
Homological algebra, Homework 6

♥

Koszul complex

1. Koszul complex. For a vector space V over a field k consider the sequence of maps

· · ·
d−k−1

−−−→
k
∧ V ⊗ S(V )

d−k

−−→ · · ·
d−3

−−→
2
∧ V ⊗ S(V )

d−2

−−→
1
∧ V ⊗ S(V )

d−1

−−→
0
∧ V ⊗ S(V ) −→0 −→· · ·

where

d−k(v1∧· · ·∧vk ⊗ f) =
k∑

1

(−1)k−iv1∧· · ·∧v̂i∧· · ·∧vk ⊗ vif.

Here, vi ∈ V, f ∈ S(V ) and ̂ means that we are omitting this term.

(a) Show that the maps d−k above are well defined.

(b) Show that this is a complex.

(c) Show that if dim(V ) = n < ∞ the complex is finite and of the form

· · · −→0 −→
n
∧ V ⊗ S(V )

d−n

−−→ · · ·
d−3

−−→
−2
∧ V ⊗ S(V )

d−2

−−→ V ⊗ S(V )
d−1

−−→ V ⊗ S(V ) −→0 −→· · ·.

(d) Consider the Koszul complex for V = C2. Where have you used it before?

♥

Sheafification

If, when playing with sheaves, we get lost and find ourselves in a larger world of presheaves
(and these are less interesting objects), we need to find our way home. This is the main
technical step(1) in making sheaves useful.

By a presheaf we mean the same structure as a sheaf, except that we do not require the glu-
ing property. For instance while locally constant functions are a sheaf, constant functions
are just a presheaf. Presheaves are by themselves not so interesting because lack of gluing
means that they do not relate local and global information well. However, presheaves are
not avoidable, for instance we will see that applying some basic constructions to sheaves
results in presheaves.

Sheafification is a way to improve any presheaf of sets S into a sheaf of sets S̃. We will
obtain the sections of the sheaf S̃ associated to a presheaf S in two steps:2

(1) add more sections by gluing systems of local sections si which are compatible in
the sense that they are locally the same, and

(2) cut down on sections by identifying two results of such gluing procedures when
the local sections in the two families are locally the same.

1Also, the most painful.
2You can think that we are imitating the passage from constant functions to locally constant functions.
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In the first step for each open U⊆X we replace S(U) by a larger set Ŝ(U), and in the

second step we decrease this to S̃(U), a quotient of Ŝ(U) by an equivalence relation ≡.
Here are the definitions:

(1) For any presheaf A we say that sections a ∈ A(U), b ∈ A(V ) are locally the same
if for any point x ∈ U ∩ V they are the same near x, i.e.,

There is neighborhood W of x in U ∩ V such that a|W = b|W .

(Here a|W denotes the restriction ρUWa.) We say that a family of sections ai ∈
A(Ui), i ∈ I, is locally the same if any two sections in the family are locally the
same.

(2) Ŝ(U) consists of all families (Ui, si)i∈I such that
(a) (Ui)i∈I is an open cover of U and si ∈ S(Ui) is a section of S on Ui,
(b) sections si, i ∈ I, are locally the same.

(3) We say that two systems (Ui, si)i∈I and (Vj , tj)j∈J are ≡ if for any i ∈ I, j ∈ J ,
the sections si and tj are locally the same.

2. Prove that

• (a) The relation ≡ on Ŝ(U) really says that (Ui, si)i∈I ≡ (Vj, tj)j∈J iff

the disjoint union (Ui, si)i∈I ⊔ (Vj, tj)j∈J is again in Ŝ(U).

• (b) ≡ is an equivalence relation on Ŝ(U).

• (c) S̃(U) is a presheaf.

3. Prove that S̃ is a sheaf.

0.0.1. Remark. The same construction has a categorical formulation in the sense that
it works for presheaves S on X with values in in any category C that has all necessary
limits.(3)

• This homework is finally “real” stuff. The problems 2 and 3 together are an elementary
but thoughtful exercise in topology which is absolutely essential for dealing with sheaves.
The other problems are more routine (since a lot of hints are supplied). • Before you
start working on a problem read any comments placed after the problem.

3Here is a sketch that omits one essential element (“locally the same”), You may want to correct it at
some point:

For each open U⊆X we have the indexing category I = OCU of open covers of U . Here morphisms

are refinements, i.e., a map of covers (Ui)i∈I
ι
−→ (Uj)j∈J is a map ι : J → I such that for any j ∈ J

Vj⊆Uι(j). If C has products then S defines a functor S0(U) : OCU → C by S0(Ui, i ∈ I)
def
=

∏
i∈I S(Ui).

