satisfies the conditions a),b) of the
Definition 5.2. The conditions c),d) of loc. cit. follow from the conditions b),c) of the
Definition 3.3. In other words, we have defined the Plücker section

̟(f)
def
= (vλ)λ∈X+ ∈ Zα

7.1.2. Here is the inverse construction. Given a Plücker section (vλ)λ∈X+ ∈ Zα we define
the corresponding quasimap f = (Lλ)λ∈X+ ∈ Zα as follows.

We can view vλ as a regular section of Vλ(〈α, λ〉∞) over the whole P1. It generates an
invertible subsheaf L′λ ⊂ Vλ(〈α, λ〉∞). We define

Lλ
def
= L′λ(−〈α, λ〉∞) ⊂ Vλ

7.1.3. It is immediate to see that the above constructions are inverse to each other, so
that ̟ : Zα −→ Zα is an isomorphism.
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7.1.4. Remark. Note that the definition of the space Zα depends only on the choice of
Borel subgroup B− ⊂ G, while the definition of Zα depends also on the choice of the
opposite Borel subgroup B ⊂ G or, equivalently, on the choice of the Cartan subgroup
H ⊂ B−.

We want to stress that the projection πα : Zα = Zα −→ Aα does depend on the choice of
B. Let us describe πα̟(f) for a genuine map (as opposed to quasimap) f ∈ Zα. To this
end recall (see 2.1) that the B-invariant Schubert varieties Bsiw0, i ∈ I, are divisors in
B. Their formal sum may be viewed as an I-colored divisor D in B. Then f ∗D is a well
defined I-colored divisor on P1 since f(P1) 6⊂ D since f(∞) = B− ∈ Bw0 . For the same
reason the point ∞ does not lie in f ∗D, so f ∗D is really a divisor in A1. It is easy to see
that f ∗D ∈ Aα and f ∗D = πα̟(f).

7.2. Relative Grassmannian and Plucker sections: Zα ∼= Zα. In this subsection we
construct an isomorphism ξ : Zα ∼

−→ Zα, so from a system of sections vλ we construct a
G-torsor T with a section τ and an I-colored divisor D.

7.2.1. Lemma. (The Plücker picture of G.) The map ψ : g 7→ (gxλ, gyλ)λ∈X+ is a
bijection between G and the space of collections {(uλ ∈ V ∨λ , υλ ∈ Vλ)λ∈X+)} satisfying
the following conditions:

a) For any G-morphism φ : Vλ ⊗ Vµ −→ Vν such that ν = λ + µ and φ∨(xν) = xλ ⊗ xµ
we have φ(υλ ⊗ υµ) = υν ;

b) For any G-morphism φ : Vλ⊗ Vµ −→ Vν such that ν < λ+ µ we have φ(υλ⊗ υµ) = 0;

c) For any G-morphism ϕ : V ∨λ ⊗ V
∨
µ −→ V ∨ν such that ν = λ+ µ and ϕ(xλ ⊗ xµ) = xν

we have ϕ(uλ ⊗ uµ) = uν ;

d) For any G-morphism ϕ : V ∨λ ⊗V
∨
µ −→ V ∨ν such that ν < λ+µ we have ϕ(uλ⊗uµ) = 0;

e) 〈uλ, υλ〉 = 1.

Proof. We are considering the systems (v, u) = (vλ ∈ Vλ, uλ ∈ V
∨
λ , λ ∈ X

+) such that
both v and u are Plücker sections and < v, u >= 1, i.e., < vλ, uλ >= 1 for each λ.

These form a G-torsor and we have fixed its element (y, x), which we will use to think of
this torsor as a Plücker picture of G.

The stabilizers Gv and Gu are the unipotent radicals of the opposite Borel subgroups, for
instance Gx = N and Gy = N−. So this torsor canonically maps into the open G-orbit
in B×B and the fiber at (B′,B′′) is a torsor for a Cartan subgroup B′ ∩B′′. ✷

7.2.2. Given a Plücker section (vλ)λ∈X+ , the collection of meromorphic sections (xλ ∈
V∨λ ,

vλ
Qλ
∈ Vλ) evidently satisfies the conditions a)–e) of the above Lemma, and hence

defines a meromorphic function g : A
1 −→ G. Let us list the properties of this function.
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a) By the definition 7.2.1 of the isomorphism ψ, since g fixes the Plücker section x the
function g actually takes values in N ⊂ G;

b) The argument similar to that used in 7.1.1 shows that g can be extended to P1, is
regular at ∞, and g(∞) = 1 ∈ N (since vλ

Qλ
(∞) = yλ, g(∞) stabilizes xλ and yλ so it lies

in N ∩N−);

c) Let D = πα(vλ) (see 5.2.2) be the I-colored divisor supported at the roots of Qλ. Then
g is regular on P1 −D.

7.2.3. We define ξ(vλ) = (D, T , τ) ∈ Zα as follows: D = πα(vλ); T is the trivialG-torsor;
the section τ is given by the function g. Let us describe the corresponding Ha-torsor Tτ,B−

with meromorphic section τB−. To describe an Ha-torsor L with a section s it suffices to
describe the induced C∗-torsors Lλ with sections sλ for all characters λ : Ha −→ C∗. In
fact, it suffices to consider only λ ∈ X+. Then Lλ is given by the construction of 7.1.2,
and sλ = vλ

Qλ
.

Thus, the conditions i),ii) of the Definition 6.2 are evidently satisfied.

7.2.4. To proceed with the inverse construction, we will need the following

Lemma. Suppose (D, T , τ) ∈ Zα. Then T is trivial and has a canonical section ς.

Proof. By the construction 6.1.1, T is induced from the B-torsor B· · ·τ . By the Defini-
tion 6.2, the induced Ha-torsor Tτ,B is trivial, that is, B· · ·τ can be further reduced to
an N-torsor. But any N-torsor over P1 is trivial since H1(P1,V) = 0 for any unipotent
group V (induction in the lower central series). ✷

7.2.5. According to the above Lemma, we can find a unique section ς of T defined over
the whole P1 and such that ς(∞) = τ(∞). Hence a triple (D, T , τ) ∈ Zα canonically
defines a meromorphic function

g
def
= τς−1 : P

1 −→ G,

i.e., g(x)· · ·ς(x) = τ(x), x ∈ P1. One sees immediately that g enjoys the proper-
ties 7.2.2a)–c). Now we can apply the Lemma 7.2.1 in the opposite direction and obtain
from g a collection ψ−1(g) = (xλ, υ̃λ)λ∈X+ with υ̃λ a certain meromorphic sections of Vλ.
According to 5.1, the divisor D defines a collection of unitary polynomials (Qλ)λ∈X+ , and

we can define vλ
def
= Qλυ̃λ. One checks easily that (vλ) ∈ Zα, and (D, T , τ) = ξ(vλ).

In particular, ξ : Zα −→ Zα is an isomorphism.

7.3. Based quasimaps spaces Zα: a summary (locality ...) We conclude that
Zα,Zα,Zα are all the same and all maps to Aα coincide. We preserve the notation
Zα for this Zastava space, and πα for its projection onto Aα. We combine the proper-
ties 3.6.1, 5.2.1, 6.3.2, 6.4.3 into the following
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Theorem. a) Zα is an irreducible affine algebraic variety of dimension 2|α|;

b) For any decomposition α = β+γ, β, γ ∈ N[I], and a pair of disjoint subsets U,Υ ⊂ A1,
we have the factorization property (notations of 6.2.1 and 6.3.2):

Zβ,γ
U,Υ = Zβ

U ×Z
γ
Υ
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CHAPTER 2. The category PS of semiinfinite perverse sheaves on ...

