Homological algebra, Homework 4

\bigcirc

Multilinear algebra

Let \mathbb{k} be a commutative algebra. Recall that all rings we consider have a unit. By an algebra we always mean an associative algebra.

1. Symmetric algebra of a \mathbb{k}-module. For any \mathbb{k}-module M, the symmetric algebra $S(M)=S_{\mathbb{k}}(M)$ of M is defined as the \mathbb{k}-algebra generated by M and the commutativity relations $\mathcal{R}=\{x \otimes y-y \otimes x, x, y \in M\}$. Prove that $S(M)$ is a graded algebra, i.e.,
(1) the ideal $I=<\mathcal{R}>$ in $T(M)$ is homogeneous.
(2) $S(M)=T(M) / I$ is isomorphic to $\oplus_{n \geq 0} S^{n}(M)$ for $S^{n}(M) \stackrel{\text { def }}{=} T^{n}(M) / I^{n}$,
(3) $S(M)$ is a graded algebra.
2. Universal property of the symmetric algebra. Show that
(1) $S(M)$ is commutative.
(2) For any commutative \mathbb{k}-algebra B, there is a canonical isomorphism

$$
\operatorname{Hom}_{\mathbb{k}-\text { algebras }}[S(M), B] \cong \operatorname{Hom}_{\mathbb{k}-\text { modules }}(M, B)
$$

3. Basic properties of symmetric algebras. Prove that:
(1) $T^{0}(M)=S^{0}(M)=\mathbb{k}$ and $T^{1}(M)=S^{1}(M)=M$.
(2) If M is a free \mathbb{k}-module with a basis $e_{i}, i \in I$, then $S^{n}(M)$ is a free \mathbb{k}-module with a basis $e^{J}=\prod_{i \in I} e_{i}^{J_{i}}$, indexed by all maps $J: I \rightarrow \mathbb{N}$ with the integral n.
(3) The algebra of polynomials $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is isomorphic to the symmetric algebra $S\left(\mathbb{C} x_{1} \oplus \cdots \oplus \mathbb{C} x_{n}\right)$.

Homological algebra

4. Long exact sequence of cohomology groups. We say that a sequence of maps of complexes of abelian groups $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is a short exact if it is exact in each degree, i.e., for each $n \in \mathbb{Z}$ the sequence $0 \rightarrow A^{n} \xrightarrow{f^{n}} B \xrightarrow{g^{n}} C^{n} \rightarrow 0$ is exact.
Prove that
(1) Any short exact sequence of complexes gives maps of abelian groups

$$
\mathrm{H}^{n}(C) \xrightarrow{\partial^{n}} \mathrm{H}^{n+1}(A) \xrightarrow{\mathrm{H}^{n+1}(f)}
$$

such that for any $\gamma \in H^{n} C$ the image $\delta^{n} \gamma$ is the class α defined by:
(a) For any $\gamma \in H^{n} C$ and any cocycle $c \in Z^{n}(C)$ which represents γ (i.e., $\gamma=$ $\left.[c] \stackrel{\text { def }}{=} c+B^{n}(C)\right)$, there is some $b \in B^{n}$ such that $c=g^{n} b$,
(b) For such b there exists some $a \in A^{n+1}$ with $d b=f^{n+1} a$.
(c) The class $\alpha=[a] \in \mathrm{H}^{n+1}(A)$ depends only on $[\gamma]$ but not on the choices of c, b and a.
(2) For any short exact sequence of complexes the following long sequence of cohomology groups is exact

$$
\cdots \xrightarrow{\partial^{n-1}} \mathrm{H}^{n}(A) \xrightarrow{\mathrm{H}^{n}(f)} \mathrm{H}^{n}(B) \xrightarrow{\mathrm{H}^{n}(g)} \mathrm{H}^{n}(C) \xrightarrow{\partial^{n}} \mathrm{H}^{n+1}(A) \xrightarrow{\mathrm{H}^{n+1}(f)} \mathrm{H}^{n+1}(B) \xrightarrow{\mathrm{H}^{n+1}(f)} \cdots
$$

Remark. This observation is the basis of calculations in homological algebra.
5. Homotopy. We say that two maps of complexes $A \xrightarrow{\alpha, \beta} B$ are homotopic (we denote this $\alpha \bmod \beta$), if there is a sequence h of maps $h^{n}: A^{n} \rightarrow B^{n-1}$, such that

$$
\beta-\alpha=d h+h d, \quad \text { i.e., } \quad \beta^{n}-\alpha^{n}=d_{B}^{n-1} h^{n}+h^{n+1} d_{A}^{n} .
$$

We say that h is a homotopy from α to β.
A map of complexes $A \xrightarrow{\alpha} B$ is said to be a homotopical equivalence if there is a map β in the opposite direction such that $\beta \circ \alpha \equiv 1_{A}$ and $\alpha \circ \beta \equiv 1_{B}$.

