Homological algebra, Homework 3

‘ Multilinear algebra III ‘

Tensor algebras T'4(M) of modules over commutative rings

Let A be a commutative ring with a unit. For any A-module M we will denote the by

T (M) % @M e >0,

the n-tuple tensor product M®- - -@M. For n = 0 this is — by definition — A itself, so it
A A

does not depend on M. For n = 1 this is the module M. For n > 1 we use the above
construction of multiple tensor products.

1. Tensor algebra 7T4(M) of the A-module M. Show that the sum
T(M )d:Cf Yonso I™(M) has a unique structure of an associative A-algebra, such
that for all p,¢ > 0 and m;,n; € M, the mutiplication in T4 (M) is the cocatenation()

(M1®- - -@my)-(NM®- - -®ng) = M- - -@MRN®- - -@ny.

Remark. For this algebra structure structure pure tensors, i.e., those of the form
my®- - -®@m,, are simply product my- - -m, of m; € M = M®'CTM.

2. Universal property of tensor algebras. For each A-algebra B restriction
Homassoc. A—alg. with 1(TMa B) = ¢’_)¢|M € HomA—modules(M> B)a

is a bijection.

Remark. We say that T (M) is the A-algebra defined (generated) by the A-module M, or
that T'(M) is universal among all A-algebras B endowed with a map of A-modules M — B.

Let k be a commutative algebra. Recall that all rings we consider are associative and
have a unit. By an algebra we will always mean an associative algebra.

3. Algebras generated by generators and relations. To a k-module M and a set R
of algebraic relations between some elements of M, we will associate the universal algebra
k(M;R) in which these relations are satisfied.

What we mean by an algebraic relations between elements m; ; of M are intuitively the
conditions of type

k
(*) Z aimis - Mip, =0
i=1

IThe meaning of this formula when p = 0 is the action of A on its module M®? and the same when
q=0.
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for some a; € k. The precise meaning of such relations is that the expression on the left
hand side defines an element r = Zle a;\m;1®- - -@m,,, of the tensor algebra T'(M).
So any set of such relations defines

e (i) a subset RCT (M),
def

o (ii) a k-algebra k(M;R) = T(M)/ < R > where < R > denotes the 2sided ideal
in T'(M) generated by R,

e (iii) a canonical map of k-modules ¢ oo [MCT(M)—k(M;R)].

(a) Show that for each k-algebra B, Homy_ugepras/k(M;R), B] is naturally identified

with the set of all 5 € Homy_,0ques (M, B), such that for all r = Zle a; "M @+ Q@M p,
in R, the following relation between (images of) elements of M holds in B:

S aiBlmn) - -Bmig,) =0,

Remark. Let us summarize. An algebraic relation of type (x) between elements of M
acquires meaning in any k-algebra B supplied with a map of k-modules M — B. Algebra
k(M;R) is universal among all such k-algebras B that satisfy relations from R.

Exterior algebras of modules over commutative rings

4. Exterior algebra of a k-module. For any k-module M, the exterior algebra AM =
@M 1s defined as the k-algebra generated by M and by anti-commutativity relations R =

{z@y + y@z, x,y € M}. The multiplication operation in AM is denoted A, so that the
image of m®- - -@m,, € T(M) in AM is denoted miA- - -Am,, € AM.

(a) AM is a graded algebra. Show that

(1) theideal I =< R > in T (M) is homogeneous, i.e., I = @, I" for I" © N
(2) AM = T(M)/I is isomorphic to ©,>¢ AM for AM & T (M)/1".

(3) AM is a graded algebra, i.e., AM ﬁMQnJ/r\mM, n,m > 0.

5. Universal property of the exterior algebra. Show that for each k-algebra B,

Homk_algebms[/.\M , B] can be identified with the set of all ¢ : Homy_,,oquies(M, B), such
that the ¢-images of elements of M anti-commute in B, i.e.,

o(y)o(z) = —¢(2)d(y), =,y € M.

6. Basic properties of exterior algebras.

(1) Low degrees. AM = T°(M) = k and AM = T*(M) = M.



(2) Bilinear forms extend to exterior algebras. For any k-modules L and M,
and any k-bilinear map < , >: Lx M —k (i.e., linear in each variable); there is a

unique k-bilinear map <, >: ALXAM —k, such that
< UA- by, ma A - Amy, > = det(< l;,m; >), ;€ L, m; € M.
k
(3) Free modules. If M is a free k-module with a basis ey, ..., e4, then AM is a free

k-module with a basis e/ = e;, A+ - -Ae;j,, indexed by all subsets J = {j; < --- <
Jn}CI with k elements.

(4) Dimension. dim(/.\ Cr) =2n.



C1. Yoneda lemma. Let C be a category.
(1) Any object a € C defines a functor F, : C° — Set by
F,(c) oo Home(c, a).

(2) Explain what does a “morphism of functors ® : F, — F}” consists of (which data
and which properties)? What is a composition Wod of morphisms of functors
®:F, — F,and ¥ : F, — F. ? What is idg, ?

(3) Any morphlsm of objects ¢ a=bin C defines a morphism of functors qb F, — F.

(4) ¢o¢ Yo and id, = = idp,. If ¢ is isomorphism in C then ¢ is an isomorphism of

functors.

(5) Any morphism of functors ® : F, — F,. defines a morphism of objects ® €
Home(a, b).

(6) Wod = Vod and idy, = id,. If ® is isomorphism of functors then ¢ is an isomor-
phism in C.

(7) The two procedures above give inverse bijections between Home(a,b) and the set
of morphisms of functors F, — Fy.
(8) Functor Home(—, a) determines a up to a unique isomorphism.

S1. Let X = Pl¢.

(1) Show that the tangent sheaf Tx is isomorphic to O(2).

(2) Show that the cotangent sheaf T3 is isomorphic to O(—2).

(3) Find the dimensions of the Cech cohomology groups of Tx and T3. (For the
standard open cover of X.)



