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Contents

1. Introduction 2

1.1. A geometric view on Number Theory 2

1.2. Loop Grassmannians 3

2. Geometric Class Field Theory. 4

2.1. Homology as free abelian group 4

2.2. The local geometric Class Field Theory of Contou-Carrère 5

2.3. An axiomatic setting for relative motivic cohomology 6

2.4. Relative motivic cohomology conjecture 7

3. Loop Grassmannians G(G) in Drinfeld’s language of finitely supported maps. 9

3.1. Loop Grassmannians as partial flag varieties 9

3.2. Loop Grassmannians G(G,Y ) with a condition Y 11

4. Reassembling G(G) from infinitesimals and generalizations GP (I,Q) 13

4.1. Local spaces 14

4.2. Generalization GP (I,Q) of loop Grassmannians of reductive groups 15

4.3. Some explanations 17

5. A conjectural relation of loop Grassmannians and quivers 19

6. Loop Grassmannians in arbitrary dimension 21

Date:
1



2 IVAN MIRKOVIĆ
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Abstract. We report an ongoing attempt to establish in algebraic geometry certain
analogues of topological ideas, The main goal is to associate to a scheme X over a
commutative ring k its “relative motivic homology” which is again an algebro geometric
object over the base k. This is motivated by Number Theory, so the Poincare duality
for this relative motivic homology should be an algebro geometric incarnation of Class
Field Theory.

Abstract. Tema članka je pokušaj konstrukcije algebrasko geometrijskih analoga nekih
topoloških ideja. Osnovni cilj je da se shemi X nad komutativnim prstenom k pridruži
njena “relativna motivska homologija” koja je opet algebarsko geometrijski objekt nad
bazom k. Ovaj projekt je motiviran teorijom brojeva i očekuje se da će Poincareova du-
alnost za relativnu motivsku homologiju biti algebarsko geometrijska inkarnacija Teorije
Polja Klasa.

AMS 2010 Mathematics Subject Classification: main 11, also 14.
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1. Introduction

1.1. A geometric view on Number Theory. We propose an algebro geometric frame-
work for the basic organizational principles in Number Theory framework, the Class Field
Theory and its nonabelian version, the Langlands conjectures. The setting for this will
be Geometric Representation Theory, the strategy of encoding algebraic problems into
algebro geometric objects.

This paper is actually twice removed from Number Theory itself. First, I restrict to
the baby case of Number Theory where the field Q of rational numbers is replaced by
its geometric analogue, the field of rational functions on a curve defined over a finite
field. At present geometric method works the best in this case. Second, the number
theoretic interest is primarily in the “topological” aspect of schemes, i.e., one works in
etale topology (or D-modules). However, we will use Zariski topology and strive towards
a “proper” Zariski grounding for the “topological” questions.

After these two drastic simplifications something is still left as one can try to extend
the experience of number theory to general algebro geometric objects (curves can be
replaced by algebraic varieties and finite fields with general commutative rings). The
classical results of this type are the Abel-Jacobi construction of Jacobians, the canonical
self duality of Jacobians and the Contou-Carrère symbol.

In this setting Class Field Theory appears to be concerned with the Poincare duality for a
certain “relative motivic homology” in algebraic geometry (section 2). In the abelian case
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my optimistic attitude is that the shape of this program is “reasonably” clear.(1) Now,
the content of Langlands conjectures should be a nonabelian version of Poincare duality.
However, in this nonabelian case such formulation is not clear in dimension one and even
the nature of the basic objects is presently not known beyond dimension one.

1.2. Loop Grassmannians. From the present geometric point of view a loop Grassman-

nian G(G) of a group G is the homology of a formal one dimensional disc with coefficients
in G. The exposition here will be concerned with the modifications of the notion of loop
Grassmannians. From the Number Theory point of view a loop Grassmannian is a ge-
ometrization of Hecke operators and for physicists this is a realization of t’ Hooft operators
in QFT.

Loop Grassmannians G(G) of algebraic groups G are recalled in section 3, together with
a generalization, the loop Grassmannians G(G, Y ) with a “condition Y ” where Y is a G
space with a chosen point y. Here G(G, Y ) consists of elements of G(G) whose “singularity
gets resolved in Y ”. Here G(G, Y ) and G(G) are general cohomological constructions and
G(G, Y ) is used in order to systematically deal with the geometry of interesting subspaces
of G(G).

Section 4 presents another generalization of loop Grassmannians. From the data of a
set I, a quadratic form Q on Z[I] and a poset P , one produces “loop Grassmannian”’
GP (I, Q). This in particular provides a “semi-infinite” reconstruction of ordinary loop
Grassmannians based on finite subschemes of a curve.

Section 5 is a homage to the Kamnitzer-Knutson conjecture on a relation of loop Grass-
mannians and quivers. This still open conjecture was an inspiration for the work in section
4.

Finally, section 6 lists the attempts towards constructing Loop Grassmannians in arbitrary
dimension.

1.2.1. Some roots of this project. My background is in Geometric Representation Theory.
At its height this field bridges the chasm between the Langlands program in Number
Theory and the Quantum Field Theory in physics. At an infinity of the present project
lies its goal, a transparent algebro-geometric foundation for these developments, uniform
across various cases and dimensions.

One “new” ingredient here is the notion of local spaces which is a version of the Beilinson-
Drinfeld notion of factorization spaces. I have formulated it at the time of the paper [FM]
as a formalization of the Finkelberg-Schechtman work [BFS] on quantum groups and its
version [FM] on semi-infinite loop Grassmannians. However, this notion first became

1 For the 1-dimensional Number Theory the etale Class Field Theory has been given a Poincare duality
interpretation by Mazur. I do not yet understand the relation with the present geometric Class Field
Theory.
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useful when I tried to understand the Kamnitzer-Knutson conjecture on the relation of
quivers and loop Grassmannians [Mi].

1.2.2. Acknowledgments. For me Sibe Mardešić is a friendly and beautiful presence in my
life, an enthusiast for mathematics and for life. His deep impact on me came from my
impression that Sibe was able to make the right decisions in all aspects of his life with
others.

Some parts of this project are with Yaping Yang and Gufang Zhao as indicated below. I
have received much help from many people. In particular some key ideas here were only
made possible by extensive discussions with Sam Raskin and Nick Rozenblyum. Zhijie
Dong has found numerous errors and several counter-examples for my conjectures. This
text also uses the notes of Raeez Lorgat on my lectures at the Schroedinger Institute in
Wienn (January 2017).

