Homological algebra, Homework 4

 \heartsuit

Multilinear algebra

Let \Bbbk be a commutative algebra. Recall that all rings we consider have a unit. By an *algebra* we always mean an associative algebra.

1. Symmetric algebra of a k-module. For any k-module M, the symmetric algebra $S(M) = S_{k}(M)$ of M is defined as the k-algebra generated by M and the commutativity relations $\mathcal{R} = \{x \otimes y - y \otimes x, x, y \in M\}$. Prove that S(M) is a graded algebra, i.e.,

- (1) the ideal $I = \langle \mathcal{R} \rangle$ in T(M) is homogeneous.
- (2) S(M) = T(M)/I is isomorphic to $\bigoplus_{n \ge 0} S^n(M)$ for $S^n(M) \stackrel{\text{def}}{=} T^n(M)/I^n$,
- (3) S(M) is a graded algebra.

2. Universal property of the symmetric algebra. Show that

- (1) S(M) is commutative.
- (2) For any commutative k-algebra B, there is a canonical isomorphism

 $\operatorname{Hom}_{\Bbbk-algebras}[S(M), B] \cong \operatorname{Hom}_{\Bbbk-modules}(M, B).$

3. Basic properties of symmetric algebras. Prove that:

- (1) $T^{0}(M) = S^{0}(M) = k$ and $T^{1}(M) = S^{1}(M) = M$.
- (2) If M is a free k-module with a basis e_i , $i \in I$, then $S^n(M)$ is a free k-module with a basis $e^J = \prod_{i \in I} e_i^{J_i}$, indexed by all maps $J : I \to \mathbb{N}$ with the integral n.
- (3) The algebra of polynomials $\mathbb{C}[x_1, ..., x_n]$ is isomorphic to the symmetric algebra $S(\mathbb{C}x_1 \oplus \cdots \oplus \mathbb{C}x_n)$.

Homological algebra

 \heartsuit

4. Long exact sequence of cohomology groups. We say that a sequence of maps of complexes of abelian groups $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ is a short exact if it is exact in each degree, i.e., for each $n \in \mathbb{Z}$ the sequence $0 \to A^n \xrightarrow{f^n} B \xrightarrow{g^n} C^n \to 0$ is exact. Prove that

(1) Any short exact sequence of complexes gives maps of abelian groups

$$\mathrm{H}^{n}(C) \xrightarrow{\partial^{n}} \mathrm{H}^{n+1}(A) \xrightarrow{\mathrm{H}^{n+1}(f)}$$

such that for any $\gamma \in H^n C$ the image $\delta^n \gamma$ is the class α defined by:

- (a) For any $\gamma \in H^n C$ and any cocycle $c \in Z^n(C)$ which represents γ (i.e., $\gamma = [c] \stackrel{\text{def}}{=} c + B^n(C)$), there is some $b \in B^n$ such that $c = g^n b$,
- (b) For such b there exists some $a \in A^{n+1}$ with $db = f^{n+1}a$.
- (c) The class $\alpha = [a] \in \mathrm{H}^{n+1}(A)$ depends only on $[\gamma]$ but not on the choices of c, b and a.
- (2) For any short exact sequence of complexes the following long sequence of cohomology groups is exact

$$\cdots \xrightarrow{\partial^{n-1}} \mathrm{H}^{n}(A) \xrightarrow{\mathrm{H}^{n}(f)} \mathrm{H}^{n}(B) \xrightarrow{\mathrm{H}^{n}(g)} \mathrm{H}^{n}(C) \xrightarrow{\partial^{n}} \mathrm{H}^{n+1}(A) \xrightarrow{\mathrm{H}^{n+1}(f)} \mathrm{H}^{n+1}(B) \xrightarrow{\mathrm{H}^{n+1}(f)} \cdots$$

Remark. This observation is *the* basis of calculations in homological algebra.

5. Homotopy. We say that two maps of complexes $A \xrightarrow{\alpha,\beta} B$ are *homotopic* (we denote this $\alpha \mod \beta$), if there is a sequence h of maps $h^n \colon A^n \to B^{n-1}$, such that

$$\beta - \alpha = dh + hd, \quad i.e., \quad \beta^n - \alpha^n = d_B^{n-1}h^n + h^{n+1}d_A^n$$

We say that h is a homotopy from α to β .

A map of complexes $A \xrightarrow{\alpha} B$ is said to be a *homotopical equivalence* if there is a map β in the opposite direction such that $\beta \circ \alpha \equiv 1_A$ and $\alpha \circ \beta \equiv 1_B$.

