Homological algebra, Homework 6

\bigcirc

Koszul complex II

1. Koszul complex. Let V be a vector space over a field \mathbb{k}. Let $I=V \cdot S(V)$ be the ideal in $S V$ generated by V. Prove that
(1) There is a canonical isomorphism $S V) / I \cong \mathbb{k}$. It makes \mathbb{k} into a module for $S(V)$.
(2) If we extend the Koszul complex for V to a sequence of maps

where d^{0} is the quotient map ${ }^{0} \wedge V \otimes S(V)=\mathbb{k} \otimes S(V) \cong S(V) \rightarrow S(V) / I \cong \mathbb{k}$. This is a complex, call it \mathcal{K}.
(3) The complex \mathcal{K} is homotopically equivalent to 0 .
(a) Koszul complex K is a sum of complexes $K=\oplus_{n \geq 0} K(n)$ where $K(n)^{i}=$ $\wedge^{i} V \otimes S^{n-i} V$, i.e., the "total degree" of the two factors is n; in the sense that $K^{i}=\oplus_{i} K(n)^{i}$ and the differential d_{K} preserves each $K(n)$.
(b) Let $\varepsilon: K^{i} \rightarrow K^{i-1}$ by

$$
\varepsilon\left(v_{1} \wedge \cdots \wedge v_{p} \otimes u_{1} \cdots u_{n}\right)=\sum_{i} v_{1} \wedge \cdots \wedge v_{p} \wedge u_{i} \otimes u_{1} \cdots \widehat{u_{i}} \cdots u_{n} .
$$

Show that ε preserves each $K(n)$ and on $K(n)$

$$
\varepsilon d+d \varepsilon=n
$$

(c) Let $\mathcal{K}(n)=K(n)$ for $n>0$ while $\mathcal{K}^{0}=\left(S^{0} V \rightarrow 0\right)$ in degrees 0 and 1. For $n>0$ define $h(n)$ on $\mathcal{K}(n)$ as ε / n and show that it makes $\mathcal{K}(n)$ homotpically equivalent to zero.
(d) The complex \mathcal{K} is homotopically equivalent to 0 .
(4) The Koszul complex is a free resolution of the $S(V)$-module \mathbb{k}.
0.0.1. Remarks. (0) If U is the dual vector space V^{*} then $S(V)$ is the algebra $\mathcal{O}(U)$ of polynomial functions on U and I is the kernel of the evaluation map $e v_{0}: \mathcal{O}(U) \rightarrow$ $\mathbb{k}, f \mapsto f(0)$. The isomorphism $S(V) / I \stackrel{\cong}{\leftrightharpoons} \mathbb{k}$ is a factorization of the evaluation map and $S(V)$-module \mathbb{k} can be viewed as the ring of polynomial functions on the point 0 in U. Now Koszul complex is a way to capture a geometric subobject - point $0 \in U$ - in terms of free modules for the ring of functions on U.
(1) The heart of the problem is to find a homotopy $h^{n}: \mathcal{K}^{n} \rightarrow \mathcal{K}^{n-1}, n \in \mathbb{Z}$, such that $d h+h d=1_{\mathcal{K}}$. Since h decreases the degree of our polynomial functions one is tempted to use derivations. Actually, ε above is the Euler vector field $\sum x^{i} \partial_{x^{i}}$ - the derivative of the the action of the multiplicative group \mathbb{k}^{*} on U.
(2) Notice that ε is "the same as d " once we switch the roles of the symmetric and exterior algebra ("except for signs"). This is made precise in super mathematics (mathematics with consistent use of a "sign rule").
\circ

Sheafification

Recall that to a presheaf \mathcal{S} on a topological space X we have associated a sheaf $\widetilde{\mathcal{S}}$.