8. Schubert stratification of (based) quasimap spaces Zα⊆Qα for the curve P1

We consider fine Schubert stratifications of quasimaps Q = QMap(P1,B) and based
quasimaps ZP1,∞. These strata are obviously smooth in the case of quasimaps and con-
jecturally also for based quasimaps. the latter is proved (in this paper) only for the strata
◦

Zγ
w such that the parameter γ is sufficiently dominant (this is still sufficient though less

elegant). It is convenient to consider a diamond of stratifications:

coarse = S
0
≤ fine = S

0,Gm
, Schubert = S

0,I
≤ fine Schubert = S

0,Gm,I
.

Remark. Since the based quasimaps are defined at ∞ so we are only interested in how
they behave over A1.

8.1. The diamond of stratifications of Zα
P1,∞⊆Q

α
P1: (i) coarse S

0
, (ii) fine S

0,Gm
,

(iii) Schubert S
0,I
, (iv) fine Schubert S

0,Gm,I
. We are interested in a “true” stratification,

i.e., where the strata are smooth. This is true only on the last level, i.e., the fine Schubert
strata are smooth.

The fine stratification is the usual stratification of quasimaps by singularities on A1 that
are caused by shifting genuine maps by finite subschemes, The new aspect (the coarse
strata) is that it is sometimes useful to keep less information and only consider the sin-
gularity at the distinguished point 0 ∈ A1.

The final ingredient concerns the “Iwahori orbits” or “Schubert cells” in quasimaps (de-
fined at 0). These are given by the cell Bw that contains the value of a quasimap at the
distinguished point 0 ∈ A1.

8.1.1. We denote by Qα ⊇
•

Qα ⊇
◦

Qα, respectively the variety of all quasimaps of degree
α and the subvarieties of the quasimaps defined at 0 and of genuine maps. In the same

way we denote the varieties of based quasimaps Zα ⊇
•

Zαdef
=Zα ∩

•

Qα ⊇
◦

Zαdef
=Zα ∩

◦

Qα =
based maps of degree α.

8.1.2. Step 1. [Coarse stratification S
0
.] Strata

•

Zβ of Zα according to singularity at 0.
It follows immediately from the Theorem 3.4.2 that

Zα ∼=
⊔

0≤β≤α

•

Zβ.

The closed embedding of a stratum
•

Zβ into Zα will be denoted by σβ,α−β.
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8.1.3. Step 2. [Fine stratification S
0,Gm

.] Strata
◦

Zβ×(Gm)
α−β of

•

Zα (quasimaps defined

at 0) by singularities on Gm. The consideration of quasimaps on Gm adds the diago-
nal stratification of the configuration space (Gm)

δ =
⊔

Γ∈P(δ)(Gm)
δ
Γ. Again, it follows

immediately from the Theorem 3.4.2 that
•

Zα ∼=
⊔

0≤β≤α

◦

Zβ×(Gm)
α−β.

8.1.4. Step 3. [Schubert Stratification S
0,I
]. Strata

•

Zα
w of

•

Zα (“defined at 0”) according to

the Bruhat cell that contains the value at 0, This refinement comes from the decomposition

of the flag variety B into the B-invariant Schubert cells. It is defined on
•

Zα as it uses the
value of a quasimap at 0.

For w ∈ Wf , we define the locally closed subvariety (Schubert strata)
•

Zα
w ⊂

•

Zα as the set

of quasimaps f such that f(0) ∈ Bw. The closure of
•

Zα
w in Zα will be denoted by Z

α

w.

Evidently, these are a filtration and the corresponding stratification of
•

Zα :
•

Zα =
⊔

w∈Wf

•

Zα
w.

Beware that
•

Zα
w may happen to be empty: e.g. for α = 0 and w 6= w0.

8.1.5. Step 4. [Fine Schubert stratification S
0,Gm,I

.] This is the intersection of the Schu-

bert and fine stratification s. for the (fine Schubert strata)
◦

Zα
w ⊂

◦

Zα as quasimaps f
◦

Zα

such that f(0) ∈ Bw. Evidently,
◦

Zα =
⊔

w∈Wf

◦

Zα
w.

8.1.6. Summary of stratifications of Zα
P1,∞. Altogether, we obtain the following stratifi-

cations of Zα:

Zα ∼=
⊔

α≥β

•

Zβ (coarse stratification)

∼=

α≥β≥γ⊔

Γ∈P(β−γ)

◦

Zγ×(A1)β−γΓ (fine stratification)

∼=

α≥β≥γ⊔

w∈Wf , Γ∈P(β−γ)

◦

Zγ
w×(Gm)

β−γ
Γ (fine Schubert stratification).
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8.1.7. Stratifications of Qα
P1. Similarly, we have the fine stratification (resp. fine Schubert

stratification) of quasimaps Qα on P1:

Qα =

α≥β≥γ⊔

Γ∈P(β−γ)

◦

Qγ×(P1 − 0)β−γΓ =

α≥β≥γ⊔

w∈Wf , Γ∈P(β−γ)

◦

Qγ
w×(P

1 − 0)β−γΓ

Here
◦

Qγ
w ⊂

◦

Qγ denotes the locally closed subspace of maps P1 → B taking value in
Bw ⊂ B at 0 ∈ P1.

Notice that once the quasimaps are not required to be based, the singularities may now
appear also at ∞.

Lemma. The strata
◦

Qγ
w × (P1 − 0)β−γΓ are smooth.

Proof.
◦

Qγ is the space of maps f of degree γ from P
1 to B so we know that it is smooth.

The condition that f(0) is in Bw does not cause a problem because of the G symmetry of
◦

Qγ . �

8.2. Smoothness of fine Schubert strata (conjecture and the stable case). While

the fine Schubert strata
◦

Qγ
w strata in quasimaps are evidently smooth, this is not so

obvious for based quasimaps because imposing the condition f(∞) = b− breaks the G-
symmetry of values at 0.

Remark. The coarse Schubert strata
•

Zα
w are not necessarily smooth in general (for in-

stance for G = SL3, α the sum of simple coroots and w = w0). The understanding of the

“fine Schubert strata”
◦

Zγ
w×(Gm)

β
Γ reduces to the varieties

◦

Zγ
w.

Conjecture. For γ ∈ N[I], w ∈ Wf the variety
◦

Zγ
w is smooth. Hence the “fine Schubert

stratification” is really a stratification.

8.2.1. Lemma. For γ sufficiently dominant (e.g. 〈γ, i′〉 > 10) and arbitrary w ∈ Wf the

variety
◦

Zγ
w is smooth.

Proof. Let us consider the map ̺γ :
◦

Qγ −→ B × B, f 7→ (f(0), f(∞)). We have
◦

Zγ = ̺−1γ (Bw,B−). It suffices to prove that ̺γ is smooth and surjective. Recall that

the tangent space Θf to
◦

Qγ at f ∈
◦

Qγ is canonically isomorphic to H0(P1, f ∗T B). Let
us interpret B as a variety of Borel subalgebras of g. We denote f(0) by b0, and f(∞)
by b∞. So we have to prove that the canonical map H0(P1, f ∗T B) −→ Tb0B ⊕ Tb∞B is
surjective. To this end it is enough to have H1(P1, f ∗T B(−0 −∞)) = 0. This in turn
holds whenever γ is sufficiently dominant. ✷
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8.2.2. Lemma. For γ sufficiently dominant we have dim
◦

Zγ
w = 2|γ| − dimB + dimBw.

Proof. The same as the proof of 8.2.1. ✷

8.2.3. Remark. Unfortunately, one cannot prove the conjecture 8.2 for arbitrary γ the
same way as the Lemma 8.2.1: for arbitrary γ the map ̺γ is not smooth. The simplest
example occurs for G = SL4 when γ is twice the sum of simple coroots. This example
was found by A.Kuznetsov.

