Homological algebra, Homework 8

v

Bicomplexes and resolutions of complexes

Bicomplexes. A bicomplex in A is a bigraded object B = ®, 4cz B”? with two differen-

tials BP9 Ly Brtla and pra Ly BPa+l such that d = d' + d” is also a differential. We
draw a bicomplex as a two dimensional object:
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So, BP? has horizontal position p and height ¢, and d’ is a horizontal differential while d”
is a vertical differential.

Problem 1. Show that for the horizontal differential d’ and the vertical differential d”,
d=d +d" is a differential iff d’, d” “anticommute”, i.e., d'd" +d"d = 0. O

The cohomology of a bicomplex. The total complex of a bicomplex is the complex
(Tot(B),d) with Tot(B)" of Bprq=n BP?. Its cohomology is called the cohomology of the
bicomplex B.

Partial cohomologies. By taking the “horizontal” cohomology of B we obtain a
bigraded object "H(B) with
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Im(Br-ta % pray

HBP = W (B) =



Problem 2. The vertical differential d” on B factors to a differential on "H(B) which we
denote again by d”:

d/l

'H(B)P4 = 'H(B)»**!,

O

Remark. Now we can take the “vertical” cohomology of "H(B) (i.e., with respect to the
new d"), and get a bigraded object "H('"H(B)) with

Ker[H(B)» L5 'H(B)Pa+1]
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One defines "H(B) and 'H("H(B)) by switching the roles of the first and second coordi-

nates.

"(H(B))P € HI(H(B)P*) =

Resolutions of complexes. We say that a right resolution I of a complex A € C(A)
is any quasi-isomorphism A — I. An injective resolution of a complex A € C(A) is a
right resolution A — I such that all I™ are injective objects of the abelian category A.

A right bicomplex resolution of a complex A is a bicomplex I** with P4 = 0 for p < 0,
and a map of complexes ¢ : A — I*% such that in the following diagram
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the columns are resolutions of terms in the complex A. A right bicomplex resolution I s
said to be injective if all terms IP? are injective.

Problem 3. [Resolutions of complexes.] Let A be an abelian category with enough
injectives. Then any A € C(A) has an injective resolution. More precisely,



(a) Any A € C(A) has an injective bicomplex resolution I.
(b) Such resolution can be chosen to be “split” in the sense that for
0— B"(A) —» Z"(A) — H"(A) —» 0
there exist injective resolutions B, H", Z™ of B", H", Z" such that Z™ = B"®H"™ and
Je o Zn@8n+1‘

(c) If A € Ct(A), for any split injective bicomplex resolution (I,¢) of A, the canonical
map A = Tot(I) is an injective resolution of A. O