This work has been partially supported by NSF grants, a sabbatical semester from U.
of Massachusetts at Amherst and the Simons Fellowship that extended the sabbatical
semester to a full year. Some key breakthroughs occurred during visits to two mathemat-
ical institutions. In Fall semester of 2014 I was at the Mathematical Sciences Research

Institute in Berkeley during their Geometric Representation Theory program (funded by
MSRI as a Simons Research Professor and as an Eisenbud Research Professor). I spent
February of 2015 at University of Chicago (funded by their Mathematics Department).

2. Geometric Class Field Theory.

The Geometric Class Field Theory presently exists only in dimension one. Here we find a
way to restate the known results in a way which is uniform in local and global situations
and suggests a generalization to arbitrary dimension.

2.1. Homology as free abelian group.

2.1.1. Free abelian group AX generated by X. In a given setting S for a space X ∈ S we
denote by SX the free commutative monoid (“semigroup”) object generated by X in S

(or in a given larger class S̃). Also, AX denotes the free abelian group object generated
by X .

In sets: SX = N[X ] and AX = Z[X ]. In categories S∅ = A∅ is a point while Spt = (FS,⊔)
is the tensor category of finite sets with disjoint union. This is related to exponentiation
since for a groupoid category C the size gets exponentiated: |AC| = e|C|. In the setting of
categories Apt is in some sense the sphere spectrum.

In the homotopy category of pointed topological spaces, SX is the infinite symmetric power
of X while AX is its group completion. By the Dold-Thom theorem this AX is essentially
the total homology H∗(X,Z). More precisely Hi(X,Z) = πi(AX) is a truncation of the
group object AX .
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2.1.2. Free abelian group AX as homology of X. The above Dold-Thom theorem says
that in the homotopy category of pointed topological spaces the free abelian group AX

is a “derived” version of homology. This is intuitively clear from the defining property
Hom(AX ,A) = Map(X,A) of AX . In a nonderived setting the right hand side is
H0(X,A) but when we work in a derived setting it becomes the (derived version of) the
cohomology H∗(X,A). So, the derived AX satisfies the property of homology that the
A-dual of homology is the cohomology with coefficients in A.

Suslin has imitated the Dold-Thom mechanism in algebraic geometry, his incarnation of
homology is the sheaf with transfers Ztr

X . This was extended by Voevodsky to a construc-
tion of motivic (co)homology. We will follow the same idea but we will take a slightly
different route towards constructing a “relative motivic homology” which is expected to
be a simplification of motivic homology useful for Geometric Class Field Theory.

2.2. The local geometric Class Field Theory of Contou-Carrère.

2.2.1. AX for ind-finite indschemes. Over a given commutative ring k we consider the
setting Schf

k of finite k-schemes and the class C of affine commutative group indschemes.
For a finite scheme F over k we are interested in AF ∈ C, the object of C freely generated
by F .

Lemma. AF exists and it is given by the “double dual” HomC[MapSchk
(F,Gm), Gm].

Proof. The key is that the Cartier duality operation D = HomC(−, Gm) on C is involutive.
The double dual construction satisfies the defining property of AF since for any A ∈ C

HomC[D
(
MapSchk

(F,Gm)
)
, A] = HomC[DA, MapSchk

(F,Gm)]

= MapSchk
(F, HomC [DA, Gm] ) = MapSchk

(F,A). �

Remarks. (0) The lemma automatically extends to ind-finite indschemes F .

(1) Group AF can be called multiplicative distributions on F . If we replace Gm by Ga we
would find that the ordinary distributions on F form the vector space generated by F .

2.2.2. G(Gm) is the group indscheme Ad generated by a disc d. For a smooth curve C
Hilbert schemes of points Hn

C are the same as symmetric powers SnC. This is a monoid
for the operation of addition of divisors. In terms of the ideal ID = OC(−D) of a
subscheme D⊆C this is the tensoring of line bundles: ID′+D′′ = ID′⊗OC

ID′′.

Consider the formal disk d = ĉ at a point c ∈ C. This is an ind-finite indscheme.
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Corollary. The canonical map Sd → Ad is the same as the Abel-Jacobi map

S•d = H•d
ι
→֒ G(Gm) for ι(D)

def
= Od(−D). �

Proof. Any map f : d → A with A a commutative monoid in indschemes extends
canonically to a homomorphism of monoids F : Hd → A, the value at a finite subscheme
D is the integral of f over D. Therefore Hd = Sd

Since the reduced part dred of d is a single point c, the reduced parts of Sd⊆Ad are Nc⊆Zc.
The points of H•d over a k-ring k′ are the monic polynomials zn + a1z

n−1 + · · ·+ a0 with
all ai ∈ k′ nilpotent.

Group (Gm)K is the product of 4 subgroups Gm (the constant loops in Gm), Z (loops
that are powers of z) and of the positive and negative congruence subgroups (K+)(k

′) =
1+zk′[[z]] and (K−)(k

′) = 1+z−1Nk′[z
−1] where Nk′⊆k′ is the ideal of nilpotent elements

[CC]. Now, G(Gm) = (Gm)K/(Gm)O = zZ×K−. This is the same as what one obtains
from (Hd,+) by inverting a single element, the center c of the disc (when one views H•d
in terms of monic polynomials this means inverting the equation z of c). �

Corollary. The identification Ad
∼= G(Gm) is a Poincare duality in algebraic geometry.

“Proof.” Poincare Duality is the identification of homology and the compactly supported
cohomology. We have argued above that Ad is the value of a certain homology on d. We
have identified Ad with G(Gm) which is by definition the local cohomology of the disc
at the point c ∈ d of Gm[1]. However, due to the nature of d (when one removes c one
removes all compact subschemes of d), this is also the compactly supported cohomology
of d.

Finally, we saw that the isomorphism Ad

∼=
−→ G(Gm) is generated by the Abel-Jacobi map

d→ G(Gm), x7→ Od(−x). This can be interpreted as the use of the diagonal ∆d in d×dc
where dc is obtained by embedding d into a smooth compact curve and then collapsing
the complement of the point c. This indeed fits into the Poincare Duality pattern. �

2.3. An axiomatic setting for relative motivic cohomology. Let Schk denote the
k-schemes of finite type. The meaning of the abelian group generated by a k-scheme
X ∈ Schk depends on the class of groups (“the setting”) that one considers. Here we
axiomatize the necessary properties for such settings.

2.3.1. A setting C for constructing AC

X . Here, C should be an infinity category of commu-
tative group objects in higher algebraic k-stacks, with the following structures

(1) compatible inner Hom functors

Scho
k×C

Map
−→ C and C

o×C
Hom
−→ C,

(2) a dualizing object D ∈ C, i.e., we ask that the functor D
def
= Hom(−,D) : C→ C

is an involution on C.
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Once we have such setting one can form the corresponding free abelian groups just as in
the case of finite schemes:

“Lemma”. For X ∈ Schk there exists an object AC

X of C freely generated by X . This is

Hom[Map(X,D),D] = D[Map(X,D)].