9. The category PS of perverse sheaves on the factorization space Z

This section follows closely §4 of [?].

Summary.

A. System of spaces Zα
χ .

9.0.1. Zastava space Z(G) = ZC×I(G), a local space over C×I. Let C be a smooth curve
(here taken to be A1) and let HC×I = ⊔α C

α be the punctual Hilbert scheme of C.

We start with the zastava space Z(G) which is a local space Zu →HC×I over C×I, with
the connected components Zα → Cα, α ∈ N[I].

9.0.2. A system Z of local spaces over C×I. In 9.1 we introduce a system Z = Z(G,C)
of local spaces Zχ over a curve C.

• Each Zχ, χ ∈ Y , is a copy of the local space Z over the I-multiple C×I of a
curve C. So, Zχ →HC×I is a system of Zα

χ → Xα.
• The N[I]-action on Y lifts to an action on Z → Y . We use the distinguished point
a ∈ C to make γ ∈ N[I] act by the γa twist of quasimaps

Zχ→֒Zχ+γ where Zα
χ →֒Z

αγ

χ+γ , f 7→ f(−γa).

Remark. Passing to the indschemes
→

Z◦
def
= lim

→ be∈N[I]
Zβ

χ+β. one looses the locality prop-

erty. (Notice that Zα
χ →֒ Zχ−α.)

9.0.3. The intuition: Z is a visible part of a “semiinfinite” space Z. The system Z is
intuitively what we can see from a semi-infinite space Z which is stratified by strata
Zχ, χ ∈ Y . We are describing Z by the system Z of spaces Zα

χ and the meaning of Zα
χ

is that it is a normal slice to the stratum Sχ−α inside Sχ.
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Remarks. (0) Intuitively, the inclusions σ reflect the inclusions of closures of strata

Sχ⊆Sχ+γ in the semiinfinite space S. Here, σβ,γ
χ : Zβ

χ →֒ Z
β+γ
χ+γ embeds the slice for

Sχ−β⊆Sχ into the slice for Sχ−β = S(χ+γ)−(β+γ)⊆Sχ+β .

(1) The identification of objects on C that differ by a multiple of a point a means that
one is considering the pair (C, a).

It is a familiar idea that passing from C to (C, a) embeds glues the restrictions of the
local space Z −→HC to the connected components Hα

C of HC . (the scheme Zα embeds
into Zα+β by adding βa). However, here there is the extra parameter χ ∈ Y which also
gets increased to χ+ β.

B. The category PS of (finite length) perverse sheaves on the system. The
notion of a perverse sheaf on the system Z is here called a snop. We define abelian

category P̃S of snops and the subcategory PS of snops of finite length. The irreducibles
are parametrized by pairs of χ ∈ Y and w ∈ Wf . They intuitively correspond to “Iwahori
orbits.”

• The first level of the construction is an abstract procedure called he local coho-
mology H1

Y [Z, (P, I)] of a class of sheaves P on a local space Z over C, at Y⊆C
and with respect to a local sheaf I on the local space Z|C−Y over C − Y .
• The second level is a stabilization with respect to the N[I]-action on Y .

9.0.4. The local cohomology H1
Y [Z, (P, I)] at Y⊆C of a class of sheaves P on a local

space Z over C and with respect to a local sheaf I on Z|C−Y . Here, local cohomology is
taken in the setting of sheaves over local spaces over C (rather than just sheaves over C).
So, its meaning is not to “trivialize over C∗” but to “trivialize in the direction of C∗”
where “direction” means a factor in the locality isomorphism.

The setting is given by

• a local space Z over C;
• A class P of sheaves over Z;
• an open subset V of a curve C;
• a local sheaf I (in class P) over the restriction Z|V .

Then H1[(C, V ), (P, I)] means that we consider sheaves in P with I-trivializations in the
direction of V .

Let (C, V )α,β
def
=Cα,β∩Cα×V β, i.e., the moduli of disjoint pairs of D′ ∈ Cα and D′′ ∈ V β.

Then the I-trivialization of a sheaf K on Z means a compatible system of isomorphisms

[Kα
⊠Iβ ]

∣∣
(C,V )α,β

∼=
−→ Kα+β

∣∣
(C,V )α,β .
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9.0.5. Category P̃ S as H1
a [Z, (P, IC)]. Here we use the point a to define the “local

cohomology”

P̃ S
def
= H1

a,IC [C, P]

of the class P of perverse sheaves and with respect to the local sheaf IC on ZC∗×I(G) for
C∗ = C − a.5

A (C − a, IC)-trivialization of a perverse sheaf K on Z means a compatible system of
isomorphisms

[Kα
⊠ICZβ ]

∣∣
(C,V )α,β

∼=
−→ Kα+β

∣∣
(C,V )α,β .

9.0.6. Category P̃S: to the category P̃ S add the parameter χ ∈ Y and the N[I]-
stabilization. So, the added parameter is in Y/N[I]. More precisely, to PS we apply
Y×N[I] −.

9.0.7. Category PS. This is the subcategory of P̃S given by sheaves constructible with
respect to the Iwahori stratification.

9.1. Local space Z: a system of varieties Zα
χ , α ∈ N[I], γ ∈ Y . The system Z is

intuitively what we can see from a semi-infinite space S stratified by strata Sχ, χ ∈ Y .
We are describing S by the system Z of normal slices Zα

χ , here Z
α
χ is the slice to the

stratum Sχ−α inside Sχ.

9.1.1. From B to B×Y . Now we upgrade the flag variety B to the product B×Y =
⊔χ∈Y Bχ, i.e., copies of B indexed by the cocharacter lattice Y . So for arbitrary χ ∈ Y
and α ∈ N[I] we obtain the spaces Zα

χ of based maps into Bχ and it makes sense now
to add the subscript χ to all the strata (coarse, Schubert, fine) defined in the previous
section.

9.2. The indsystem of based quasimap spaces Zα (by twists at a ∈ C). A dis-
tinguished point a ∈ C defines maps γa ∪C − : Cα→֒Cα+γ and the monoid indscheme
HC,a = lim

→
Hα

C . Notice that the map HC−a −→Hγa ∪C −C, a by Hα
C−a⊆H

α
C →֒HC,a is a

locally closed embedding and a morphism of monoids.

This lifts to an ind-system of quasimap spaces

Qα
C →֒ (γa ∪C −)

∗Qα+γ
C

by f 7→ f(−γa) and defines the indscheme QC(−∞a) of quasimaps with arbitrary poles
at a.

5 The key point is that for any local space Z/C the construction IC gives a local perverse sheaf on Z.
Some other universal constructions of local sheaves: the constant sheaf ZX and the dualizing sheaf ωX .
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For β ≤ β + γ), it restricts to the embedding Qβ →֒Qα, f 7→f(−γ· · ·0), and in particular

Zβ →֒ Zα.

Remark. (0) Passing to the limit indscheme destroys degrees and locality.

(1) For an open curve C (for instance a local curve) there is no notion of the degree of a
quasimap so we do not know how to decompose the space QC . There is still a notion of
a defect but now it is not continuous since a part of the defect may float to the boundary
of C. �

9.2.1. System Z of varieties Zα
χ , α, γ ∈ Y . 9.2

9.2.2. We will consider a system Z of varieties Zα
χ , α, γ ∈ Y , together with two kinds

of maps defined for any β, γ ∈ N[I]:

• a) closed embeddings,

σβ,γ
χ : Zβ

χ →֒ Z
β+γ
χ+γ ,

• b) factorization identifications

Zβ,γ
χ,Uε,Υε

∼= Zβ
χ,Uε
×Zγ

χ−β,Υε

defined for ε > 0 and Uε
def
= {z ∈ C, |z| < ε}, and Υε

def
= {z ∈ C, |z| > ε}.