Show that

- (1) Homotopic maps are the same on cohomology.
- (2) If for a complex C maps $id_C : C \to C$ and $0 : C \to C$ are homotopic then $H^i(C) = 0$ for all i, i.e., C is exact (we also say that C is *acyclic*).
- (3) Homotopical equivalences are quasi-isomorphisms.

Group cohomology

6. *G*-modules. Let *G* be a group. A *G*-module will mean an abelian group *M* with an action $G \times M \to M$ of the group *G* by morphisms of abelian groups, i.e., g(x + y) = gx + gy, $g \in G$, $x, y \in M$. Let $\mathfrak{m}(G)$ be the category of *G*-modules (morphisms are maps of abelian groups $A: M \to N$ which preserve *G*-action: A(gm) = g(Am).)

Any abelian group A can be viewed as a trivial G-module: $ga = a, g \in G, a \in A$. In particular, we will view Z as a trivial G-module (unless some other action is specified.)

- (1) Let $\mathbb{Z}[G]$ denote the free abelian with a basis G, so the elements are sums $\sum_{g \in G} a_g g$ with $a_g \in G$ and only finitely many nonzero coefficients. Show that $\mathbb{Z}[G]$ has a canonical structure of ring. (It is called the *group algebra* of G.)
- (2) Prove that G-module is the same as a module for the ring $\mathbb{Z}[G]$. (So, $\mathfrak{m}(G) = \mathfrak{m}(\mathbb{Z}[G])$.)
- (3) Show that the following two functors from $\mathfrak{m}(G)$ to abelian groups are isomorphic:
 - (a) The functor of G-invariants $I(M) \stackrel{\text{def}}{=} \{m \in M; (\forall g \in G) \ gm = m\},\$
 - (b) Functor $M \mapsto \operatorname{Hom}_G(\Bbbk, M)$.
- (4) Show that any map of groups $\alpha : G \to H$ makes $\mathbb{Z}[H]$ into a *G*-module by $g(\sum_{h \in H} c_h h) \stackrel{\text{def}}{=} \sum_{h \in H} c_h \alpha(g)h.$

7. The standard resolution of the trivial *G*-module. For any $n \ge 0$ we consider $\mathbb{Z}[G^n]$ as a *G*-module via the diagonal homomorphism $G \to G^n$. (For n = 0 this means just the usual trivial action of *G* on $\mathbb{Z}[G^0] = \mathbb{Z}[\{1\}] = \mathbb{Z}$.)

(1) For $n \ge 0$ define $\partial_n : \mathbb{Z}[G^n] \to \mathbb{Z}[G^{n-1}]$ on the \mathbb{Z} -basis G^n by

$$\partial_n(g_0, ..., g_{n-1}) \stackrel{\text{def}}{=} \sum_{0 \le i < n} (-1)^i (g_0, ..., \widehat{g}_i, ..., g_{n-1}).$$

Show that ∂_n is a *G*-map and $\partial_{n-1}\partial_n = 0$ so that

$$\cdots \to \mathbb{Z}[G^n] \to \cdots \to \mathbb{Z}[G^2] \to \mathbb{Z}[G] \to \mathbb{Z} \to 0 \to \cdots$$

is a complex.

(2) Show that the maps $h_n : \mathbb{Z}[G^n] \to \mathbb{Z}[G^{n+1}]$

$$h_n(g_0, ..., g_n) \stackrel{\text{def}}{=} (1, g_0, ..., g_n)$$

form a homotopy between identity and zero endomorphisms of the complex above. $^{(1)}$

\heartsuit

¹These are not G-maps!

(3) For $n \ge 0$ let $P^{-n} \stackrel{\text{def}}{=} \mathbb{Z}[G^{n+1}] \in \mathfrak{m}(G)$. Define maps

$$\cdots \to P^{-n} \xrightarrow{d^{-n}} P^{-(n-1)} \to \cdots \to P^0 \xrightarrow{\varepsilon} \mathbb{Z} \to 0$$

in terms of the basis G^{n+1} of P^{-n} by

$$d^{-n}(g_0, ..., g_n) \stackrel{\text{def}}{=} \sum_{i=0}^n (-1)^i (g_0, ..., \widehat{g_i}, ..., g_n) \text{ and } \varepsilon(g_0) \stackrel{\text{def}}{=} 1, \ g_0 \in G.$$

Show that this is a resolution of the trivial G-module \mathbb{Z} .

(4) Prove that all P^i are free $\mathbb{Z}[G]$ -modules. (So we have a natural resolution by free modules.)