�

Remarks. (1) Having a dualizing object D guarantees existence of AC

X which is the C-
version of homology.

It also gives a reasonable cohomology theory H∗(−,D). The Poincare Duality for this
cohomology theory is then a natural isomorphism of AC

X with H∗
c (X,D).

(2) In reality we have an increasing sequence of categories Cn (for us these will be the
groups in ≤ n-stacks over k), with the corresponding duality objects (we will use Gm[n]).
Then all these An

X = ACn

X form a system AX which is the homology that we are interested
in. (An example of truncations of this type, i.e., as An

X truncates AX , is the Deligne
cohomology.)

Example. Let C be a complete smooth connected curve with the Picard scheme Pic(C).
Then the system An

C stabilizes at n = 1 and the only nontrivial map is the truncation to
the connected components

A1
X = BunGm

(C) = Pic(C)/Gm ։ A0
X = Z

2.4. Relative motivic cohomology conjecture.

2.4.1. Conjecture. In the above setting there exists a cohomology theory for k-schemes
with values in commutative group objects in higher algebraic k-stacks, such that

(1) Its homology H∗(X,Z) is A•
X .

(2) It has the four functors functoriality: f∗, f! and f ∗, f !.
(3) For smooth schemes it satisfies Poincare duality. �

Theorem. True in dimension ≤ 1. �

There are more expectations:

• (a) This should be the relative version of the (diagonal part of) motivic cohomology

in the sense that the value on a k-scheme should be the k-representable part of
the diagonal motivic cohomology. (The usual motivic cohomology is a group in
sets and when one can make it into a functor in k-algebras this functor need not
be representable in algebraic geometry over k.)
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This version should be easier than the original. In the original construction the geometric
cycles are irreducible varieties which are not allowed to degenerate to schemes. The
conjectural construction axiomatized above would be more direct with fewer restrictions,
for instance it should have a local theory and a Cartier duality.

One should also be able to reconstruct A•
X as in Voevodsky theory, using the “k-relative”

analogue of the category of finite correspondence (based on the construction Zloc
X in 4.1.2).

• (b) Its Poincare duality should be the geometric CFT (at present only known for
curves). This may opens a door to higher geometric Langlands.
• (c) The “theory of higher adeles” deals with a certain formally open cover of a
scheme, a scheme has Grothendieck’s “universal” stratification by generic points
of irreducible subschemes and it generates a formally open cover by formal neigh-
borhoods of such generic points The relative motivic homology A•

X should be
computable in terms of this cover.

2.4.2. Example: Relative Milnor K-theory of higher local fields. Motivic cohomology is
understood in weight one (essentially dimension one) and for fields. For a field K one can
describe the diagonal part of motivic cohomology algebraically as its Milnor K-theory

KM
∗ (K)

def
= T •

Z(K
∗)/〈Steinberg relation〉.

If k is a field then the n-dimensional local field Kn = k((x1))· · ·((xn)) has itself a structure
of an indscheme over k. Now we define its relative (to k) Milnor K-theory KM

i (Kn/k) by
the same formula but now calculated in the tensor category (C,⊗C) of commutative affine
group indschemes over k. We define this tensor structure as the Cartier dual of bilinear
maps into Gm :

A⊗CB
def
= D[BilA,B(Gm)].

Now the diagonal part of the Poincare duality for Spec(Kn) in relative motivic cohomology
should be the following.

Conjecture. [With Nick Rozenblyum.] The corresponding 2 dimensional Contou-Carrère
(see [OZ]), gives Cartier duality of KM

i (Kn/k) and KM
j (Kn/k) for i+ j = n + 1. �

Remarks. (1) For n = 1 this is the local geometric Class Field Theory of Contou-Carrère.
In general. ASpec(Kn)/k should be KM

n (Kn/k).

(2) Here, it is essential that our tensor product satisfies an unusual property that
Gm⊗CGm = 0. The duality is also not true for the original Milnor K-theory of Kn which
is “too large” ([OZ]).
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3. Loop Grassmannians G(G) in Drinfeld’s language of finitely supported

maps.

Here we recall the loop Grassmannians G(G) of algebraic groups G. We consider a general-
ization, the loop Grassmannians G(G, Y ) with a “condition Y ” where Y is a G space with
a chosen point y. This is a sub-indscheme of G(G) consisting of objects whose “singularity
gets resolved in Y ”.

3.1. Loop Grassmannians as partial flag varieties.

3.1.1. The standard loop Grassmannians G(G). Let k be a commutative ring and let
O = k[[z]] ⊆ K = k((z)) be the Taylor and Laurent series over k. For an algebraic group
scheme G denote by GO⊆GK its disc group scheme and loop group indscheme over k

whose points over a k-algebra k′ are GO(k
′) = G(k′[[z]]) and GK(k

′) = G
(
k′((z))

)
. The

standard loop Grassmannian is the ind-scheme given by the quotient in the fpqc topology

G(G) = GK/GO.

When G is reductive then G(G) is a partial flag variety of the corresponding Kac-Moody

group Ĝ.

Example. The loop Grassmannian of G = GL(V ) is the space of lattices in VK, i.e., the
union of all

Lp,q
def
= {zpVO⊆ L ⊆z−qVO; L is an O-submodule}, p, q ∈ N.

Taking the quotient by the lower bound this is seen as the z-fixed part Gr(z−qVO/z
pVO)

z

of a finite dimensional Grassmannian. We see for G = GL(V ) the general fact that
the loop Grassmannian G(G) is an ind-system of finite dimensional schemes (and these
schemes are proper for reductive groups G).

Subexample. In this realization one can compute. Say, L−1,0 is Gr(V )
def
= ⊔p Grp(V ). For

dim(V ) = 2 this decomposition of L−2,0 has terms for 0 ≤ p ≤ 4 and the reduced part of
these are

[L−2,0]red ∼= pt ⊔ P1 ⊔ TP1 ⊔ P1 ⊔ pt.

Here, the middle term is the one point compactification of the tangent bundle.

3.1.2. Parameterization of orbits in G(G). Let G be reductive with a Borel subgroup then
let B = N ⋉T and let W be the corresponding Weyl group, the quotient NG(T )/T of the
normalizer of the Cartan T .

