Homological algebra, Homework 8

\heartsuit

Bicomplexes and resolutions of complexes

Bicomplexes. A *bicomplex* in \mathcal{A} is a bigraded object $B = \bigoplus_{p,q \in \mathbb{Z}} B^{p,q}$ with two differentials $B^{p,q} \xrightarrow{d'} B^{p+1,q}$ and $B^{p,q} \xrightarrow{d''} B^{p,q+1}$, such that d = d' + d'' is also a differential. We draw a bicomplex as a two dimensional object:

$\cdots \xrightarrow{d'}$	÷	$\xrightarrow{d'}$:	$\xrightarrow{d'}$:	$\xrightarrow{d'}$:	$\xrightarrow{d'}$:	$\xrightarrow{d'}$
$d^{\prime\prime}$	$d^{\prime\prime}$	$d^{\prime\prime}$	$d^{\prime\prime}$	$d^{\prime\prime}$	$d^{\prime\prime}$	$d^{\prime\prime}$
$\cdots \xrightarrow{d'}$	$B^{-1,2}$	$\xrightarrow{d'} B^{0,2}$	$a \xrightarrow{d'} B^{1,2}$	$\xrightarrow{d'} B^{2,2}$	$\xrightarrow{d'} B^{3,2}$	$\xrightarrow{d'}$
			$d^{\prime\prime}$			
$\cdots \xrightarrow{d'}$	$B^{-1,1}$	$\xrightarrow{d'} B^{0,1}$	$\xrightarrow{d'} B^{1,1}$	$\xrightarrow{d'} B^{2,1}$	$\xrightarrow{d'} B^{3,1}$	$\xrightarrow{d'}$
$d^{\prime\prime}$	$d^{\prime\prime}$	$d^{\prime\prime}$	$d^{\prime\prime}$	$d^{\prime\prime}$	$d^{\prime\prime}$	$d^{\prime\prime}$
$\cdots \xrightarrow{d'}$	$B^{-1,0}$	$\xrightarrow{d'} B^{0,0}$	$\xrightarrow{d'} B^{1,0}$	$\xrightarrow{d'} B^{2,0}$	$\xrightarrow{d'} B^{3,0}$	$\xrightarrow{d'}$
			$d^{\prime\prime}$			
$\cdots \xrightarrow{d'}$	$B^{-1,-1}$	$\xrightarrow{d'} B^{0,-}$	$1 \xrightarrow{d'} B^{1,-1}$	$\xrightarrow{d'} B^{2,-1}$	$\xrightarrow{d'} B^{3,-1}$	$\xrightarrow{d'}$
			$d^{\prime\prime}$			
$\cdots \xrightarrow{d'}$	÷	$\xrightarrow{d'}$:	$\xrightarrow{d'}$:	$\xrightarrow{d'}$:	$\xrightarrow{d'}$:	$\xrightarrow{d'}$

So, B^{pq} has horizontal position p and height q, and d' is a horizontal differential while d'' is a vertical differential.

Problem 1. Show that for the horizontal differential d' and the vertical differential d'', d = d' + d'' is a differential iff d', d'' "anticommute", i.e., d'd'' + d''d' = 0.

The cohomology of a bicomplex. The total complex of a bicomplex is the complex (Tot(B), d) with $Tot(B)^n \stackrel{\text{def}}{=} \bigoplus_{p+q=n} B^{p,q}$. Its cohomology is called the *cohomology of the bicomplex B*.

Partial cohomologies. By taking the "horizontal" cohomology of B we obtain a bigraded object ${}^{\prime}\mathrm{H}(B)$ with

$${}^{\prime}\mathrm{H}(B)^{p.q} \stackrel{\mathrm{def}}{=} \mathrm{H}^{p}(B^{\bullet,q}) = \frac{\mathrm{Ker}(B^{p,q} \xrightarrow{d'} B^{p+1.q})}{Im(B^{p-1,q} \xrightarrow{d'} B^{p.q})}.$$

Problem 2. The vertical differential d'' on B factors to a differential on 'H(B) which we denote again by d'':

$$'\mathrm{H}(B)^{p,q} \xrightarrow{d''} '\mathrm{H}(B)^{p,q+1}.$$

....

Remark. Now we can take the "vertical" cohomology of 'H(B) (i.e., with respect to the <u>new</u> d''), and get a bigraded object ''H('H(B)) with

$$"('\mathrm{H}(B))^{p,q} \stackrel{\mathrm{def}}{=} \mathrm{H}^{q}('\mathrm{H}(B)^{p,\bullet}) = \frac{\mathrm{Ker}['\mathrm{H}(B)^{p,q} \stackrel{d''}{\longrightarrow} '\mathrm{H}(B)^{p,q+1}]}{Im['\mathrm{H}(B)^{p,q-1} \stackrel{d''}{\longrightarrow} '\mathrm{H}(B)^{p,q}]}$$

One defines "H(B) and 'H("H(B)) by switching the roles of the first and second coordinates.

Resolutions of complexes. We say that a right resolution I of a complex $A \in C(\mathcal{A})$ is any quasi-isomorphism $A \to I$. An *injective resolution* of a complex $A \in C(\mathcal{A})$ is a right resolution $A \to I$ such that all I^n are injective objects of the abelian category \mathcal{A} .

A right bicomplex resolution of a complex A is a bicomplex $I^{\bullet,\bullet}$ with $I^{pq} = 0$ for p < 0, and a map of complexes $\varepsilon : A \to I^{\bullet,0}$ such that in the following diagram

the columns are resolutions of terms in the complex A. A right bicomplex resolution I s said to be *injective* if all terms I^{pq} are injective.

Problem 3. [Resolutions of complexes.] Let \mathcal{A} be an abelian category with enough injectives. Then any $A \in C^+(\mathcal{A})$ has an injective resolution. More precisely,

(a) Any $A \in C(\mathcal{A})$ has an injective bicomplex resolution I.

(b) Such resolution can be chosen to be "split" in the sense that for

$$0 \to B^n(A) \to Z^n(A) \to H^n(A) \to 0$$

there exist injective resolutions $\mathcal{B}^n, \mathcal{H}^n, \mathcal{Z}^n$ of B^n, H^n, Z^n such that $\mathcal{Z}^n \cong \mathcal{B}^n \oplus \mathcal{H}^n$ and $I^{n,\bullet} \cong \mathcal{Z}^n \oplus \mathcal{B}^{n+1}$.

(c) If $A \in C^+(\mathcal{A})$, for any split injective bicomplex resolution (I, ε) of A, the canonical map $A \xrightarrow{\tilde{\varepsilon}} Tot(I)$ is an injective resolution of A.