Of course, these are the embeddings from 8.1 and factorizations from 6.3.2.

Remark. Here we use only the very special factorizations based on decomposing A1 = C

into an open disc Uε around 0 and the open complememt Υε (and the circle).

9.3. Snops. We will denote by ICαχ the perverse IC-extension of the constant sheaf at
the generic point of Zα

χ .

By a snop we will mean

(1) A choice of χ ∈ Y and a system of perverse sheaves Kα
χ on Zα

χ , α ∈ N[I].
The reason that the support estimate is needed is that intuitively, we are de-

scribing a sheaf K on a semi-infinite space S supported on the closure of one
stratum Sχ. We are describing K by a system of its restrictions to normal slices
Zα

χ , here K
α
χ is a restriction to the normal slice Zα

χ to the stratum Sλ−α.
(2) The perverse sheaves Kα

χ on Zα
χ are required to be smooth along the fine Schubert

stratification.
(3) K has a factorization structure which says that it behaves the same as the IC sheaf

away from 0 ∈ A1.
(4) A sheaf supported on Sχ is also supported on Sχ′ for χ′ ≥ χ. So we will later add

the stabilization procedure that increases χ by adding any α ∈ Y+.
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9.3.1. A conjectural definition. The following definition makes sense only modulo the
validity of conjecture 8.2.

Definition. A snop K is the following collection of data:

a) χ = χ(K) ∈ Y , called the support estimate of K;

b) For any α ∈ N[I], a perverse sheaf Kα
χ on Zα

χ smooth along the fine Schubert stratifi-
cation;

c) For any β, γ ∈ N[I], ε > 0, a factorization isomorphism

Kβ+γ
χ |Zβ,γ

χ,Uε,Υε

∼
−→ Kβ

χ|Zβ
χ,Uε

⊠ ICγχ−β|Zγ
χ−β,Υε

satisfying the associativity constraints as in [?], §§3,4. We spare the reader the explicit
formulation of these constraints.

9.3.2. Snops (a precise definition). Since at the moment the conjecture 8.2 is unavailable
we will provide an ugly provisional substitute of the Definition 9.3. Namely, recall that

Zα = ⊔α≥β≥γ
◦

Zγ × (C∗)β−γ . We introduce an open subvariety

Z̈α =
⊔

α≥β≥γ≫0

◦

Zγ × (C∗)β−γ

The union is taken over sufficiently dominant γ, i.e. such that 〈γ, i′〉 > 10 for any i ∈ I.
Certainly, if α itself is not sufficiently dominant, Z̈α may happen to be empty. We have
the fine Schubert stratification

Z̈α =

α≥β≥γ≫0⊔

w∈Wf , Γ∈P(β−γ)

◦

Zγ
w × (C∗)β−γΓ

with smooth strata (see the Lemma 8.2.1).

Now we can repeat the Definition 9.3 replacing Zα
χ by Z̈α

χ. Thus in 9.3 b) we have to
restrict ourselves to sufficiently dominant α, and in 9.3 c) β has to be sufficiently dominant
as well.

9.3.3. In what follows we use the Definition 9.3. The reader unwilling to believe in the
Conjecture 8.2 will readily substitute the conjectural Definition 9.3 with the provisional
working Definition 9.3.2.

9.4. Irreducible and (co)standard snops L(w, χ),M!(w, χ) =M(w, χ),M∗(w, χ) =
DM(w, χ)) for χ ∈ Y, w ∈ Wf .
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9.4.1. Let us describe a snop L(w, χ) for χ ∈ Y, w ∈ Wf .

a) The support of L(w, χ) is χ.

b) L(w, χ)αχ is the irreducible IC-extension IC(Z
α

w,χ) = j!∗IC(
•

Zα
w,χ) of the perverse IC-

sheaf on the Schubert stratum
•

Zα
w,χ ⊂

•

Zα
χ. Here j stands for the affine open embedding

•

Zα
w,χ →֒ Z

α

w.

In particular, IC(Z
α

w0,χ) = IC
α
χ.

c) Evidently, Z
β

w,χ,Uε
(resp. Z

β,γ

w,χ,Uε,Υε
) is open in Z

β

w,χ (resp. Z
α

w,χ) for any β + γ =

α. Moreover, Z
β,γ

w,χ,Uε,Υε
= Z

β

w,χ,Uε
× Zγ

χ−β,Υε
. This induces the desired factorization

isomorphism.

9.4.2. If we replace in 9.4.1b) above j!∗IC(
•

Zα
w,χ) by j!IC(

•

Zα
w,χ) =: M(w, χ)αχ (resp.

j∗IC(
•

Zα
w,χ) =: DM(w, χ)αχ) we obtain the snopM(w, χ) (resp. DM(w, χ)).

9.5. The abelian category P̃S of snops.

9.5.1. The stabilization action of N[I] on snops. Given a snop K with support χ, and

η ≥ χ, α ∈ N[I], we define a sheaf ′Kα
η on Zα

χ as follows. We set γ
def
= η − χ. If α ≥ γ we

set
′Kα

η
def
= (σα−γ,γ

χ )∗K
α−γ
χ

(for the definition of σ see 9.1). Otherwise we set ′Kα
η
def
= 0.

It is easy to see that the factorization isomorphisms for K induce similar isomorphisms
for ′K, and thus we obtain a snop ′K with support η ≥ χ.

9.5.2. Given two snops F ,K we will define the morphisms Hom(F ,K) as follows. Let
η ∈ Y be such that η ≥ χ(F), χ(K). For α = β + γ ∈ N[I] we consider the following
composition:

ϑβ,γη : HomZα
η
(′Fα

η ,
′Kα

η ) −→ HomZβ,γ
Uε,Υε

(′Fα
η |Zβ,γ

Uε,Υε

,′Kα
η |Zβ,γ

Uε,Υε

)
∼
−→

HomZβ
η,Uε
×Zγ

η−β,Υε

(′Fβ
η |Zβ

η,Uε

⊠ICγη−β |Zγ
η−β,Υε

,′Kβ
η |Zβ

η,Uε

⊠ICγη−β |Zγ
η−β,Υε

) = HomZβ
η,Uε

(′Fβ
η |Zβ

η,Uε

,′Kβ
η |Zβ

η,Uε

)

(the second isomorphism is induced by the factorization isomorphisms for ′F and ′K, and
the third equality is just Künneth formula).

Now we define

Hom(F ,K)
def
= lim

→ η
lim
← α

HomZα
η
(′Fα

η ,
′Kα

η )
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Here the inverse limit is taken over α ∈ N[I], the transition maps being ϑβ,α−βη , and the
direct limit is taken over η ∈ Y such that η ≥ χ(F), χ(K), the transition maps being
induced by the obvious isomorphisms HomZα

η
(′Fα

η ,
′Kα

η ) = HomZα+γ
η+γ

(′Fα+γ
η+γ ,

′Kα+γ
η+γ ).

9.5.3. With the above definition of morphisms and obvious composition, the snops form

a category which we will denote by P̃S.

9.6. PS. Evidently, the snops L(w, χ) are irreducible objects of P̃S. It is easy to see that

any irreducible object of P̃S is isomorphic to some L(w, χ).

We define the category PS of finite snops as the full subcategory of P̃S formed by the
snops of finite length. It is an abelian category. We will see later that M(w, χ) and
DM(w, χ) (see 9.4.2) lie in PS for any w, χ.

One can prove the following very useful technical lemma exactly as in [?], 4.7.

