Homological algebra, Homework 6



**1. Koszul complex.** Let V be a vector space over a field k. Let  $I = V \cdot S(V)$  be the ideal in SV generated by V. Prove that

- (1) There is a canonical isomorphism SV/ $I \cong k$ . It makes k into a module for S(V).
- (2) If we extend the Koszul complex for V to a sequence of maps

$$\cdots \xrightarrow{d^{-k-1}} \stackrel{k}{\wedge} V \otimes S(V) \xrightarrow{d^{-k}} \cdots \xrightarrow{d^{-3}} \stackrel{2}{\wedge} V \otimes S(V) \xrightarrow{d^{-2}} \stackrel{1}{\wedge} V \otimes S(V) \xrightarrow{d^{-1}} \stackrel{0}{\wedge} V \otimes S(V) \xrightarrow{d^{0}} \stackrel{0}{\wedge} \Bbbk \to 0 \to \cdots$$

where  $d^0$  is the quotient map  $\stackrel{0}{\wedge} V \otimes S(V) = \mathbb{k} \otimes S(V) \cong S(V) \twoheadrightarrow S(V)/I \cong \mathbb{k}$ . This is a complex, call it  $\mathcal{K}$ .

- (3) The complex  $\mathcal{K}$  is homotopically equivalent to 0.
  - (a) Koszul complex K is a sum of complexes K = ⊕<sub>n≥0</sub> K(n) where K(n)<sup>i</sup> = ∧<sup>i</sup>V⊗S<sup>n-i</sup>V, i.e., the "total degree" of the two factors is n; in the sense that K<sup>i</sup> = ⊕<sub>i</sub> K(n)<sup>i</sup> and the differential d<sub>K</sub> preserves each K(n).
    (b) Let a ∈ K<sup>i</sup> ∈ K<sup>i-1</sup> kee
  - (b) Let  $\varepsilon: K^i \to K^{i-1}$  by

$$\varepsilon(v_1\wedge\cdots\wedge v_p\otimes u_1\cdots u_n)=\sum_i v_1\wedge\cdots\wedge v_p\wedge u_i\otimes u_1\cdots \widehat{u_i}\cdots u_n.$$

Show that  $\varepsilon$  preserves each K(n) and on K(n)

$$\varepsilon d + d\varepsilon = n.$$

- (c) Let  $\mathcal{K}(n) = K(n)$  for n > 0 while  $\mathcal{K}^0 = (S^0 V \to 0)$  in degrees 0 and 1. For n > 0 define h(n) on  $\mathcal{K}(n)$  as  $\varepsilon/n$  and show that it makes  $\mathcal{K}(n)$  homotpically equivalent to zero.
- (d) The complex  $\mathcal{K}$  is homotopically equivalent to 0.
- (4) The Koszul complex is a free resolution of the S(V)-module k.

0.0.1. Remarks. (0) If U is the dual vector space  $V^*$  then S(V) is the algebra  $\mathcal{O}(U)$  of polynomial functions on U and I is the kernel of the evaluation map  $ev_0 : \mathcal{O}(U) \to \mathbb{K}$ ,  $f \mapsto f(0)$ . The isomorphism  $S(V)/I \xrightarrow{\cong} \mathbb{K}$  is a factorization of the evaluation map and S(V)-module  $\mathbb{K}$  can be viewed as the ring of polynomial functions on the point 0 in U. Now Koszul complex is a way to capture a geometric subobject – point  $0 \in U$  – in terms of free modules for the ring of functions on U.

(1) The heart of the problem is to find a homotopy  $h^n : \mathcal{K}^n \to \mathcal{K}^{n-1}, n \in \mathbb{Z}$ , such that  $dh + hd = 1_{\mathcal{K}}$ . Since *h* decreases the degree of our polynomial functions one is tempted to use derivations. Actually,  $\varepsilon$  above is the *Euler vector field*  $\sum x^i \partial_{x^i}$  – the derivative of the the action of the multiplicative group  $\mathbb{k}^*$  on U.

(2) Notice that  $\varepsilon$  is "the same as d" once we switch the roles of the symmetric and exterior algebra ("except for signs"). This is made precise in *super mathematics* (mathematics with consistent use of a "sign rule").

 $\heartsuit$ 

## Sheafification

Recall that to a presheaf  $\mathcal{S}$  on a topological space X we have associated a sheaf  $\mathcal{S}$ .

