
Homological algebra, Homework 3

Multilinear algebra III

Tensor algebras TA(M) of modules over commutative rings

Let A be a commutative ring with a unit. For any A-module M we will denote the by

T n
A(M)

def
=

n

⊗AM
def
= M⊗n, n ≥ 0.

the n-tuple tensor product M⊗
A
· · ·⊗

A
M . For n = 0 this is – by definition – A itself, so it

does not depend on M . For n = 1 this is the module M . For n > 1 we use the above
construction of multiple tensor products.

1. Tensor algebra TA(M) of the A-module M . Show that the sum

T (M)
def
=

∑
n≥0 T n(M) has a unique structure of an associative A-algebra, such

that for all p, q ≥ 0 and mi, nj ∈M , the mutiplication in TA(M) is the cocatenation(1)

(m1⊗· · ·⊗mp)·(n1⊗· · ·⊗nq) = m1⊗· · ·⊗mp⊗n1⊗· · ·⊗nq.

Remark. For this algebra structure structure pure tensors, i.e., those of the form
m1⊗· · ·⊗mp, are simply product m1· · ·mp of mi ∈M =M⊗1⊆TM .

2. Universal property of tensor algebras. For each A-algebra B restriction

Homassoc. A−alg. with 1(TM,B) ∋ φ 7→φ|M ∈ HomA−modules(M,B),

is a bijection.

Remark. We say that T (M) is the A-algebra defined (generated) by the A-module M , or
that T (M) is universal among all A-algebras B endowed with a map of A-modulesM→B.

Let k be a commutative algebra. Recall that all rings we consider are associative and
have a unit. By an algebra we will always mean an associative algebra.

3. Algebras generated by generators and relations. To a k-moduleM and a set R
of algebraic relations between some elements ofM , we will associate the universal algebra
k(M ;R) in which these relations are satisfied.

What we mean by an algebraic relations between elements mi,j of M are intuitively the
conditions of type

(∗)

k∑

i=1

aimi,1· · ·mi,ni
= 0

1The meaning of this formula when p = 0 is the action of A on its module M⊗q and the same when

q = 0.
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for some ai ∈ k. The precise meaning of such relations is that the expression on the left
hand side defines an element r =

∑k

i=1 ai·mi,1⊗· · ·⊗mi,ni
of the tensor algebra T (M).

So any set of such relations defines

• (i) a subset R⊆T (M),

• (ii) a k-algebra k(M ;R)
def
= T (M)/ < R > where < R > denotes the 2sided ideal

in T (M) generated by R,

• (iii) a canonical map of k-modules ι
def
= [M⊆T (M)։k(M ;R)].

(a) Show that for each k-algebra B, Homk−algebras[k(M ;R), B] is naturally identified

with the set of all β ∈ Homk−modules(M,B), such that for all r =
∑k

i=1 ai·mi,1⊗· · ·⊗mi,ni

in R, the following relation between (images of) elements of M holds in B:∑k

i=1 ai·β(mi,1)· · ·β(mi,ni
) = 0.

Remark. Let us summarize. An algebraic relation of type (∗) between elements of M
acquires meaning in any k-algebra B supplied with a map of k-modules M→B. Algebra
k(M ;R) is universal among all such k-algebras B that satisfy relations from R.

Exterior algebras of modules over commutative rings

4. Exterior algebra of a k-module. For any k-module M , the exterior algebra
•

∧M =
•

∧
k

M is defined as the k-algebra generated by M and by anti-commutativity relations R =

{x⊗y + y⊗x, x, y ∈ M}. The multiplication operation in
•

∧M is denoted ∧, so that the

image of m1⊗· · ·⊗mn ∈ T (M) in
•

∧M is denoted m1∧· · ·∧mn ∈
n
∧M .

(a)
•

∧M is a graded algebra. Show that

(1) the ideal I =< R > in T (M) is homogeneous, i.e., I = ⊕n≥0 I
n for In

def
= I∩T nM .

(2)
•

∧M = T (M)/I is isomorphic to ⊕n≥0

n
∧M for

n
∧M

def
= T n(M)/In.

(3)
•

∧M is a graded algebra, i.e.,
n
∧M ·

m
∧M⊆

n+m
∧ M, n,m ≥ 0.

5. Universal property of the exterior algebra. Show that for each k-algebra B,

Homk−algebras[
•

∧M,B] can be identified with the set of all φ : Homk−modules(M,B), such
that the φ-images of elements of M anti-commute in B, i.e.,

φ(y)φ(x) = −φ(x)φ(y), x, y ∈M.

6. Basic properties of exterior algebras.

(1) Low degrees.
0
∧M = T 0(M) = k and

1
∧M = T 1(M) =M .
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(2) Bilinear forms extend to exterior algebras. For any k-modules L and M ,
and any k-bilinear map < , >: L×M→k (i.e., linear in each variable); there is a

unique k-bilinear map < , >:
n
∧L×

n
∧M→k, such that

< l1∧· · ·ln, m1∧· · ·∧mn > = det(< li, mj >), li ∈ L, mj ∈M.

(3) Free modules. If M is a free k-module with a basis e1, ..., ed, then
k
∧M is a free

k-module with a basis eJ = ej1∧· · ·∧ejk , indexed by all subsets J = {j1 < · · · <
jn}⊆I with k elements.

(4) Dimension. dim(
•

∧ Cn) = 2n.
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Categories

C1. Yoneda lemma. Let C be a category.

(1) Any object a ∈ C defines a functor Fa : C
o → Set by

Fa(c)
def
= HomC(c, a).

(2) Explain what does a “morphism of functors Φ : Fa → Fb” consists of (which data
and which properties)? What is a composition Ψ◦Φ of morphisms of functors
Φ : Fa → Fb and Ψ : Fb → Fc ? What is idFa

?

(3) Any morphism of objects φ : a
∼=
−→b in C defines a morphism of functors φ̃ : Fa → Fb.

(4) ψ̃◦φ = ψ̃◦φ̃ and ĩda = idFa
. If φ is isomorphism in C then φ̃ is an isomorphism of

functors.
(5) Any morphism of functors Φ : Fa → Fb. defines a morphism of objects Φ ∈

HomC(a, b).

(6) Ψ◦Φ = Ψ◦Φ and idFa
= ida. If Φ is isomorphism of functors then φ̃ is an isomor-

phism in C.
(7) The two procedures above give inverse bijections between HomC(a, b) and the set

of morphisms of functors Fa → Fb.
(8) Functor HomC(−, a) determines a up to a unique isomorphism.

Sheaves

S1. Let X = P1
C.

(1) Show that the tangent sheaf TX is isomorphic to O(2).
(2) Show that the cotangent sheaf T ∗

X is isomorphic to O(−2).
(3) Find the dimensions of the Čech cohomology groups of TX and T ∗

X . (For the
standard open cover of X .)