9.6.1. Lemma. Let F ,K be two finite snops. Let η ≥ χ(F), χ(K). There exists β ∈ N[I]
such that for any α ≥ β the canonical maps Hom(F ,K) −→ HomZα

η
(′Fα

η ,
′Kα

η ) are all
isomorphisms. ✷
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CHAPTER 3. Convolution with affine Grassmannian

10. Plücker models, twisted quasimaps Q and parity for IC sheaves

These are three different topics.

In the first part 10.A we write down the Plucker models of Gλ, Iwahori orbits Gλ,w and
zastava spaces Zα.

In the second part 10.B we consider the spaces of twisted quasimaps.

In the third part 10.C we show that the stalks of IC sheaves are the same for the three
spaces of quasimaps Zα,Qβ) and the twisted version Qβ . We conjectre that they satisfy
a parity vanishing.

Summary.

10.0.1. [10.B.] The spaces of twisted quasimaps. Let Y = BunG(C) where C is either a

smooth projective curve, the pair (P1, ∞̂) (so, Y = Ĝ) or (P1,P1−0) = (d, d∗) (so Y = G).
We define BunG(C)B⊇BunG(C)B as spaces over BunG(C)×C such that for Q ∈ BunG(C) the

restrictions to Q×C are Q/B ∼= Q×GB
def
=

Q

B and QB = Q×GB.

Then the direct (quasi)images along the projection BunG(C)×C −→ BunG(C) are the
spaces over BunG(C) of (quasi)sections (also called the “twisted (quasi)maps”),

Γ[C, BunG(C)B] and QΓ[C, BunG(C)B]
def
= Γgen[C,

BunG(C)B].

The fibers at Q are Γ[C, QB] and QΓ[C, QB]
def
= Γgen[C,

QB] where Γgen consists of all
sections that visit QB.

Notation. Over Gη⊆G = BunG(P
1,P1 −∞) times C = P1 we have GηB⊆ GB. Then over

Gη⊆G we have the spaces of quasisections

GQη
def
= QΓ(P1, GηB).

In particular as Gη is the point given by the trivial torsor, GQ0
def
= QΓ(P1,B) =

QMap(P1,B)
def
= Q is the untwisted object.

Similarly, over Ĝ = BunG(P
1, ∞̂) times P1 we have ĜB and this gives Q

def
= QΓ(P1, ĜB)

over Ĝ.

Remark. Notice that a twisted quasimap on a complete curve C (for instance P
1) has a

degree α ∈ Y (6) so we have QΓ[C, BunG(C)B] = ⊔α∈Y QΓα[C, BunG(C)B] and in particular
GQη = ⊔α∈Y GQ

α
η and Qη = ⊔α∈Y Qα

η .

6 For instance a twisted quasimap L is still a a system of invertible subsheaves Li and deg(L) =∑
i∈I deg(Li).
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10.0.2. [10.C.] Stalks of IC sheaves on Zα,Qα,Q. (i) Relation of stratifications and
stalks. We notice that the (based) quasimap spaces Zα,Qα as well as the twisted
quasimap spaces Qα, the IC sheaves are constructible with respect to stratifications in-
dexed by the same data: the type of the defect of a quasimap. Moreover, the IC stalks
on the corresponding strata are the same. (However, for Qα these facts are proved later
in ??.]

Remark. For Qα the natural stratification also involves the type of the G-torsor, however
this turns out not to influence the stalks of IC(Qα).

(ii) A parity vanishing conjecture for stalks. Some rsults in the present paper assume
this conjecture which is only proved in the second paper SF2.

10.A. Plücker model of Gλ, Gλ,w and Zα

10.1. Plücker model of Gλ on P
1 and on a formal disc.

10.1.1. Gλ. Let G be the usual affine Grassmannian G((z))/G[[z]]. It is the ind-scheme
representing the functor of isomorphism classes of pairs (T , τ) where T is a G-torsor on
P1, and τ is its section (trivialization) defined off 0 (see e.g. [?]). It is equipped with a
natural action of proalgebraic group G[[z]], and we are going to describe the orbits of
this action. It is known (see e.g. loc. cit.) that these orbits are numbered by dominant
cocharacters η ∈ Y + ⊂ Y .

Here Y + ⊂ Y stands for the set of cocharacters η such that 〈η, i′〉 ≥ 0 for any i ∈ I. For
η ∈ Y + we denote the corresponding G[[z]]-orbit in G by Gη, and we denote its closure
by Gη.

Recall that for a dominant character λ ∈ X+ we denote by Vλ the corresponding irre-
ducible G-module, and we denote by Vλ the trivial vector bundle Vλ ⊗OP1 on P1.

10.1.2. Plucker model of Gλ on P
1. .

Proposition The orbit closure Gη ⊂ G is the space of collections (Uλ)λ∈X+ of vector
bundles on P1 such that

a) Vλ(−〈η, λ〉0) ⊂ Uλ ⊂ Vλ(〈η, λ〉0), or equivalently, Uλ(−〈η, λ〉0) ⊂ Vλ ⊂ Uλ(〈η, λ〉0);

b) degUλ = degVλ = 0, or in other words, dimVλ(〈η, λ〉0)/Uλ = 〈η, λ〉 dimVλ;

c) For any surjective G-morphism φ : Vλ ⊗ Vµ −→ Vν and the corresponding morphism
φ : Vλ ⊗ Vµ −→ Vν (hence φ : Vλ(〈η, λ〉0) ⊗ Vµ(〈η, µ〉0) −→ Vν(〈η, λ + µ〉0)) we have
φ(Uλ ⊗ Uµ) = Uν .

Proof. G-torsor on a curve C is the same as a tensor functor from the category of G-
modules to the category of vector bundles on C. ✷
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10.1.3. Plucker model of Gλ on the formal disc d. Let us give a local version of the above
Proposition. Recall that O = C[[z]] ⊂ K = C((z)). For a finite-dimensional vector space
V , a lattice V in V ⊗K is an O-submodule of V ⊗K commensurable with V ⊗O, that is,
such that (V ⊗O) ∩V is of finite codimension in both V ⊗O and V.

Proposition. The orbit closure Gη ⊂ G is the space of collections (Uλ)λ∈X+ of lattices in
Vλ ⊗K such that

a) Within η distance from the trivial torsor:

z〈η,λ〉(Vλ ⊗O) ⊂ Uλ ⊂ z−〈η,λ〉(Vλ ⊗O),

or equivalently,

z〈η,λ〉Uλ ⊂ Vλ ⊗O ⊂ z−〈η,λ〉Uλ.

b) (The degree of lattices is zero.) dim(z−〈η,λ〉(Vλ ⊗O)/Uλ) = 〈η, λ〉 dimVλ;

c) The Plucker (Tannakian) conditions on lattices. For any surjective G-morphism φ :
Vλ ⊗ Vµ −→ Vν and the corresponding morphism φ : (Vλ ⊗O)⊗ (Vµ ⊗O) −→ (Vν ⊗O)
(hence φ : z−〈η,λ〉(Vλ⊗O)⊗z

−〈η,µ〉(Vµ⊗O) −→ z−〈η,λ+µ〉(Vν⊗O)), we have φ(Uλ⊗Uµ) =
Uν . �

10.1.4. Towards replacing Plucker by Vinberg.

Lemma. (?) For (P, ι) ∈ Gη the G×H-torsor P(−η) descends(?) to a torsor for V ∗(G)
and we notice that it maps to the trivial V (G)-torsor V (G). ?