## 2. Sheafification functor.

- (1) Construct a canonical map of presheaves  $\mathcal{S} \xrightarrow{q_{\mathcal{S}}} \widetilde{\mathcal{S}}$ .
- (2) Show that the sheafification construction  $\mathcal{S} \to \widetilde{\mathcal{S}}$  is a functor from presheaves on X to sheave on X

 $preSheaves \ni S \mapsto \widetilde{S} \in Sheaves.$ 

(3) In the light of a categorical framework in (2), what kind of animal is q?

**3.** Sheafification as a left adjoint. Prove hat the sheafification functor  $preSheaves \ni S \mapsto \widetilde{S} \in Sheaves$ , is the left adjoint of the inclusion  $Sheaves \subseteq preSheaves$ , i.e., for any presheaf S and any sheaf  $\mathcal{F}$  there is a natural identification

$$\iota_{\mathcal{S}} : \operatorname{Hom}_{\mathcal{S}heaves}(\widetilde{\mathcal{S}}, \mathcal{F}) \xrightarrow{\cong} \operatorname{Hom}_{pre\mathcal{S}heaves}(\mathcal{S}, \mathcal{F}).$$

Explicitly, the bijection is given by  $(\iota_{\mathcal{S}})_* \alpha = \alpha \circ \iota_{\mathcal{S}}$ , i.e.,  $(\widetilde{\mathcal{S}} \xrightarrow{\alpha} \mathcal{F}) \mapsto (\mathcal{S} \xrightarrow{\iota_{\mathcal{S}}} \widetilde{\mathcal{S}} \xrightarrow{\alpha} \mathcal{F})$ .

4. Direct image of sheaves. Let  $X \xrightarrow{\pi} Y$  be a map of topological spaces.

(a) Show that for a sheaf  $\mathcal{M}$  on X, formula

$$\pi_*(\mathcal{M}) (V) \stackrel{\text{def}}{=} \mathcal{M}(\pi^{-1}V),$$

defines a sheaf  $\pi_*\mathcal{M}$  on Y.

(b) Show that this gives a functor  $\mathcal{S}heaves(X) \xrightarrow{\pi_*} \mathcal{S}heaves(Y)$ .

## Group cohomology

 $\heartsuit$ 

An extension of groups is a short exact sequence of groups  $0 \to A \xrightarrow{i} E \xrightarrow{q} G \to 0$  with A abelian. (We call it an extension of G by A.) We say that

- Extension *splits* if there is a map of groups  $s: G \to E$  such that  $q \circ s = 1_G$ .
- Two extensions  $0 \to A \xrightarrow{i} E_p \xrightarrow{q} G \to 0$ , p = 1, 2, are *equivalent* if there is an isomorphism  $\phi: E_1 \to E_2$  such that the diagram

commutes (i.e., extension groups  $E_i$  are isomorphic in a way that is compatible with relations to A and G).

- **5.** Let  $0 \to A \xrightarrow{i} E_p \xrightarrow{q} G \to 0$  be a group extension. Show that
  - (1) A is naturally a G-module.
  - (2) Any set theoretic section  $\sigma: G \to E$  defines a two cocycle  $\tilde{\sigma} \in Z^2(G, A)$  by

$$\widetilde{\sigma}(g,h) \stackrel{\text{def}}{=} \sigma(g)\sigma(h)\sigma(gh)^{-1}$$

In other words

$$a\widetilde{\sigma}(b,c) - \widetilde{\sigma}(ab,c) + \widetilde{\sigma}(a,bc) - \widetilde{\sigma}(a,b) = 0.$$

- (3) (a) Two sections  $\sigma, \tau$  differ by a function  $\beta: G \to A$  by  $\tau(g) = \beta(g)\sigma(g)$ .
- (b) If  $\tau = \beta \sigma$  as above then  $\tilde{\tau} \tilde{\sigma} = d\beta \in B^2(G, A)$ .
- (4) An extension of G by A defines a class in  $H^2(G, A)$ .
- (5) Equivalent extensions define the same class in  $H^2(G, A)$ .

0.0.2. *Remarks.* (0) Here we use multiplicative notation in G and E, but additive in A to emphasize that it is abelian.<sup>(1)</sup>

(1) Elements of cohomology groups are often called classes to indicate that these are cosets of  $Z^i$  modulo  $B^i$ .

<sup>&</sup>lt;sup>1</sup>You can also use the multiplicative notation in A if it is less confusing.