Notice that the coweights, i.e., the cocharacters X∗(T ) of the Cartan subgroup embed
into G(T ) by restricting a cocharacter λ : Gm → T to the punctured formal neighborhood
of 0 in A1. For λ ∈ X∗(T ) we will also denote by λ the corresponding point in G(T )⊆G(G).

The partial flag variety G(G) has several kinds of Schubert cell decompositions given by
the orbits of the Iwahori subgroup I⊆GO, the negative Iwahori subgroup I−⊆Gk[z−1] and
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the loop group NK (and by certain mixtures of these). All these classes of orbits are
parameterized by X∗(T )⊆G(G).

3.1.3. Powers of a space. One way to develop a homology theory is to start with a given
notion of powers of a space M . Besides the Cartesian powers Mn we also have symmetric
versions and comparison maps

Mn −−−→ SnM ←−−− HnM ←−−− INnMy
RM .

(1) A symmetric power is a categorical quotient Sn = M (n) def
= Mn//Sn.

(2) A Hilbert power Hn
M = M [n] is the principal irreducible component of the moduli

HilbnM of length n subschemes of M (the closure of the submoduli of discrete
subschemes).

(3) An Ito-Nakamura power INnM is the principal irreducible component of the mod-
uli of Sn-clusters in M , i.e., Sn-invariant subschemes D of M such that O(D) is
a regular representation of Sn.

(4) The Ran space RM which is the moduli of all finite subsets of M . This is a certain
ind-system of powers Mn where the maps in the systems kill the ordering of points
and their multiplicities. It is a notion of an infinite power of a space.

Remark. Any map of M into a group extends to Mn. If the group is commutative this
factors through SnM .

3.1.4. Cohomology: The Beilinson-Drinfeld loop Grassmannian. For a finite subset E of
a smooth curve C, the first G-cohomology of C with the support at E is the moduli
H1

E(C,G) of pairs (T , τ) of a G-torsor T over C and its section (i.e., trivialization) τ over
C−E. Notice that this is also the moduli of maps of pairs Map[(C,C−E), (B(G), pt)] (a
map from C to the classifying space B(G) is a G-torsor T over C while the compatibility

of the map C
T
−→ B(G) with the canonical map C −E −→pt is a trivialization τ of T over

C − E.)

As E varies in the Ran space RC one assembles the spaces

G(G)E
def
= H1

E(C,G) = Map[(C,C − E), (B(G), pt)]

into an ind-scheme G(G) = GC(G) over RC called the Beilinson-Drinfeld loop Grassman-

nian.

Lemma. (a) A choice of a local coordinate z on the formal neighborhood ĉ of a point
c ∈ C gives an isomorphism of the simplest fiber with the standard loop Grassmannian

G(G)
∼=
−→ G(G)c.
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(a) Proof. The map GK → H1
c (ĉ, G) by g 7→ (G×ĉ, g) is surjective since any G-torsor on

ĉ is trivial, It factors to an isomorphism G(G)
∼=
−→H1

c (ĉ, G) because the group GK is the
moduli of triples (T , τ, τin) of a G-torsor T on C and sections τ, τin of T over ĉ− c and ĉ.

Finally, the restriction from C to ĉ gives H1
c (C,G)

∼=
−→ H1

c (ĉ, G). �

3.2. Loop Grassmannians G(G, Y ) with a condition Y . Drinfeld noticed that a
number of important constructions are moduli of maps of pairs. This is used here to
define a kind of cohomology with an “extra condition”. This is just a formalization of
Drinfeld’s description of zastava spaces.

For any G-space Y with a point y, the “loop Grassmannian with the condition (Y, y)” is
the space G(G, Y ) above RC with the fiber at E ∈ RC given by

G(G, Y )E
def
= Map[(C,C −E), (Y/G, pt)].

Lemma. Y = G(G, Y ) is a factorization space, i.e., there is a canonical and consistent
system of identifications of fibers at disjoint E ′, E ′′ ∈ RC ,

YE′×YE′

∼=
−→ YE′⊔E′′ .

Example. [The Beilinson-Drinfeld fusion.] As different points a, b ∈ C approach
a single point c the pair {a, b} approaches in RC the singleton {c}. Therefore,
G(G, Y )a×G(G, Y )b = G(G, Y ){a,b} approaches G(G, Y )c in the total space of G(G). This
is actually an ind-flat degeneration of G(G)2 to G(G), i.e., it is flat on finite dimensional
pieces.

Subexample. For G = GL2, the product P1×P1 ⊆ G(G)a,b converges to TP1⊆ G(G)c.
(This happens inside a P3-bundle – a smooth quadric xy = uv degenerates to a singular
quadric xy = u2.)

3.2.1. Usefulness of G(G, Y ). Each G(G, Y ) is a subfunctor of G(G, pt) = G(G) and a pair
(T , τ) in G(G)E lies in G(G, Y )E iff the singularities of the section τ at E is “no worse
then what Y allows”.

Moreover, if Y is a separated scheme then G(G, Y ) = G(G,G·y), so the only relevant case
is when the orbit G·y is dense in Y .

The interesting subschemes of G(G) such as orbits, closures of orbits and intersections of
such are of the form G(G, Y ). This allows performing traditional calculations on G(G) in
terms of finite dimensional objects Y . Here are some elementary properties.

Lemma. (a) [Fibered products.] If G is a quotient(2) of one of the groups Gi then

G(G1, Y1)×G(G,Y )G(G2, Y2) ∼= G(G1×GG2, Y1×Y×Y2).

2 In the general case of maps Gi → G the formula is just a bit more complicated.
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For example the conjunction of conditions in G(G) is given by the product of condition
spaces: ∩ G(G, Yi) = G(G,

∏
Yi).

(b) [Subgroups.] For K⊆G we have an inclusion of functors G(K)⊆G(G). There is a
restriction statement

G(G, Y ) ∩ G(K) = G(K, Y ) = G(K,K·y)

and an induction statement

G(K, Y ′) = G(G,G×KY
′) ⊆ G[G, (G×KY

′)aff] ⊆ G(G).

For instance, for a Cartan T in a reductive G the T -fixed points are G(G)T = G(T ).
Therefore G(G, Y )T = G(T, T ·y).

(c) [Symmetries.] Let A⊆G be the stabilizer of y ∈ Y and let Ȧ be any subgroup of the

normalizer NG(A) whose action on G/A extends to Y . Then the group Ä
def
= AKȦO⊆GK

preserves G(G, Y )⊆G(G). �

3.2.2. Example: Vinberg semigroups. The usual Vinberg semigroup is defined for semisim-
ple groups with π1G = 0. For any homogeneous space G/A which is quasi-affine (open in
an affine variety) we define its Vinberg semigroup as the double centralizer

VA = EndZA
[(G/A)aff] for ZA

def
= AutG×NG(A)(G/A).