If C has inductive limits then we have S̃(U)
def
= lim

→ OCU

S̃(Ui, i ∈ I). Then S̃ is a sheaf.
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♥

Group cohomology II

Recall that P−n def
= Z[Gn+1] form a free resolution P • of the trivial G-module Z

· · · → P−n d−n

−−→ P−(n−1) −→· · · → P 0 ε
−→Z → 0 with

d−n(g0, ..., gn)
def
=

n∑

i=0

(−1)i (g0, ..., ĝi, ..., gn) and ε(g0)
def
= 1, g0 ∈ G.

4. The standard complex of a G-module. We will write it in three equivalent forms.
Show that for any G-module M :

(1) The structure of a complex of G-modules on P • gives a canonical structure of a

complex of abelian groups on C
•(G,M)

def
= HomG(P

•,M) with

· · · → 0 → C
0(G,M)

∂0
C−→ C

1(G,M) → · · · → C
n(G,M)

∂n

C−→ C
n+1(G,M) → · · ·.

Here, ∂n
C
comes from P−(n+1) d−(n+1)

−−−−→ P−n as the adjoint HomG(P
−n,M)

(d−(n+1))∗

−−−−−−→
HomG(P

−(n+1),M). This amounts to, for φ ∈ HomG(P
−n,M)),

(∂n
C
φ)(g0, ..., gn+1) =

n+1∑

0

(−1)i·φ(g0, ...ĝi, ..., gn+1).

(2) (Homogeneous complex.) There is a natural complex C•(G,M) with

Cn(G,M)
def
= MapG(G

n+1,M)
def
= {φ : Gn+1 −→M ; φ(gg0, ..., ggn) = g φ(g0, ..., gn) .}

and (∂n
Cφ)(g0, ..., gn+1) =

n+1∑

0

(−1)i·φ(g0, ..., ĝi, ..., gn+1).

(3) (Inhomogeneous complex.) There is a natural complex C•(G,M) with

Cn(G,M)
def
= Map(Gn,M) and the differential

(∂nφ)(g1, ..., gn+1) = g1
(
φ(g2, ..., gn+1)

)
+

n∑

1

(−1)i·φ(g1, ..., gigi+1, ..., gn+1)

+ (−1)n+1·φ(g1, ..., gn).

(4) Prove that the three complexes above are naturally isomorphic.
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0.0.2. Remarks. (1) The cohomology H•(G,M) of any of the three (isomorphic) com-
plexes above is called the group cohomology of G with coefficients in M .

(2) In problem 4, the idea is not at all to construct separately three complexes and then
relate them. Rather, C is the easiest to construct and it is natural from abstract point of
view, while C is the most complicated to construct but the most useful for calculations in
low degrees. So, one constructs the easy complex and then finds different points of view
on it:

• (i) One obtains C
• from P •, (need to check that the formula for ∂C is really the

adjoint of the d in P • (then d◦d = 0 will imply ∂C◦∂C = 0);
• (ii) One notices that Gn+1⊆Z[Gn+1] gives a restriction ρn of G-module maps from
P−n = Z[Gn+1] to M , to G-maps from Gn+1 to M , which is an isomorphism

ρn : Cn
∼=
−→Cn (then one also needs to check that this isomorphism identifies the

maps ∂C and ∂C , this will show that C is a complex);
• One checks that the homogenization map C• ∋ f 7→fH ∈ C•,

fH(g0, ..., gn) = g0f(g0
−1g1, g1

−1g2, ..., gn−1
−1gn)

is an isomorphism of Cn and Cn and it identifies ∂C with ∂ (so C• is also a complex).

5. Interpretations in low degrees. Prove that

(1) H0(G,M) = Z0(G,M) = MG (the G-]invariants in M).
(2) Z1(G,M) consists of all f : G −→M with

f(ab) = f(a) + a
(
f(b)

)
.

B1(G,M) consists of all ∂m, m ∈ M = C0(G,M), where

(∂m)(a) = am−m.

If the action of G on M is trivial, H1(G,M) = Hom(G,M).
(3) Z2(G,M) consists of all f : G2 −→M with

f(a, bc) + b
(
f(a, c)

)
= f(ab, c) + f(a, c),

and for φ : G −→M in C1(G,M),

∂φ(a, b) = aφ(b)− φ(ab) + φ(b).

0.0.3. Remark. Here I denote the action gm of g ∈ G on m ∈ M by gm.


