
Homological algebra, Homework 6

♥

Koszul complex II

1. Koszul complex. Let V be a vector space over a field k. Let I = V ·S(V ) be the
ideal in SV generated by V . Prove that

(1) There is a canonical isomorphism SV )/I ∼= k. It makes k into a module for S(V ).
(2) If we extend the Koszul complex for V to a sequence of maps

· · ·
d−k−1

−−−→
k
∧ V ⊗ S(V )

d−k

−−→ · · ·
d−3

−−→
2
∧ V ⊗ S(V )

d−2

−−→
1
∧ V ⊗ S(V )

d−1

−−→
0
∧ V ⊗ S(V )

d0

−→
0
∧ k −→0 −→· · ·

where d0 is the quotient map
0
∧ V ⊗ S(V ) = k ⊗ S(V ) ∼= S(V )։S(V )/I ∼= k.

This is a complex, call it K.
(3) The complex K is homotopically equivalent to 0.

(a) Koszul complex K is a sum of complexes K = ⊕n≥0 K(n) where K(n)i =
∧iV⊗Sn−iV , i.e., the “total degree” of the two factors is n; in the sense that
Ki = ⊕i K(n)i and the differential dK preserves each K(n).

(b) Let ε : Ki → Ki−1 by

ε(v1∧· · ·∧vp⊗u1· · ·un) =
∑

i

v1∧· · ·∧vp∧ui⊗u1· · ·ûi· · ·un.

Show that ε preserves each K(n) and on K(n)

εd+ dε = n.

(c) Let K(n) = K(n) for n > 0 while K0 = (S0V → 0) in degrees 0 and 1. For
n > 0 define h(n) on K(n) as ε/n and show that it makes K(n) homotpically
equivalent to zero.

(d) The complex K is homotopically equivalent to 0.
(4) The Koszul complex is a free resolution of the S(V )-module k.

0.0.1. Remarks. (0) If U is the dual vector space V ∗ then S(V ) is the algebra O(U) of
polynomial functions on U and I is the kernel of the evaluation map ev0 : O(U) →

k, f 7→f(0). The isomorphism S(V )/I
∼=
−→k is a factorization of the evaluation map and

S(V )-module k can be viewed as the ring of polynomial functions on the point 0 in U .
Now Koszul complex is a way to capture a geometric subobject – point 0 ∈ U – in terms
of free modules for the ring of functions on U .

(1) The heart of the problem is to find a homotopy hn : Kn → Kn−1, n ∈ Z, such that
dh + hd = 1K. Since h decreases the degree of our polynomial functions one is tempted
to use derivations. Actually, ε above is the Euler vector field

∑
xi∂xi – the derivative of

the the action of the multiplicative group k
∗ on U .
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(2) Notice that ε is “the same as d” once we switch the roles of the symmetric and exterior
algebra (“except for signs”). This is made precise in super mathematics (mathematics with
consistent use of a “sign rule”).

♥

Sheafification

Recall that to a presheaf S on a topological space X we have associated a sheaf S̃.

2. Sheafification functor.

(1) Construct a canonical map of presheaves S
qS
−→ S̃.

(2) Show that the sheafification construction S → S̃ is a functor from presheaves on
X to sheaves on X

preSheaves ∋ S7→S̃ ∈ Sheaves.

(3) In the light of a categorical framework in (2), what kind of animal is q?

3. Sheafification as a left adjoint. Prove hat the sheafification functor preSheaves ∋

S7→S̃ ∈ Sheaves, is the left adjoint of the inclusion Sheaves⊆preSheaves, i.e, for any
presheaf S and any sheaf F there is a natural identification

ιS : HomSheaves(S̃,F)
∼=
−→ HompreSheaves(S,F).

Explicitly, the bijection is given by (ιS)∗α = α◦ιS , i.e., (S̃
α
−→F) 7→ (S

ιS
−→ S̃

α
−→F).

4. Direct image of sheaves. Let X
π
−→ Y be a map of topological spaces.

(a) Show that for a sheaf M on X , formula

π∗(M) (V )
def
=M(π−1V ),

defines a sheaf π∗M on Y .

(b) Show that this gives a functor Sheaves(X)
π∗

−→ Sheaves(Y ).
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Group cohomology

An extension of groups is a short exact sequence of groups 0 → A
i
−→E

q
−→G → 0 with A

abelian. (We call it an extension of G by A.) We say that

• Extension splits if there is a map of groups s : G → E such that q◦s = 1G.

• Two extensions 0 → A
i
−→Ep

q
−→G → 0, p = 1, 2, are equivalent if there is an

isomorphism φ : E1 → E2 such that the diagram

0 → A
i

−−−→ E1
q

−−−→ G → 0

=

y φ

y =

y

0 → A
i

−−−→ E2
q

−−−→ G → 0

commutes (i.e., extension groups Ei are isomorphic in a way that is compatible
with relations to A and G).

5. Let 0 → A
i
−→Ep

q
−→G → 0 be a group extension. Show that

(1) A is naturally a G-module.
(2) Any set theoretic section σ : G → E defines a two cocycle σ̃ ∈ Z2(G,A) by

σ̃(g, h)
def
= σ(g)σ(h)σ(gh)−1.

In other words
aσ̃(b, c)− σ̃(ab, c) + σ̃(a, bc)− σ̃(a, b) = 0.

(3) (a) Two sections σ, τ differ by a function β : G → A by τ(g) = β(g)σ(g).
(b) If τ = βσ as above then τ̃ − σ̃ = dβ ∈ B2(G,A).

(4) An extension of G by A defines a class in H2(G,A).
(5) Equivalent extensions define the same class in H2(G,A).

0.0.2. Remarks. (0) Here we use multiplicative notation in G and E, but additive in A
to emphasize that it is abelian.(1)

(1) Elements of cohomology groups are often called classes to indicate that these are cosets
of Z i modulo Bi.

1You can also use the multiplicative notation in A if it is less confusing.