Let VA be its group part. We will only consider the case when G is reductive, then let
B = N ⋉ T be a Borel subgroup and let B̌ = Ť Ň be the corresponding data for the
Langlands dual group Ǧ.

Theorem. (a) G/A is quasi-affine whenever A is a normal subgroup of a parabolic P , and
lies between the unipotent radical U of P and the derived subgroup P ′ of P .

(b) When π1G = 0 the usual Vinberg semigroup of G equals VN .

(c) The intersection cohomology of G(VN ,VN ] is the ring of functions on the “base affine
space” of the Langlands dual group:

IC[G(VN ,VN ] = O(Ǧ/Ň).

The irreducible components of G(N,G/B) form a natural basis of the enveloping algebra
U(ňZ) for the Lie algebra ň of Ň .

(d) If G is adjoint so that it has the wonderful compactification G then

G(G,G)red = ⊔λ∈X∗(T )/W GO·λ. �

Remark. For any semigroup closure G of G the geometric Satake formalism with G(G,G)

instead of G(G), produces a semigroup G
v

. For example, (VG,N)
v

= VǦ,Ň . Under certain

nondegeneracy conditions this is a bijection of semigroup closures of G and Ǧ.
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4. Reassembling G(G) from infinitesimals and generalizations GP (I, Q)

This is an extension of the construction from [Mi]. For a set I, a quadratic form Q on
Z[I] and a poset P it produces spaces ZP (I, Q) (“zastava space”), SP (I, Q) (“semi-infinite
space”), GP (I, Q) (“loop Grassmannian”). When the data correspond to a semisimple ad-
joint algebraic group G the last object is the usual loop Grassmannian G(G) reconstructed
from the point of view of its finite dimensional pieces. (These “pieces” are intersections
of closures of orbits of loop groups N±

K in G(G) for unipotent radicals N± of two opposite
Borel subgroups of G. These orbits are two opposite semi-infinite stratifications from
3.1.2.)

4.0.1. Data. From the point of view of a semisimple adjoint algebraic group G the set I
is the set of simple coroots. It encodes the Cartan T of G as (Gm)

I and it provides an
auxiliary polarization – a direction in which the loop Grassmannian is grown from finite
dimensional pieces related to finite schemes. The quadratic form Q is in this case the
basic level of G (up to a diagonal shift).

For the reconstruction of G(G) the poset P is a point. However, when P is [m] = {1 <
· · · < m} we get the version G[m](G) of G(G) which is the natural space for realizing the
level m representations of the affine Lie algebra, this reproduces for positive level m the
analogues of the “magical” properties of level one basic representations. The motivation
for introducing [m] in the present setting is an outgrowth of the Kamnitzer-Knutson work
on quiver Grassmannians.

4.0.2. “Remember infinitesimals”. The geometry underlying a loop Grassmannians G(G)
is that of a formal disc d which is itself an ind-system of finite subschemes. In this section
we describe G(G) in terms of the Hilbert scheme Hd = H•d, the moduli of these finite
subschemes.

In the commutative case, the relation is transparent as G(Gm) is the group generated by
the semigroup Hd. For this reason the presentation of the loop Grassmannian G(G) of a
reductive group in terms of infinitesimals will take the form of a close relation of G(G) to
G(T ) for the Cartan T of G. Poetically, we recover G(G) by following the accumulation
of “dust” (the infinitesimals) that produces G(T ) and we give it a desired shape of G(G)
by adding a little “water” (a quadratic form) to glue the dust.

Remark. This idea of remembering with a space M its relation to finite schemes (“in-
finitesimals”) appears as “rigid” geometry in p-adic theory and as “semi-infinite” con-
structions for loop groups. This is also implicitly present in Hodge theory. In charac-
teristic zero the nth piece of the Hodge filtration FnDX⊆DX on the sheaf of differential
operators comes from the nth infinitesimal neighborhood of the diagonal ∆X⊆X2. For a
scheme X over a finite field F the mixed sheaves on X reflect the system of approximations
of X by finite sets of points over finite extensions of F.
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4.1. Local spaces.

4.1.1. Colored local spaces over a scheme. For a set I we will call HX×I
∼= (HX)

I the
I-colored Hilbert scheme of points for a scheme X . It is a disjoint union of moduli
Hα

X×I
∼=

∏
i∈I H

αiX of subschemes of degree α ∈ N[I]. For a space Z over HX×I we
denote the fiber at D ∈ Hα

X×I by ZD and Zα is the restriction to Hα
X×I .

An I-colored local space Z over a scheme X is a space Z → HX×I over the I-colored
Hilbert scheme of points of X , together with a system of consistent isomorphisms for
disjoint D′, D′′ ∈ HX×I

ιD′,D′′ : ZD′×ZD′′

∼=
−→ ZD′⊔D′′ .

Examples. (0) For a ∈ X and i ∈ I we will call the fiber Zai at ai ∈ X×I the i-particle
at a. The regular part Hreg

X×I of HX×I consists of all D = (Di)i∈I such that subschemes
Di⊆X are discrete and disjoint. The locality reduces the regular fibers to products of
fibers of particles: ZD

∼=
∏

ai∈D Zai. The remaining fibers are then viewed as collisions
of particles. So, when Z →HC is flat all fibers are degenerations of products of particles.

(1) A weakly local space is when the structure maps ι are only embeddings. Any weakly
local space Z has its local part Z loc⊆Z which is the least local subspace of Z that contains
all particles. So, at D ∈ Hreg

X×I the fiber is Z loc
D =

∏
ai∈D Zai and Z loc is the closure in Z

of its restriction to Hreg
X×I . More generally, one could pick up a collection of subschemes

of various fibers and generate inside Z a local space with these particles.

(2) A local structure on a vector bundle V over a local space Z is a system of isomorphisms
V |ZD′⊔D′′

∼= V |ZD′
⊠V |ZD′′

. By the Segre embedding its projective bundle P(V ) is a

weakly local space. Its local part P(V )loc is called the local projective space Ploc(V ) of a
local vector bundle V .

4.1.2. Example: Higher loop Grassmannians for the multiplicative group. For any scheme

X there is a local group Zloc
X → HX (a group in local spaces) with fibers (Zloc

X )D
def
= AD

at D ∈ HX .

The related group object in factorization spaces Zfac → RX has fibers at E ∈ RX

(Zfac
X )E

def
= AÊ = lim

→ D∈HX , supp(D)⊆E
(Zloc

X )D.

