Homological algebra, @ Homework 6
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Koszul complex II

1. Koszul complex. Let V be a vector space over a field k. Let I = V-S(V) be the
ideal in SV generated by V. Prove that

(1) There is a canonical isomorphism SV')/I = k. It makes k into a module for S(V).
(2) If we extend the Koszul complex for V' to a sequence of maps

d—k-1 k d—* d-3 2 a2 1 d-1 0 4 0
AV RS(V)— - — AV RSV) — AV RSV) — AVRSV) —= Ak —=0—---

where d° is the quotient map AV ® SV)y= ke S(V)=SV)»S(V)/I £k.
This is a complex, call it K.
(3) The complex K is homotopically equivalent to 0.
(a) Koszul complex K is a sum of complexes K = @,>9 K(n) where K(n)" =
AV @SV | ie., the “total degree” of the two factors is n; in the sense that
K' = ®; K(n)" and the differential dx preserves each K(n).
(b) Let e : K* — K~ ! by

(V1A - AVRUL - - Uy,) = Z VIA: - AU AU QU+ Uy + U,

Show that e preserves each K (n) and on K(n)
ed+de = n.

(c) Let K(n) = K(n) for n > 0 while K° = (S°V — 0) in degrees 0 and 1. For
n > 0 define h(n) on K(n) as ¢/n and show that it makes K(n) homotpically
equivalent to zero.
(d) The complex K is homotopically equivalent to 0.
(4) The Koszul complex is a free resolution of the S(V')-module k.

0.0.1. Remarks. (0) If U is the dual vector space V* then S(V) is the algebra O(U) of
polynomial functions on U and [ is the kernel of the evaluation map evy : O(U) —

k, f—f(0). The isomorphism S(V)/I=k is a factorization of the evaluation map and
S(V)-module k can be viewed as the ring of polynomial functions on the point 0 in U.
Now Koszul complex is a way to capture a geometric subobject — point 0 € U — in terms
of free modules for the ring of functions on U.

(1) The heart of the problem is to find a homotopy k" : K — K"7', n € Z, such that
dh + hd = 1x. Since h decreases the degree of our polynomial functions one is tempted
to use derivations. Actually, € above is the Fuler vector field Y '0,: — the derivative of

the the action of the multiplicative group k* on U.
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(2) Notice that ¢ is “the same as d” once we switch the roles of the symmetric and exterior
algebra (“except for signs”). This is made precise in super mathematics (mathematics with
consistent use of a “sign rule”).

Q
Sheafification

Recall that to a presheaf S on a topological space X we have associated a sheaf S.

2. Sheafification functor.

(1) Construct a canonical map of presheaves S 2% S.

(2) Show that the sheafification construction & — S is a functor from presheaves on
X to sheaves on X

preSheaves > S—S € Sheaves.

(3) In the light of a categorical framework in (2), what kind of animal is ¢7

3. Sheafification as a left adjoint. Prove hat the sheafification functor preSheaves >
S—S € Sheaves, is the left adjoint of the inclusion SheavesCpreSheaves, i.e, for any
presheaf S and any sheaf F there is a natural identification

ls . HomSheaves(gv -7:>E> HompTeSheaveS(Sv '7:>

Explicitly, the bijection is given by (1s).a = aos, ie., (S % F)— (S 25 8 % F).

4. Direct image of sheaves. Let X =Y be a map of topological spaces.
(a) Show that for a sheaf M on X, formula
T (M) (VEM(E V),
defines a sheaf m,M on Y.
(b) Show that this gives a functor Sheaves(X) = Sheaves(Y).
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Group cohomology

An eztension of groups is a short exact sequence of groups 0 — A 5 E LG — 0 with A
abelian. (We call it an extension of G by A.) We say that
e Extension splits if there is a map of groups s : G — FE such that qos = 14.
e Two extensions 0 — A = E, LG =0, p=1,2, are equivalent if there is an
isomorphism ¢ : 7 — FE5 such that the diagram

05A ‘5B 25 G-50

1

05A ‘5B 25 G50

commutes (i.e., extension groups E; are isomorphic in a way that is compatible
with relations to A and G).

5. Let 0 = A i>Ep 25G — 0 be a group extension. Show that

(1) A is naturally a G-module.
(2) Any set theoretic section ¢ : G — E defines a two cocycle & € Z%(G, A) by

5(g.h) = o(g)o(h)o(gh)™.
In other words
“(b,c) —a(ab,c) + c(a,bc) —o(a,b) = 0.

(3) (a) Two sections o, 7 differ by a function 8 : G — A by 7(g9) = 5(g)o(9g).
(b) If T = Bo as above then 7 — o = df3 € B*(G, A).

(4) An extension of G by A defines a class in H*(G, A).

(5) Equivalent extensions define the same class in H?*(G, A).

0.0.2. Remarks. (0) Here we use multiplicative notation in G and E, but additive in A
to emphasize that it is abelian.(!)

(1) Elements of cohomology groups are often called classes to indicate that these are cosets
of Z* modulo B’

You can also use the multiplicative notation in A if it is less confusing.