10.2. Plücker model of Iwahori orbits Gλ,w, λ ∈ X∗(T )+, w ∈ Wf . Let I ⊂ G[[z]]
be the Iwahori subgroup; it is formed by all g(z) ∈ G[[z]] such that g(0) ∈ B ⊂ G.
We will denote by P(G, I) the category of perverse sheaves on G with finite-dimensional
support, constant along I-orbits. The stratification of G by I-orbits is a certain refinement
of the stratification G = ⊔η∈Y +Gη. Namely, each Gη decomposes into I-orbits numbered
byWf/Wη whereWη stands for the stabilizer of η inWf . For w ∈ Wf/Wη we will denote
the corresponding I-orbit by Gw,η. Let us introduce a Plücker model of Gw,η.

10.2.1. Partial flag variety Bη⊆Gη. For η ∈ Y + let Iη ⊂ I be the set of all i such that
〈η, i′〉 = 0 (thus for i 6∈ Iη we have 〈η, i′〉 > 0). Then Wη is generated by the simple
reflections {si, i ∈ Iη}. Let P(Iη) be the corresponding parabolic subgroup (e.g. for
Iη = ∅ we have P(Iη) = B, while for Iη = I we have P(Iη) = G). Let B(Iη) = G/P(Iη)
be the corresponding partial flag variety. The B-orbits on B(Iη) are naturally numbered
by Wf/Wη : B(Iη) = ⊔w∈Wf/Wη

B(Iη)w. The Plücker embedding realizes B as a closed
subvariety in

∏
i∈I P(Vωi

). Its image under the projection
∏

i∈I P(Vωi
) −→

∏
i 6∈Iη

P(Vωi
)

exactly coincides with B(Iη).
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10.2.2. Lemma-Definition. a) For η =
∑

i∈I nii, i ∈ Iη, and (Uλ)λ∈X+ ∈ Gη we have
Uωi
⊂ Vωi

((ni − 1)0);

b) For η =
∑

i∈I nii, i 6∈ Iη, and (Uλ)λ∈X+ ∈ Gη we have dim(Uωi
+Vωi

((ni−1)0)/Vωi
((ni−

1)0)) = 1;

c) Thus Uωi
, i 6∈ Iη, defines a line Li in Vωi

(ni0)/Vωi
((ni − 1)0) = Vωi

. This collection
of lines (Li)i 6∈Iη ∈

∏
i 6∈Iη

P(Vωi
) satisfies the Plücker conditions and thus gives a point in

B(Iη);

d) We will denote by r the map Gη −→ B(Iη) defined in c);

e) For w ∈ Wf/Wη we have Gw,η = r−1(B(Iη)w). ✷

10.2.3. Indexation of Iwahori orbits Gλ,w by the T -fixed points wλ. For θ ∈ Y we consider
the corresponding homomorphism θ : C∗ −→ H ⊂ G as a formal loop θ(z) ∈ G((z)). It
projects to the same named point θ(z) ∈ G((z))/G[[z]] = G. There is a natural bijection
between the set of θ(z), θ ∈ Y , and the set of Iwahori orbits: each Iwahori orbit Gw,η

contains exactly one of the above points, namely, the point wη(z).

10.3. Plücker model of the Zastava space Zα (a subspace of the global Grass-
mannian). Recall the Beilinson-Drinfeld avatar Zα of the Zastava space Zα (see 6.2).
In this subsection we will give a Plücker model of Zα.

Proposition. Zα is the the space of pairs (D, (Uλ)λ∈X+) where D ∈ Aα is an I-colored
effective divisor, and (Uλ)λ∈X+ is a collection of vector bundles on P1 such that

a) Vλ(−∞D) ⊂ Uλ ⊂ Vλ(+∞D);

b) VN
λ ⊂ Uλ ⊃ V

N−

λ (−〈D, λ〉) (notations of 3.4.1), the first inclusion being a line subbundle
(and the second an invertible subsheaf);

c) degUλ = 0;

d) For any surjective G-morphism φ : Vλ ⊗ Vµ −→ Vν and the corresponding morphism
φ : Vλ ⊗ Vµ −→ Vν (hence φ : Vλ(+∞D)⊗ Vµ(+∞D) −→ Vν(+∞D)) we have φ(Uλ ⊗
Uµ) = Uν .

Proof. Obvious. ✷

10.3.1. Remark. Recall the isomorphism ̟−1ξ : Zα ∼
−→ Zα constructed in section 7. Let

us describe it in terms of 10.3. The Lemma 7.2.4 says that there is a unique system of iso-
morphisms ιλ : Uλ

∼
−→ Vλ, λ ∈ X

+, identical at∞ ∈ P1 and compatible with tensor mul-
tiplication. Then ̟−1ξ(D, (Uλ)λ∈X+) = (Lλ ⊂ Vλ)λ∈X+ where Lλ = ιλ(V

N−

λ (−〈D, λ〉)).

10.B. “Quasimaps” Q with values in twisted B-bundles

Summary. “Quasimaps” Qα with values in twisted B-bundles as B-torsors
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10.3.2. The moduli BunG(C)Q of G-twisted quasimaps. A G-torsor P over a curve C has a

flag variety P/B which can be viewed as the P-twist PB
def
= P×GB of the flag variety of

G. It has a canonical extension to the stack

PB
def
= P×GB = P×GB = P×G[(G/N)aff ]/ = [(P/N)aff ]/H.

c in the sense that

By a P-twisted quasimap from C to PB we mean a quasisection of PB → C (or a C-
quasipoint of PB), by which we mean a section of PB which is generic in the sense that it
does hit PB.

The space of P-twisted quasimaps is denoted PQ
def
= QΓ(C, PB).(7) These are the fibers

of BunQ −→ BunG(C) for the moduli BunQ of pairs (P, f) of a G-torsor P on C and a
quasisection f of PB.

10.3.3. The moduli of twisted quasimaps BunG(C)Q as a partial compactification of
BunB(C). An actual section Γ[C, PB] = Γ[C, P/B] is the same as a B-reduction of P.
So, the moduli BunQ̌ −→BunG(C) for of pairs (P, f) of a G-torsor P on C and a section
f of PB is the same as BunB(C).

10.3.4. The degree decomposition Q = ⊔α∈Y Qα of twisted quasimap. A twisted quasimap
L is still a system of invertible sheaves Lλ and deg L = α if deg(Lλ) = −〈α, λ〉.

10.3.5. Two versions GQ (over G) and Q
def
=
Ĝ

Q (over Ĝ). We will use two versions of
this.

GηQα = GQα
η

⊆
−−−→ GQ = GQ

⊆
−−−→ Q

def
= ĜQ = ĜQy

y
y

Gη
⊆
−−−→ G

⊆
−−−→ Ĝ

• We are really interested in (a version of) GQ where we replace BunG(C) with a
local object G. The effect is that the quasimap is twisted only near one point a.
The version here means that instead of G = G(G) we are using the loop Grass-

mannian G(V (G)) of the Vinbers semigroup V (G) of G. The connected compo-
nents of G(V (G)) are just the closures Gη of GO-orbits in G. For this reason we
are really onterested in the first column rather than the second.
• Actually, we will impose trivialization on ∞̂, i.e., pairs (P, φ) in the thick Grass-

mannian Ĝ = H1[P1, ∞̂;G] (here denoted M). The version Q
def
= ĜQ uses C = P1

and torsors endowed with a trivialization anear∞.

7 The notation is symbolic since there is no map Q → PQ.
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Something of this form is essential for the notion if based twisted quasimaps
on (P1,∞) since the twisted quasimap is not twisted near ∞ so the condition
f(∞)− b− makes sense.(8)

10.3.6. The thick Grassmannaian Ĝ. In 10.4 we notice a technical result. Each connected
component Gη of the loop Grassmannian of the Vinberg semigroup V (G) has a canonical
(Kasiwara-Tanisaki) embedding into a finite dimensional smooth variety Mη.(9)

10.4. The thick Grassmannian M = H1[(P1, ∞̂), G] = Ĝ and the embeddings
Gη →֒M(η). Let M be the scheme representing the functor of isomorphism classes of G-
torsors on P1 equipped with trivialization in the formal neighborhood of ∞ ∈ P1 (see [?]
and [?]).