2. Sheafification functor.

(1) Construct a canonical map of presheaves $\mathcal{S} \xrightarrow{q_{\mathcal{S}}} \widetilde{\mathcal{S}}$.
(2) Show that the sheafification construction $\mathcal{S} \rightarrow \widetilde{\mathcal{S}}$ is a functor from presheaves on X to sheaves on X

$$
\text { preSheaves } \ni \mathcal{S} \mapsto \widetilde{\mathcal{S}} \in \mathcal{S h e a v e s .}
$$

(3) In the light of a categorical framework in (2), what kind of animal is q ?
3. Sheafification as a left adjoint. Prove hat the sheafification functor preSheaves \ni $\mathcal{S} \mapsto \widetilde{\mathcal{S}} \in \mathcal{S} h e a v e s$, is the left adjoint of the inclusion $\mathcal{S h e a v e s \subseteq p r e S h e a v e s , ~ i . e , ~ f o r ~ a n y ~}$ presheaf \mathcal{S} and any sheaf \mathcal{F} there is a natural identification

$$
\iota_{\mathcal{S}}: \operatorname{Hom}_{\text {Sheaves }}(\widetilde{\mathcal{S}}, \mathcal{F}) \stackrel{\cong}{\rightrightarrows} \operatorname{Hom}_{\text {preSheaves }}(\mathcal{S}, \mathcal{F}) .
$$

Explicitly, the bijection is given by $\left(\iota_{\mathcal{S}}\right)_{*} \alpha=\alpha \circ \iota_{\mathcal{S}}$, i.e., $(\widetilde{\mathcal{S}} \xrightarrow{\alpha} \mathcal{F}) \mapsto\left(\mathcal{S} \xrightarrow{\iota_{\mathcal{S}}} \widetilde{\mathcal{S}} \xrightarrow{\alpha} \mathcal{F}\right)$.
4. Direct image of sheaves. Let $X \xrightarrow{\pi} Y$ be a map of topological spaces.
(a) Show that for a sheaf \mathcal{M} on X, formula

$$
\pi_{*}(\mathcal{M})(V) \stackrel{\text { def }}{=} \mathcal{M}\left(\pi^{-1} V\right)
$$

defines a sheaf $\pi_{*} \mathcal{M}$ on Y.
(b) Show that this gives a functor $\operatorname{Sheaves}(X) \xrightarrow{\pi_{*}} \operatorname{Sheaves}(Y)$.

Group cohomology

An extension of groups is a short exact sequence of groups $0 \rightarrow A \xrightarrow{i} E \xrightarrow{q} G \rightarrow 0$ with A abelian. (We call it an extension of G by A.) We say that

- Extension splits if there is a map of groups $s: G \rightarrow E$ such that $q \circ s=1_{G}$.
- Two extensions $0 \rightarrow A \xrightarrow{i} E_{p} \xrightarrow{q} G \rightarrow 0, p=1,2$, are equivalent if there is an isomorphism $\phi: E_{1} \rightarrow E_{2}$ such that the diagram

commutes (i.e., extension groups E_{i} are isomorphic in a way that is compatible with relations to A and G).

5. Let $0 \rightarrow A \xrightarrow{i} E_{p} \xrightarrow{q} G \rightarrow 0$ be a group extension. Show that
(1) A is naturally a G-module.
(2) Any set theoretic section $\sigma: G \rightarrow E$ defines a two cocycle $\widetilde{\sigma} \in Z^{2}(G, A)$ by

$$
\widetilde{\sigma}(g, h) \stackrel{\text { def }}{=} \sigma(g) \sigma(h) \sigma(g h)^{-1} .
$$

In other words

$$
{ }^{a} \widetilde{\sigma}(b, c)-\widetilde{\sigma}(a b, c)+\widetilde{\sigma}(a, b c)-\widetilde{\sigma}(a, b)=0
$$

(3) (a) Two sections σ, τ differ by a function $\beta: G \rightarrow A$ by $\tau(g)=\beta(g) \sigma(g)$.
(b) If $\tau=\beta \sigma$ as above then $\widetilde{\tau}-\widetilde{\sigma}=d \beta \in B^{2}(G, A)$.
(4) An extension of G by A defines a class in $H^{2}(G, A)$.
(5) Equivalent extensions define the same class in $H^{2}(G, A)$.
0.0.2. Remarks. (0) Here we use multiplicative notation in G and E, but additive in A to emphasize that it is abelian. ${ }^{(1)}$
(1) Elements of cohomology groups are often called classes to indicate that these are cosets of Z^{i} modulo B^{i}.

[^0]
[^0]: ${ }^{1}$ You can also use the multiplicative notation in A if it is less confusing.