If X is a smooth curve C then we know that Z
fac
C is the loop Grassmannian GC(Gm)

(2.2.2). So, one can think of Zfac
X as the loop Grassmannian of Gm for arbitrary schemes

X .(3)

3 Consider a point 0 in an affine space An with coordinates x1, ..., xn. In characteristic zero the fiber
GX(Gm)0 = A

0̂
is isomorphic to polynomials in xi

−1 with nilpotent coefficients. A canonical description

involves the nth wedge power of the negative congruence subgroup.
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Remark. Loop Grassmannians of Gm are limits of lattices. The reason is that Zloc
X →HX

is flat. So, when a finite subset E of X converges to a connected finite subscheme F of

X then the lattice GX(Gm)E
def
= AE = Z[E] converges to the group ind-scheme AF =

GX(Gm)F . In this way as one assembles ĉ by “converging a countable subset” E of X to
a single point c ∈ X . Along the way the infinite rank lattice Z[E] converges to Aĉ, the
(higher) loop Grassmannian of Gm.

4.1.3. Local spaces and factorization spaces. Whenever a local space Z → HX has a
growth structure γD′,D : ZD′ →֒ZD′′ for D′⊆D′′ (as in 4.1.2), it defines a factorization
space Zfac →RX with fibers

Zfac
E

def
= lim

→ HX∋D⊆Ê
ZD, E ∈ RX .

So, local spaces with growth are the same as factorization spaces with HX-filtration. One
may think of a local space structure on a factorization space loosely as a “nonlinear Hodge
filtration”.

4.1.4. Notions of local spaces. Any notion of powers of a space (see 3.1.3) comes with its
own version of the formalism of local spaces. The original case used Hilbert powers as
we do here. Crucially, Finkelberg noticed that one needs Cartesian powers in order to
fit the Calogero-Moser spaces in the definition of local spaces. Local vector bundles for
Cartesian powers include the fusion vector bundles of Feigin-Loktev ([FL]).

Examples of local vector bundles for symmetric powers are the local Weyl modules of
Chari-Pressley [CP] (extended to the multidimensional case by Feigin-Loktev [FL1]). The
Ito Nakamura powers are the natural setting for the Feigin-Loktev formula for fusion
powers of a vector space ([FL1]).

Remark. One also has an additive notion of local spaces where product is replaced by
disjoint union.

4.2. Generalization GP (I, Q) of loop Grassmannians of reductive groups. The
data here are a finite set I, a quadratic form Q on the based lattice Z[I] and a finite poset
P . We work on a smooth curve C and with its simplest local space HC×I .

4.2.1. I-colored local line bundles L(I, Q) over C. It is well known that a symmetric
matrix Q gives a local line bundle on HC×I by modifying the trivial line bundle along the
discriminant divisors ∆ij in the Hilbert scheme HC×I

L(Q, I)
def
= OHC×I

(
∑

i≤j

Qij∆ij).
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4.2.2. I-colored local vector bundles V P (I, Q) over C. We will now induce the line bundle
L(I, Q) to a local vector bundle V P (I, Q) over C on HC×I along a poset P . The moduli
RepX(P ) of “X-representations of P”, is a correspondence

RepX(P )
π,σ
−→
⊆

(HC×I)
P×HC×I .

The fiber σ−1D at D ∈ HC×I is Homposet(P,HD), where the moduli HD of subschemes of
a finite scheme D is a poset for inclusions. Its elements are all systems D• = (Dp)p∈P ∈
(HC×I)

P such that p ≤ q implies Dp⊆Dq⊆D.

This correspondence can be used to induce a family of local vector bundles V p on HC×I

indexed by p ∈ P , to a single local vector bundle

IndP (V •)
def
= σ∗π

∗(⊠p∈P V p).

on the same space HC×I . The local vector bundle VP (I, Q) on HC×I is obtained when all
Vp are taken to be the line bundle L(I, Q):

VP (I, Q)
def
= IndP (L(I, Q)).

Its fiber VP (I, Q)D at D ∈ HC×I is the global sections over RepX(D) of the line bundle
whose fiber at the point D• is ⊗p∈P L(I, Q)Dp

.

4.2.3. The “Grassmannians” associated to a local vector bundle on HC×I . To a local
vector bundle V on HC×I we associate its zastava space Z(V) which is the colored local
projective space Ploc(V) over the curve C.

In the case of V = V P (I, Q) its zastava space

ZP (I, Q)
def
= Z(V P (I, Q)) = Ploc[V P (I, Q)]

has a growth structure (see 4.1.3), so we can define the corresponding semi-infinite space

as the associated factorization space SP (I, Q)
def
= ZP (I, Q)fac. So, the fiber at E ∈ RC is

the limit of zastava fibers ZP (I, Q)D as finite subschemes D fill the formal neighborhood

Ê of E in C
SP (I, Q)E = lim

→ HC×I∋D⊆Ê
ZP (I, Q)D.

Finally, N[I] acts on SP (I, Q) and the corresponding loop Grassmannian is defined as

GP (I, Q)
def
= Z[I]×N[I] S

P (I, Q).

4.2.4. The case when P is a point. In this case we will omit P from the notation. Notice
that all particles are now P1.(4) So, one is constructing G(I, Q) by colliding P1’s according
to a prescription given by the quadratic form Q.

4 In general for a ∈ C and i ∈ I the fiber ZP (I,Q)ai is P
loc[V P (I,Q)]ai = P[V P (I,Q)ai] and V P (I,Q)ai

is the vector space of sections of the line bundle L(I,Q) over RepX(P )ai. When P is a point RepX(P )ai
is the set {∅, ai} so V P (I,Q)ai is two dimensional.
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Theorem. Let I be the set of simple coroots of an adjoint semisimple group G of simply
laced type. Let Q is (a shift of) the basic level of G(5), then GP (I, Q) is the usual loop
Grassmannian G(G). �

Remark. Similarly, when P = [m] = {1 < · · · < m} then all particles are Pm. Moreover,
this Pm is naturally the mth symmetric power of the particle P1 for m = 1.

4.3. Some explanations. For a torus T = Gm
I the loop Grassmannian G(T ) is obtained

from the moduli Hd of infinitesimals in the disc d as the abelian group Ad×I generated
by the monoid Hd×I . We may view G(T ) as a cloud of dust accumulated on the lattice
X∗(T ) = Z[I] since G(T ) is the product of X∗(T ) and of the connected component G(T )0,
but the reduced part of G(T )0 is a point.(6)

In order to assemble the loop Grassmannian G(G) from Hd×I at the same time we use
a quadratic form Q in X∗(T ). Its geometric incarnation is a line bundle L(I, Q) on
the space Hd×I of infinitesimals. In terms of groups this line bundle is a restriction via
Hd×I →֒G(T )⊆G(G) of the standard line bundle OG(G)(1) on G(G).