10.4.1. Stratification Mη = Ĝη by isomorphism types of G-torsors. The scheme M is
stratified by the locally closed subschemes Mη : M = ⊔η∈Y +Mη according to the iso-
morphism types of G-torsors. Namely, due to Riemann’s classification, for a G-torsor
T and any λ ∈ X+ the associated vector bundle VTλ decomposes as a direct sum of line
bundles O(rλk) of well-defined degrees rλ1 ≥ . . . ≥ rλdimVλ

. Then T lies in the stratum Mη

iff rλ1 = 〈η, λ〉.

10.4.2. A neighborhood Mη of Mη and its quotient Mη. For any η ∈ Y + the union of
strata Mη := ⊔Y +∋χ≤ηMχ (the “anticlosure” of Mη) forms an open subscheme of M.
This subscheme is a projective limit of schemes of finite type, all the maps in projective
system being fibrations with affine fibers.

Moreover, Mη is equipped with a free action of a prounipotent group Gη (a congruence
subgroup in G[[z−1]]) such that the quotient Mη is a smooth scheme of finite type. The
theory of perverse sheaves on M smooth along the stratification by Mη is developed
in [?]. We will refer the reader to this work, and will freely use such perverse sheaves, e.g.
IC(Mη).

10.4.3. i : G →֒ M and the embeddings Gη →֒ Mη −→ Mη. Restricting a trivialization
of a G-torsor from P1 − 0 to the formal neighborhood of ∞ ∈ P1 we obtain the closed
embedding i : G →֒M. The intersection of Mη and Gχ is nonempty iff η ≤ χ, and then
it is transversal. Thus, Gη ⊂Mη. According to [?], the composition Gη →֒Mη −→Mη is
a closed embedding.

8 Actually, for this we would only need to trivialize the torsor on the point ∞?
9 First, G embedds into Ĝ = ∪η Ĝη and Gη falls into the “anticlosure” m(η) of Mη (the smallst I-

invariant neighborhood of Mη). Then Mη is invariant uder a (free!) action of a prounipotent group Gη

(a subgroup of G[[z−1]]) such that the quotient Mη is a smooth scheme of finite type.
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10.5. “Quasimaps” Qα with values in twisted B-bundles as B-torsors. We twist
the flag variety by a G-torsor over a curve C. This gives the spaces BunQ −→BunG(C)
of a G-torsor T and a quasimap C → BT (really a quasisection of BT ).

Here we replace Bun with Ĝ = H1[P1, ∞̂;G] (denoted M). This gives a version Q of
BunGQ. [Later we will use G instead of BunG, giving a version GQ of BunQ.]

10.5.1. A G-torsor T over C produces a twisted C-form BT of the flag variety. Here,

BT
def
= Ť×G B.

In Plucker language a G-torsor T twists an irreducible G-module Vλ into the associated
vector bundle VTλ .

10.5.2. Quasimaps into twisted B-bundles. For a G-torsor Ť over C (here P1) we consider

the spaces
◦

Qα(BT )⊆Qα(BT ) of (quasi)maps from C to BT of a given degree α.

We start with the version when T is in M, i.e., it is trivialized on ∞̂. This gives spaces
◦

Qα⊆Qα over M.

In Plucker language we define (as in 3.2 and 3.3) for arbitrary α ∈ Y the scheme
◦

Qα (resp.
Qα) representing the functor of isomorphism classes of pairs (T , (Lλ)λ∈X+) where

• T is a G-torsor trivialized in the formal neighborhood of ∞ ∈ P1, and
• Lλ ⊂ V

T
λ , λ ∈ X

+, is a collection of line subbundles (resp. invertible subsheaves)
of degree 〈−α, λ〉 satisfying the Plücker conditions (cf. loc. cit.).

The evident projection
◦

Qα −→M (resp. Qα −→M) will be denoted by
◦
p (resp. p). The

open embedding
◦

Qα →֒ Qα will be denoted by j. Clearly, p is projective, and
◦
p = p ◦ j.

10.5.3.
◦

Qα as B-torsors over C.
◦

Qα is the stack of degree −α B-reductions of G-torsors,
trivialized on ∞̂. Equivalently, this is the stack of B-torsors TB of degree −α with a
trivialization of (B →֒G)∗TB over ∞̂. Then Qα is its relative compactification.

10.C. Equality of IC stalks on Zα,Qα,Q and
a parity vanishing conjecture for stalks

Summary.

10.5.4. Relation of stratifications and stalks on Zα,Qα,Q. We notice that the (based)
quasimap spaces Zα,Qα as well as the twisted quasimap spaces Qα, the IC sheaves are
constructible with respect to stratifications indexed by the same data: the type of the
defect of a quasimap. Moreover, the IC stalks on the corresponding strata are the same.
(However, for Qα these facts are proved later in ??.]
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Remark. For Qα the natural stratification also involves the type of the G-torsor, however
this turns out not to influence the stalks of IC(Qα).

10.5.5. A parity vanishing conjecture for stalks. Some results in the present paper assume
this conjecture which is only proved in the second paper SF2.

10.6. IC-sheaf IC(Qα).

10.6.1. Perverse sheaves on P(Qα,S) for a stratification S above the stratification Ĝη of

Ĝ = M. The free action of prounipotent group Gη on Mη lifts to the free action of Gη

on the open subscheme p−1(Mη) ⊂ Qα.

The quotient is a scheme of finite type Qα,η equipped with the projective morphism p to
Mη.

There exists a G[[z−1]]-invariant stratification S of Qα such that p is stratified with
respect to S and the stratification M = ⊔η∈Y +Mη. One can define perverse sheaves on
Qα smooth along S following the lines of [?].

This gurantees the existence of the IC-sheaf IC(Qα).

10.7. The stratification of Qα by type of a G-torsor and defect of a quasimap.
Following 3.4.2 we introduce a decomposition of Qα into a disjoint union of locally closed
subschemes according to the isomorphism types of G-torsors and defects of invertible
subsheaves:

Qα =

η∈Y +⊔

β≤α

◦

Qβ
η × C

α−β

where C = P1 and
◦

Qβ
η =

◦
p−1(Mη) ⊂

◦

Qβ .

(10)

10 Extra:

The map p : Qα −→M is stratified with respect to the above stratifications. Note that
◦
p :

◦

Qα −→M

is open iff α ∈ N[I]. In general, let α+ denote the unique representative of Wf -orbit of −α in Y +, that
is, α+ = Y + ∩Wf (−α).

Exercise.
◦
p(

◦

Qα) = ⊔−α≤η≤α+Mη.
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(11)

10.8. The corresponding stalks of IC sheaves are the same for Zα,Qα and the
twisted version Qα. Conjecturally they are of one parity. We notice that Zα,Qβ)
aQβ have stratifications parametrized by the same data. We notice that the stalks are
the same in all three cases.(12) Moreover, there is a parity vanishing conjecture for these
stalks.

10.8.1. The stalk ICα−βΓ of ICα on
◦

Zγ × (C∗)β−γΓ . The Goresky-McPherson sheaf ICα on
Zα is smooth along stratification

Zα =

α≥β≥γ≥0⊔

Γ∈P(β−γ)

◦

Zγ × (C∗)β−γΓ

(cf. 8.1.5). It is evidently constant along strata, so its stalk at a point in
◦

Zγ × (C∗)β−γΓ

depends on the stratum only. Moreover, due to factorization property, it depends not on
α ≥ β but only on their difference α − β ∈ N[I]. We will denote it by ICα−βΓ . In case
G = SLn these stalks were computed in [?].

