
Homological algebra, Homework 4

♥

Multilinear algebra

Let k be a commutative algebra. Recall that all rings we consider have a unit. By an
algebra we always mean an associative algebra.

1. Symmetric algebra of a k-module. For any k-module M , the symmetric algebra

S(M) = Sk(M) of M is defined as the k-algebra generated by M and the commutativity

relations R = {x⊗y − y⊗x, x, y ∈ M}. Prove that S(M) is a graded algebra, i.e.,

(1) the ideal I =< R > in T (M) is homogeneous.

(2) S(M) = T (M)/I is isomorphic to ⊕n≥0 Sn(M) for Sn(M)
def
=T n(M)/In,

(3) S(M) is a graded algebra.

2. Universal property of the symmetric algebra. Show that

(1) S(M) is commutative.
(2) For any commutative k-algebra B, there is a canonical isomorphism

Homk−algebras[S(M), B] ∼= Homk−modules(M,B).

3. Basic properties of symmetric algebras. Prove that:

(1) T 0(M) = S0(M) = k and T 1(M) = S1(M) = M .
(2) If M is a free k-module with a basis ei, i ∈ I, then Sn(M) is a free k-module with

a basis eJ =
∏

i∈I eJii , indexed by all maps J : I→N with the integral n.
(3) The algebra of polynomials C[x1, ..., xn] is isomorphic to the symmetric algebra

S(Cx1⊕· · ·⊕Cxn).
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Homological algebra

4. Long exact sequence of cohomology groups. We say that a sequence of maps of

complexes of abelian groups 0 −→A
f
−→B

g
−→C −→0 is a short exact if it is exact in each

degree, i.e., for each n ∈ Z the sequence 0 −→An fn

−→ B
gn

−→ Cn −→0 is exact.

Prove that

(1) Any short exact sequence of complexes gives maps of abelian groups

Hn(C)
∂n

−→ Hn+1(A)
Hn+1(f)
−−−−→

such that for any γ ∈ HnC the image δnγ is the class α defined by:
(a) For any γ ∈ HnC and any cocycle c ∈ Zn(C) which represents γ (i.e., γ =

[c]
def
= c+Bn(C)), there is some b ∈ Bn such that c = gnb,

(b) For such b there exists some a ∈ An+1 with db = fn+1a.
(c) The class α = [a] ∈ Hn+1(A) depends only on [γ] but not on the choices of c,

b and a.
(2) For any short exact sequence of complexes the following long sequence of coho-

mology groups is exact

· · ·
∂n−1

−−→ Hn(A)
Hn(f)
−−−→ Hn(B)

Hn(g)
−−−→ Hn(C)

∂n

−→ Hn+1(A)
Hn+1(f)
−−−−→ Hn+1(B)

Hn+1(f)
−−−−→ · · ·

Remark. This observation is the basis of calculations in homological algebra.

5. Homotopy. We say that two maps of complexes A
α,β
−−→ B are homotopic (we denote

this α mod β), if there is a sequence h of maps hn : An −→Bn−1, such that

β − α = dh+ hd, i.e., βn − αn = dn−1
B hn + hn+1dnA.

We say that h is a homotopy from α to β.

A map of complexes A
α
−→B is said to be a homotopical equivalence if there is a map β in

the opposite direction such that β◦α ≡ 1A and α◦β ≡ 1B.

Show that

(1) Homotopic maps are the same on cohomology.
(2) If for a complex C maps idC : C → C and 0 : C → C are homotopic then

H i(C) = 0 for all i, i.e., C is exact (we also say that C is acyclic).
(3) Homotopical equivalences are quasi-isomorphisms.
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Group cohomology

6. G-modules. Let G be a group. A G-module will mean an abelian group M with an
action G×M → M of the group G by morphisms of abelian groups, i.e., g(x + y) =
gx+ gy, g ∈ G, x, y ∈ M . Let m(G) be the category of G-modules (morphisms are maps
of abelian groups A : M → N which preserve G-action: A(gm) = g(Am).)

Any abelian group A can be viewed as a trivial G-module: ga = a, g ∈ G, a ∈ A. In
particular, we will view Z as a trivial G-module (unless some other action is specified.)

(1) Let Z[G] denote the free abelian with a basisG, so the elements are sums
∑

g∈G agg

with ag ∈ G and only finitely many nonzero coefficients. Show that Z[G] has a
canonical structure of ring. (It is called the group algebra of G.)

(2) Prove that G-module is the same as a module for the ring Z[G]. (So, m(G) =
m(Z[G]).)

(3) Show that the following two functors from m(G) to abelian groups are isomorphic:

(a) The functor of G-invariants I(M)
def
= {m ∈ M ; (∀g ∈ G) gm = m},

(b) Functor M 7→ HomG(k,M).
(4) Show that any map of groups α : G → H makes Z[H ] into a G-module by

g(
∑

h∈H chh)
def
=

∑
h∈H chα(g)h.

7. The standard resolution of the trivial G-module. For any n ≥ 0 we consider
Z[Gn] as a G-module via the diagonal homomorphism G → Gn. (For n = 0 this means
just the usual trivial action of G on Z[G0] = Z[{1}] = Z.)

(1) For n ≥ 0 define ∂n : Z[Gn] → Z[Gn−1] on the Z-basis Gn by

∂n(g0, ..., gn−1)
def
=

∑

0≤i<n

(−1)i (g0, ..., ĝi, ..., gn−1).

Show that ∂n is a G-map and ∂n−1∂n = 0 so that

· · · → Z[Gn] → · · · → Z[G2] → Z[G] → Z → 0 → · · ·

is a complex.
(2) Show that the maps hn : Z[Gn] → Z[Gn+1]

hn(g0, ..., gn)
def
= (1, g0, ..., gn)

form a homotopy between identity and zero endomorphisms of the complex
above.(1)

1These are not G-maps!
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(3) For n ≥ 0 let P−n def
= Z[Gn+1] ∈ m(G). Define maps

· · · → P−n d−n

−−→ P−(n−1) −→· · · → P 0 ε
−→Z → 0

in terms of the basis Gn+1 of P−n by

d−n(g0, ..., gn)
def
=

n∑

i=0

(−1)i (g0, ..., ĝi, ..., gn) and ε(g0)
def
= 1, g0 ∈ G.

Show that this is a resolution of the trivial G-module Z.
(4) Prove that all P i are free Z[G]-modules. (So we have a natural resolution by free

modules.)