It is known that for simply laced groups the restriction under G(T )⊆G(G) is an iso-
morphism of global sections of OG(G)(1) over G(G) and G(T ). (In algebra this fact is the
decomposition of the basic representation into Fock spaces.) This suggests that we should
be able to describe G(G) in terms of the line bundle L(I, Q) on infinitesimals.

The way this is done by the formalism of local spaces is that one observes that certain
T -invariant copies of P1 in G(G) have the properties that

• (i) the restriction of OG(G)(1) to this P1 is OP1(1),
• (ii) (P1)T consists of two points.
• (iii) (P1)T⊆ G(G)T = G(T ) lies in HC×I⊆G(T ) consists of two points.

Such P1 can naturally be reconstructed from L(I, Q) since

Γ[P1,OG(G)(1)] = Γ[P1,OP1(1)] = Γ[(P1)T ,OP1(1)] ∼= Γ[(P1)T ,L(I, Q)].

Finally one observes that these copies “generate” inside G(G) the zastava space from [FM]
and this is what is here called ZP (I, Q).

The “algebraic structure” on G(G) that one uses to generate the zastava space is the
Beilinson-Drinfeld fusion on the loop Grassmannian (see 3.2). The restriction of the
Beilinson-Drinfeld fusion to the zastava subspace of G(G) is the above locality structure
on ZP (I, Q).

So, what we do amounts to reconstructing the zastava subspace of G(G) and the restric-
tions of the fusion structure and the line bundle OG(G)(1) to zastavas in terms of the based
quadratic form (I, Q).

5 This is a certain W -invariant quadratic form on the coroot lattice.
6 For a reductive G the loop Grassmannian G(G) is reduced iff G is semisimple.
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4.3.1. From linear algebra to algebraic geometry. One of basic facts about reductive
groups is their parallel existence in combinatorics (Dynkin graphs), linear algebra
(lattices, cones, quadratic forms) and in algebraic geometry (algebraic groups). I would
like to re-describe the passage to algebraic geometry in terms of the conjectural relative
motivic cohomology.

To get from the cocharacter lattice X∗(T ) to a torus T , consider a point c
i
∈ C of a smooth

curve C. Let C
q
։pt be the structure map. In terms of the conjectured functoriality of

the relative motivic cohomology the dualizing sheaf q!Z of C should be the constant sheaf
whose fiber is the classifying space B(Gm) of the multiplicative group. Then the homology
of C should be q!q

!Z. When C is the formal neighborhood â of its point a, this indeed
says something we know, that the homology of C is the compactly supported cohomology
of B(Gm) = Gm[1], i.e., the loop Grassmannian of Gm.

So, the cocharacter latticeX∗(T ) of a torus T gives B(T ) as i∗q!(X∗(T )). Since this B(T ) is
a group we recover T as 1×B(T )1. Now one can hope to get B(G) (and G) “mechanically”
by some version of the i∗q!-pull back of linear algebra data from a point via a curve. The
construction of GP (I, Q) produces directly the loop Grassmannian, i.e., it is of the form
q!q

!Z. So, we have not displayed B(G) at the first step q!Z. However, this construction
starts with line bundle L(I, Q) which indeed seems to be a pull back of type q! of the
lattice X∗(T ) = Z[I] = AI and the quadratic form Q.

4.3.2. From combinatorics to linear algebra. The combinatorial incarnation of a simply
laced group is its Dynkin graph (I, E). The passage to linear algebra is the operation A
of forming free abelian groups. It takes a set I to the lattice Z[I] = AI and the incidence
matrix Q (recording the number of edges) to the quadratic form Q = AQ on AI (we
extend the function Q : I×I → N linearly to Q : Z[I]⊗Z[I]→ Z).

4.3.3. Locality equations. For a colored local vector bundle V over a local space Z the
fiber Ploc(V )D of Ploc(V ) at a point D ∈ HC×I is a subscheme of the projective space
P(VD). I call the equations of Ploc(V )D in P(VD) the locality equations at D.

In the case of local vector bundles V (I, Q) that correspond to a group G, the limit of these
locality equations are the equations for the standard embedding of the loop Grassmannian
G(G) into a projective space. These are known to be equivalent (by the boson-fermion cor-
respondence) to some standard integrable differential equations of mathematical physics,
for instance for G = SL(V ) one gets the modified KdV hierarchies.

What is known about locality equations for data (I, Q) is due to Yaping Yang. Writing
these equations in general (and hopefully also for higher dimensional loop Grassmannians)
is an ongoing project with Yaping Yang and Gufang Zhao. We are interested in whether
we can get more integrable hierarchies in this way (and also of any possible role of the
finite approximations corresponding to points D ∈ HX×I).
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5. A conjectural relation of loop Grassmannians and quivers

In 5.0.1 we recall the relation of semisimple Lie algebras and quivers. In 5.0.2 we recall
the known relations between quivers and loop Grassmannians, the important one for us
is the Kamnitzer-Knutson conjecture. In 5.0.3 we formulate a (conjectural) upgrade of
this conjecture and finally in 5.0.4 we express a vague expectation that this upgrade is
related to symplectic duality.

5.0.1. Semisimple Lie algebras and quivers. A quiver Q is a directed graph i.e. a pair of
sets (I, E) of vertices and of directed edges connecting them. One can think of a quiver
Q as a way of describing the category PQ freely generated by Q, the path category of
Q. Notice that a group Γ acting on Q also acts on PQ and so we get the stack quotient
category PQ/Γ which we think of as the path category of the “stack quiver” Q/Γ.

Example. We will consider Dynkin graph of a semisimple Lie algebra g as a stack graph.
The usual notion of the Dynkin graph of g is really a graph only when G is simply
laced (otherwise “vertices” have different lengths). The folding philosophy says that a
multiply laced Dynkin graph (I, E) should be considered as a stack quotient of a simply
laced Dynkin graph (I ′, E ′) by a finite group Γ of symmetries (the length of vertices in
(I ′,Γ′)/Γ now arises from stabilizers of vertices in I ′). By choosing directions of edges we
get a (stack) quiver Q = Q′/Γ and therefore also its path category PQ. By a representation
of Q over k we mean a functor from PQ to the category of finite dimensional vector spaces
over k. �

The importance of quivers in representation theory is due to several well known ways
to reconstruct the enveloping algebra and integrable representations of the Lie algebra g

of G from the moduli of representations of the corresponding quiver Q, its preprojective
algebra ΠQ or Nakajima’s double of Q.