11 Extra:

10.7.1. α+. Let α+ denote the minimal dominant coweight such that −α ≤ α+. For instance, if α ∈ N[I]

then α+ = 0. According to the above exercise, the stratum Mα+
is open in

◦
p(

◦

Qα). Hence the stratum
◦

Qα
α+

is open in
◦

Qα (and in Qα). To unburden the notations, we will denote
◦

Qα
α+

by Q̃α. The open

embedding Q̃α →֒ Qα will be denoted by j̃. The evident projection Q̃α −→Mα+
will be denoted by p̃.

10.7.2. Lemma. p̃ : Q̃α −→Mα+
is smooth.

Proof. Let θ0 ∈ X+ stand for the highest root, and let g = Vθ0 be the adjoint representation of G. For
a G-torsor T we denote the associated adjoint vector bundle on P1 by gT = V T

θ0
. If T is equipped with a

B-reduction TB ⊂ T , we can consider the associated adjoint vector bundle bTB ⊂ gT . The exact sequence
of sheaves 0 −→ bTB −→ gT −→ gT /bTB −→ 0 gives rise to the long exact sequence of cohomology:

0→ H0(C, bTB)→ H0(C, gT )→ H0(C, gT /bTB)→ H1(C, bTB)→ H1(C, gT )→ H1(C, gT /bTB)→ 0

The cokernel of differential of p at TB equals H1(C, gT /bTB).
Now suppose α+ = 0, i.e. α ∈ N[I]. Then gT is a trivial vector bundle, hence H1(C, gT ) = 0, hence

H1(C, gT /bTB) = 0 and p (and p̃) is smooth at TB.

In general, there is an alternative argument. The stack
◦

Qα is smooth, hence its open substack Q̃α is

smooth as well. All the fibers p̃ : Q̃α −→Mα+
are isomorphic. If they were not smooth, Q̃α would not

be smooth either. ✷

10.7.3. Conjecture.
◦
p :

◦

Qα −→ ⊔−α≤η≤α+Mη is smooth.
12 The “reason” that the stalks do not depend on position in Ĝ is that Ĝ is smooth. This will change

later when we replace Ĝ with G.
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10.8.2. The stalks of IC(Qβ) are the same as for IC(Zα). Recall (see 3.4.2) that Qβ, β ∈
N[I], is stratified by the type of defect:

Qβ =

β≥γ≥0⊔

Γ∈P(β−γ)

◦

Qγ × Cβ−γ
Γ

The Goresky-McPherson sheaf IC(Qβ) onQβ is constant along the strata. It is immediate

to see that its stalk at any point in the stratum
◦

Qγ × Cβ−γ
Γ is isomorphic, up to a shift,

to IC0Γ. In particular, it depends on the defect only.

10.8.3. The stalks of IC(Qβ) are the same as for Zα and Qα. .

Proposition. a) The Goresky-McPherson sheaf IC(Qβ) on Qβ , β ∈ Y , is constant along
the locally closed subschemes

Qβ =

β≥γ⊔

Γ∈P(β−γ)

◦

Qγ × Cβ−γ
Γ

b) The stalk of IC(Qβ) at any point in the
◦

Qγ × Cβ−γ
Γ is isomorphic, up to a shift, to

IC0Γ.

Proof. Will be given in ??. ✷

10.9. The parity vanishing conjecture. Let φ ∈ Qβ . The stalk IC(Qβ)φ is a graded
vector space.

Conjecture. (Parity vanishing) Nonzero graded parts of IC(Qβ)φ appear in cohomolog-
ical degrees of the same parity.

10.9.1. Remark. In case G = SLn the conjecture follows from the Proposition 10.8.3
and [?] 2.5.2. In the general case the conjecture follows from the unpublished results of
G.Lusztig. The proof is written in the paper SF2.
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11. The convolution diagrams GQα
η (α ∈ Y, η ∈ Y +), (space of quasimaps into

twisted B-bundles)

Summary.

11.0.1. Intuition: The group theoretic origin of the convolution. The idea is that on S

which is supposed to be some version of GK/NK, we consider sheaves with I and GO-
equivariance and they carry the convolution actions of PI2(GK) = PI(F) and PGO

2(GK) =
PGO

(G). The version that we consider is the “pairing””

PI(G)×PGO
(S) −→PI(S).

It is based on the correspondence

I\GK/GO×GO\S ←− I\GK×GO
\S −→ S

which is an I\G-bundle over S.

Here, S (or really two versions of it) are realized as spaces of (based) quasimaps Z and
Q.

11.0.2. The correspondence Gη
p
←− QΓα[P1, GηB]

q
−→ Qα+η = QΓα+η(P1,B). In 11.2

one defines q as the η-untwisting map. The idea is that Gη is a connected component
of the loop Grassmannian G(V (G)) for the Vinberg semigroup V (G). The −η twist in
the direction of the Cartan group Ha⊆V

∗(G) = G×Z(G)Ha takes (in a certain sense) any

torsor P ∈ Gη into the trivial G-torsor (?) and the P-twisted quasimaps of degree α into
ordinary quasimaps of degree α + η.

The local version of the convolution diagram... In

xxx

11.1. Moduli GηQα = GQα
η of quasimaps of degree α twisted by a torsor in Gη.

For α ∈ Y and a dominant cocharacter η ∈ Y + ⊂ Y we define the convolution diagram
GQα

η .

11.1.1. The Plucker definition of GηQα = GQα
η . This is the space of collections

(Uλ,Lλ)λ∈X+ of vector bundles with invertible subsheaves such that

a) (Uλ)λ∈X+ ∈ Gη, or in other words, (Uλ)λ∈X+ satisfies the conditions 10.1.2 a)-c);

b) Lλ ⊂ Uλ has degree −〈α, λ〉;

c) For any surjective G-morphism φ : Vλ ⊗ Vµ −→ Vν such that ν = λ + µ we have
(cf. 10.1.2 c) φ(Lλ ⊗ Lµ) = Lν ;

d) For any G-morphism φ : Vλ⊗Vµ −→ Vν such that ν < λ+µ we have φ(Lλ⊗Lµ) = 0.
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11.1.2. The open part
◦

GQα
η given by twisted maps. Let us denote by

◦

GQα
η the open sub-

variety in GQα
η formed by all the collections (Uλ,Lλ) such that Lλ is a line subbundle in

Uλ for any λ ∈ X+. The open embedding
◦

GQα
η →֒ GQ

α
η will be denoted by j.

11.2. The correspondence Gη ← GQα
η → Qα+η. Here it will be important that we

are not using all of G but just a finite piece Gη. This allows us to untwist the twisted
quasimaps by the shift (−〈η, λ〉0) which works for shifts from Gη.

11.2.1. Twists. Recall from 10.1.2 that the Plucker realization of the orbit closure Gη ⊂ G
is the space of collections (Uλ)λ∈X+ of vector bundles on P1 such that

• a) Uλ differs from the constant vector bundle Vλ by at most the ±〈η, λ〉0 twist:

Uλ(−〈η, λ〉0) ⊂ Vλ ⊂ Uλ(〈η, λ〉0).

• b) The degree of Uλ is the same as for Vλ, i.e., 0. (Equivalently,
dimVλ(〈η, λ〉0)/Uλ = 〈η, λ〉 dimVλ).
• c) Uλ’s satisfy a Plucker condition:

For any surjective G-morphism φ : Vλ ⊗ Vµ −→ Vν and the corresponding
morphism φ : Vλ⊗Vµ −→ Vν (hence φ : Vλ(〈η, λ〉0)⊗Vµ(〈η, µ〉0) −→ Vν(〈η, λ+
µ〉0)) we have φ(Uλ ⊗ Uµ) = Uν .
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