Show that
(1) Homotopic maps are the same on cohomology.
(2) If for a complex C maps $i d_{C}: C \rightarrow C$ and $0: C \rightarrow C$ are homotopic then $H^{i}(C)=0$ for all i, i.e., C is exact (we also say that C is acyclic).
(3) Homotopical equivalences are quasi-isomorphisms.

Group cohomology

6. G-modules. Let G be a group. A G-module will mean an abelian group M with an action $G \times M \rightarrow M$ of the group G by morphisms of abelian groups, i.e., $g(x+y)=$ $g x+g y, g \in G, x, y \in M$. Let $\mathfrak{m}(G)$ be the category of G-modules (morphisms are maps of abelian groups $A: M \rightarrow N$ which preserve G-action: $A(g m)=g(A m)$.)
Any abelian group A can be viewed as a trivial G-module: $g a=a, g \in G, a \in A$. In particular, we will view \mathbb{Z} as a trivial G-module (unless some other action is specified.)
(1) Let $\mathbb{Z}[G]$ denote the free abelian with a basis G, so the elements are sums $\sum_{g \in G} a_{g} g$ with $a_{g} \in G$ and only finitely many nonzero coefficients. Show that $\mathbb{Z}[G]$ has a canonical structure of ring. (It is called the group algebra of G.)
(2) Prove that G-module is the same as a module for the ring $\mathbb{Z}[G]$. (So, $\mathfrak{m}(G)=$ $\mathfrak{m}(\mathbb{Z}[G])$.
(3) Show that the following two functors from $\mathfrak{m}(G)$ to abelian groups are isomorphic:
(a) The functor of G-invariants $I(M) \stackrel{\text { def }}{=}\{m \in M ;(\forall g \in G) g m=m\}$,
(b) Functor $M \mapsto \operatorname{Hom}_{G}(\mathbb{k}, M)$.
(4) Show that any map of groups $\alpha: G \rightarrow H$ makes $\mathbb{Z}[H]$ into a G-module by $g\left(\sum_{h \in H} c_{h} h\right) \stackrel{\text { def }}{=} \sum_{h \in H} c_{h} \alpha(g) h$.
7. The standard resolution of the trivial G-module. For any $n \geq 0$ we consider $\mathbb{Z}\left[G^{n}\right]$ as a G-module via the diagonal homomorphism $G \rightarrow G^{n}$. (For $n=0$ this means just the usual trivial action of G on $\mathbb{Z}\left[G^{0}\right]=\mathbb{Z}[\{1\}]=\mathbb{Z}$.)
(1) For $n \geq 0$ define $\partial_{n}: \mathbb{Z}\left[G^{n}\right] \rightarrow \mathbb{Z}\left[G^{n-1}\right]$ on the \mathbb{Z}-basis G^{n} by

$$
\partial_{n}\left(g_{0}, \ldots, g_{n-1}\right) \stackrel{\text { def }}{=} \sum_{0 \leq i<n}(-1)^{i}\left(g_{0}, \ldots, \widehat{g}_{i}, \ldots, g_{n-1}\right) .
$$

Show that ∂_{n} is a G-map and $\partial_{n-1} \partial_{n}=0$ so that

$$
\cdots \rightarrow \mathbb{Z}\left[G^{n}\right] \rightarrow \cdots \rightarrow \mathbb{Z}\left[G^{2}\right] \rightarrow \mathbb{Z}[G] \rightarrow \mathbb{Z} \rightarrow 0 \rightarrow \cdots
$$

is a complex.
(2) Show that the maps $h_{n}: \mathbb{Z}\left[G^{n}\right] \rightarrow \mathbb{Z}\left[G^{n+1}\right]$

$$
h_{n}\left(g_{0}, \ldots, g_{n}\right) \stackrel{\text { def }}{=}\left(1, g_{0}, \ldots, g_{n}\right)
$$

form a homotopy between identity and zero endomorphisms of the complex above. ${ }^{(1)}$

[^0](3) For $n \geq 0$ let $P^{-n} \stackrel{\text { def }}{=} \mathbb{Z}\left[G^{n+1}\right] \in \mathfrak{m}(G)$. Define maps
$$
\cdots \rightarrow P^{-n} \xrightarrow{d^{-n}} P^{-(n-1)} \rightarrow \cdots \rightarrow P^{0} \xrightarrow{\varepsilon} \mathbb{Z} \rightarrow 0
$$
in terms of the basis G^{n+1} of P^{-n} by
$$
d^{-n}\left(g_{0}, \ldots, g_{n}\right) \stackrel{\text { def }}{=} \sum_{i=0}^{n}(-1)^{i}\left(g_{0}, \ldots, \widehat{g}_{i}, \ldots, g_{n}\right) \quad \text { and } \quad \varepsilon\left(g_{0}\right) \stackrel{\text { def }}{=} 1, g_{0} \in G
$$

Show that this is a resolution of the trivial G-module \mathbb{Z}.
(4) Prove that all P^{i} are free $\mathbb{Z}[G]$-modules. (So we have a natural resolution by free modules.)

[^0]: ${ }^{1}$ These are not G-maps!

