Homological algebra, Homework 8

\odot

Bicomplexes and resolutions of complexes

Bicomplexes. A bicomplex in \mathcal{A} is a bigraded object $B=\oplus_{p . q \in \mathbb{Z}} B^{p, q}$ with two differentials $B^{p, q} \xrightarrow{d^{\prime}} B^{p+1, q}$ and $B^{p, q} \xrightarrow{d^{\prime \prime}} B^{p, q+1}$, such that $d=d^{\prime}+d^{\prime \prime}$ is also a differential. We draw a bicomplex as a two dimensional object:

So, $B^{p q}$ has horizontal position p and height q, and d^{\prime} is a horizontal differential while $d^{\prime \prime}$ is a vertical differential.

Problem 1. Show that for the horizontal differential d^{\prime} and the vertical differential $d^{\prime \prime}$, $d=d^{\prime}+d^{\prime \prime}$ is a differential iff $d^{\prime}, d^{\prime \prime}$ "anticommute", i.e., $d^{\prime} d^{\prime \prime}+d^{\prime \prime} d^{\prime}=0$.

The cohomology of a bicomplex. The total complex of a bicomplex is the complex $(\operatorname{Tot}(B), d)$ with $\operatorname{Tot}(B)^{n} \stackrel{\text { def }}{=} \oplus_{p+q=n} B^{p, q}$. Its cohomology is called the cohomology of the bicomplex B.

Partial cohomologies. By taking the "horizontal" cohomology of B we obtain a bigraded object ${ }^{\prime} \mathrm{H}(B)$ with

$$
{ }^{\prime} \mathrm{H}(B)^{p . q} \stackrel{\text { def }}{=} \mathrm{H}^{p}\left(B^{\bullet, q}\right)=\frac{\operatorname{Ker}\left(B^{p, q} \xrightarrow{d^{\prime}} B^{p+1 . q}\right)}{\operatorname{Im}\left(B^{p-1, q} \xrightarrow{d^{\prime}} B^{p . q}\right)} .
$$

Problem 2. The vertical differential $d^{\prime \prime}$ on B factors to a differential on ${ }^{\prime} \mathrm{H}(B)$ which we denote again by $d^{\prime \prime}$:

$$
{ }^{\prime} \mathrm{H}(B)^{p, q} \xrightarrow{d^{\prime \prime}}{ }^{\prime} \mathrm{H}(B)^{p, q+1} .
$$

Remark. Now we can take the "vertical" cohomology of ${ }^{\prime} \mathrm{H}(B)$ (i.e., with respect to the new $d^{\prime \prime}$), and get a bigraded object " $\mathrm{H}\left({ }^{\prime} \mathrm{H}(B)\right)$ with

$$
\prime\left({ }^{\prime} \mathrm{H}(B)\right)^{p, q} \stackrel{\text { def }}{=} \mathrm{H}^{q}\left({ }^{\prime} \mathrm{H}(B)^{p, \bullet}\right)=\frac{\operatorname{Ker}\left[{ }^{\prime} \mathrm{H}(B)^{p, q} \xrightarrow{d^{\prime \prime}}{ }^{\prime} \mathrm{H}(B)^{p . q+1}\right]}{\operatorname{Im}\left[{ }^{\prime} \mathrm{H}(B)^{p, q-1} \xrightarrow[d^{\prime \prime}]{\longrightarrow} \mathrm{H}(B)^{p . q}\right]} .
$$

One defines " $\mathrm{H}(B)$ and ${ }^{\prime} \mathrm{H}\left({ }^{\prime \prime} \mathrm{H}(B)\right)$ by switching the roles of the first and second coordinates.

Resolutions of complexes. We say that a right resolution I of a complex $A \in C(\mathcal{A})$ is any quasi-isomorphism $A \rightarrow I$. An injective resolution of a complex $A \in C(\mathcal{A})$ is a right resolution $A \rightarrow I$ such that all I^{n} are injective objects of the abelian category \mathcal{A}.
A right bicomplex resolution of a complex A is a bicomplex $I^{\bullet \bullet \bullet}$ with $I^{p q}=0$ for $p<0$, and a map of complexes $\varepsilon: A \rightarrow I^{\bullet, 0}$ such that in the following diagram

the columns are resolutions of terms in the complex A. A right bicomplex resolution $I \mathrm{~s}$ said to be injective if all terms $I^{p q}$ are injective.
Problem 3. [Resolutions of complexes.] Let \mathcal{A} be an abelian category with enough injectives. Then any $A \in C^{+}(\mathcal{A})$ has an injective resolution. More precisely,
(a) Any $A \in C(\mathcal{A})$ has an injective bicomplex resolution I.
(b) Such resolution can be chosen to be "split" in the sense that for

$$
0 \rightarrow B^{n}(A) \rightarrow Z^{n}(A) \rightarrow H^{n}(A) \rightarrow 0
$$

there exist injective resolutions $\mathcal{B}^{n}, \mathcal{H}^{n}, \mathcal{Z}^{n}$ of B^{n}, H^{n}, Z^{n} such that $\mathcal{Z}^{n} \cong \mathcal{B}^{n} \oplus \mathcal{H}^{n}$ and $I^{n, \bullet} \cong \mathcal{Z}^{n} \oplus \mathcal{B}^{n+1}$.
(c) If $A \in C^{+}(\mathcal{A})$, for any split injective bicomplex resolution (I, ε) of A, the canonical $\operatorname{map} A \xrightarrow{\widetilde{\varepsilon}} \operatorname{Tot}(I)$ is an injective resolution of A.