5.0.2. Quivers and loop Grassmannians. Moduli of representations of quivers and the
perverse sheaves on loop Grassmannians provide two modern constructions of irreducible
representations of semisimple algebraic groups that provide a new level of precision, the
natural basis of representations. An advantage of the first one is that it constructs the
category of representations while the second is simpler and has larger scope as it applies
to arbitrary graphs. One can say that the GP (I, Q) idea formally extends the loop Grass-
mannian construction to generality of arbitrary quivers. (It actually allow more inputs
since the quadratic forms that we get from graphs satisfy conditions such as Qij ≥ 0 for
i 6= j.) However, at present it is not known what remains from the Satake mechanism in
larger generality.

A substantial relation between these two constructions has been an outstanding problem,
it was resolved recently by Braverman-Finkelberg-Nakajima [BFN] (see also [Web]). I am
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particularly interested in the version of this relation conjectured earlier by Kamnitzer-
Knutson.(7)

Consider a simply laced semisimple Lie algebra g, its adjoint group G and the quiver Q
given by an orientation of the Dynkin graph of g. It is known [BK] that the irreducible
components V of the variety of representations of the preprojective algebra ΠQ of Q are in
a canonical bijection with certain irreducible subvarieties XV of the corresponding loop
Grassmannian G(G), called MV-cycles [MV].

The quiver Grassmannian GrΠQ
(
.

V ) of a representation
.

V of the preprojective algebra

ΠQ is the moduli of all ΠQ-submodules of
.

V . More generally, for any poset P one can

consider the space Gr
P
ΠQ

(
.

V ) of representations of P in GrΠQ
(
.

V ) and Kamnitzer-Knutson

considered the case when P is [m] = (1 < · · · < m).

When representation
.

V is generic in the irreducible component V , Kamnitzer-Knutson

predict a relation between its mth quiver Grassmannian Gr
[m]
ΠQ

(
.

V ) and the mth line bundle

OG(G)(m) on the loop Grassmannian G(G) of G.

Conjecture. [Kamnitzer-Knutson] The following vector spaces have the same dimension:

(i) the cohomology of Gr
[m]
ΠQ

(
.

V ) and (ii) sections of OG(G)(m) over the MV cycle XV .

5.0.3. Fixed points in MV cycles. Kamnitzer-Knutson were interested in upgrading this to
a categorical statement. The following attempt was made possible by intense discussions
with Kamnitzer-Knutson over a long period.

Conjecture. Let
.

V be a generic representation in an irreducible component V and XV the
corresponding MV cycle in G(G).

(a) Any poset P defines a “generalized” loop Grassmannian GP (G) of G. For each MV
cycle X in G(G), there is a canonical subscheme XP of GP (G). Then the cohomology of

Gr
P
ΠQ

(
.

V ) is the ring of functions on the subscheme ((XV )
P )T of points in (XV )

P fixed by
a Cartan subgroup T of G.

(b) [“Miniscule phenomena.”] For the natural line bundle OGP (G)(1) on G
P (G) and any

MV cycle X in G(G), the restriction of sections from XP to (XP )T is an isomorphism.

(c) When P = [m] then for any MV cycle X in G(G), the pairs X [m],OG(m)(G)(1) and
X,OG(G)(m) give the same sections

Γ[X [m],OG(m)(G)(1)]
∼= Γ[X,OG(G)(m)]. �

7 While [BFN] considers closures of the disc group orbits, Kamnitzer-Knutson consider a larger class
of MV-cycles.
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Remarks. (0) Yaping Yang and Gufang Zhao have formulated and proved a zastava version
of the conjecture (a). The MV cycles are exactly the irreducible components of zastava
spaces. Their version replaces a single MV cycle with the whole zastava space that contains
it. On the quiver side this corresponds to degenerating the representation to zero.

(1) My student Zhijie Dong has constructed a map in one direction in the conjecture (a),

from functions on the subscheme ((XV )
P )T to the cohomology ring Gr

P
ΠQ

(
.

V ) of the quiver
Grassmannian.

5.0.4. Symplectic duality and Higgs-Coulomb duality. These are two conjectural frame-
works for the “same” phenomenon, observed respectively in mathematics and in physics.
Here, the Higgs and Coulomb branches are two irreducible components of the moduli of
vacua of a given quantum field theory. A prominent case of the Higgs-Coulomb duality is
the above relation of quivers and loop Grassmannians established in [BFN]. One aspect
of the symplectic duality is the following general conjecture.

Conjecture. [Hikita] When X and Y are symplectic dual, the cohomology of X realizes
the fixed locus of a torus action on Y :

H∗(X) ≃ O(Y T ). �

I expect that the conjecture 5.0.3 is an example of the Hikita conjecture and therefore
a manifestation of the symplectic and Higgs-Coulomb dualities. It should extend the
scope of application of these dualities to the relation of quivers and loop Grassmannians
from simply laced Dynkin quivers and their loop Grassmannians to all quivers and to the
generalized loop Grassmannians GP (I, Q) introduced in section 4.

6. Loop Grassmannians in arbitrary dimension

In section 2 we have reviewed the (Zariski aspect of) Geometric Class Field Theory. The
conclusion was that the loop Grassmannian G(Gm) of the simplest reductive group Gm can
be viewed as the homology of the disc d for a still conjectural relative motivic cohomology

theory and that the (Zariski aspect of) Geometric Class Field Theory in dimension one
is the Poincare duality for this relative motivic cohomology. Conjecturally such Poincare
duality will exist in any dimension and we will then call it the (Zariski aspect of) general
Geometric Class Field Theory.

Presently it is not known what any version of the Langlands program would mean in
higher dimension. One approach to this question is to extend a well understood local
geometric construction, the loop Grassmannian, to higher dimension. It seems clear how
to do that for commutative groups (4.1.2). Beyond that I only have some preliminary
thoughts in this direction.

The reductive groups may be too rigid for higher dimension as they have no higher
cohomologies. So, one possible preliminary step (in dimension one) is section 4 where
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we “get rid” of the group G. We reconstruct the first nonabelian cohomology G(G) from
geometry without using G. Instead one uses a simpler (“0-dimensional”) data of a based
quadratic form (I, Q).

Another possible step is to construct some version of loop Grassmannians in higher di-
mensions. Much has been understood about two dimensional loop Grassmannians by
Braverman-Finkelberg [BF]. For arbitrary dimension a program has been formulated by
Feigin-Loktev [FL] (see also [FKL]). This is also the subject of an ongoing project with
Yaping Yang and Gufang Zhao.
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