Homological algebra, Homework 3

Multilinear algebra III

Tensor algebras $T_{A}(M)$ of modules over commutative rings

Let A be a commutative ring with a unit. For any A-module M we will denote the by

$$
T_{A}^{n}(M) \stackrel{\text { def }}{=} \stackrel{n}{\otimes}_{A} M \stackrel{\text { def }}{=} M^{\otimes n}, n \geq 0
$$

the n-tuple tensor product $M \otimes \cdots \otimes M$. For $n=0$ this is - by definition $-A$ itself, so it does not depend on M. For $n=1$ this is the module M. For $n>1$ we use the above construction of multiple tensor products.

1. Tensor algebra $T_{A}(M)$ of the A-module M. Show that the sum $T(M) \stackrel{\text { def }}{=} \sum_{n \geq 0} T^{n}(M)$ has a unique structure of an associative A-algebra, such that for all $p, q \geq 0$ and $m_{i}, n_{j} \in M$, the mutiplication in $T_{A}(M)$ is the cocatenation ${ }^{(1)}$

$$
\left(m_{1} \otimes \cdots \otimes m_{p}\right) \cdot\left(n_{1} \otimes \cdots \otimes n_{q}\right)=m_{1} \otimes \cdots \otimes m_{p} \otimes n_{1} \otimes \cdots \otimes n_{q} .
$$

Remark. For this algebra structure structure pure tensors, i.e., those of the form $m_{1} \otimes \cdots \otimes m_{p}$, are simply product $m_{1} \cdots m_{p}$ of $m_{i} \in M=M^{\otimes 1} \subseteq T M$.
2. Universal property of tensor algebras. For each A-algebra B restriction

$$
\operatorname{Hom}_{\text {assoc. A-alg. with } 1}(T M, B) \ni \phi \mapsto \phi \mid M \in \operatorname{Hom}_{A-\text { modules }}(M, B),
$$

is a bijection.

Remark. We say that $T(M)$ is the A-algebra defined (generated) by the A-module M, or that $T(M)$ is universal among all A-algebras B endowed with a map of A-modules $M \rightarrow B$. Let \mathbb{k} be a commutative algebra. Recall that all rings we consider are associative and have a unit. By an algebra we will always mean an associative algebra.
3. Algebras generated by generators and relations. To a \mathbb{k}-module M and a set \mathcal{R} of algebraic relations between some elements of M, we will associate the universal algebra $\mathbb{k}(M ; \mathcal{R})$ in which these relations are satisfied.
What we mean by an algebraic relations between elements $m_{i, j}$ of M are intuitively the conditions of type

$$
(*) \quad \sum_{i=1}^{k} a_{i} m_{i, 1} \cdots m_{i, n_{i}}=0
$$

[^0]for some $a_{i} \in \mathbb{k}$. The precise meaning of such relations is that the expression on the left hand side defines an element $r=\sum_{i=1}^{k} a_{i} \cdot m_{i, 1} \otimes \cdots \otimes m_{i, n_{i}}$ of the tensor algebra $T(M)$. So any set of such relations defines

- (i) a subset $\mathcal{R} \subseteq T(M)$,
- (ii) a \mathbb{k}-algebra $\mathbb{k}(M ; \mathcal{R}) \stackrel{\text { def }}{=} T(M) /<\mathcal{R}>$ where $<\mathcal{R}>$ denotes the 2sided ideal in $T(M)$ generated by \mathcal{R},
- (iii) a canonical map of \mathbb{k}-modules $\iota \stackrel{\text { def }}{=}[M \subseteq T(M) \rightarrow \mathbb{k}(M ; \mathcal{R})]$.
(a) Show that for each \mathbb{k}-algebra B, $\operatorname{Hom}_{\mathbb{k} \text {-algebras }}[\mathfrak{k}(M ; \mathcal{R}), B]$ is naturally identified with the set of all $\beta \in \operatorname{Hom}_{\mathrm{k}-\text { modules }}(M, B)$, such that for all $r=\sum_{i=1}^{k} a_{i} \cdot m_{i, 1} \otimes \cdots \otimes m_{i, n_{i}}$ in \mathcal{R}, the following relation between (images of) elements of M holds in B : $\sum_{i=1}^{k} a_{i} \cdot \beta\left(m_{i, 1}\right) \cdots \beta\left(m_{i, n_{i}}\right)=0$.

Remark. Let us summarize. An algebraic relation of type (*) between elements of M acquires meaning in any \mathbb{k}-algebra B supplied with a map of \mathbb{k}-modules $M \rightarrow B$. Algebra $\mathbb{k}(M ; \mathcal{R})$ is universal among all such \mathbb{k}-algebras B that satisfy relations from \mathcal{R}.

Exterior algebras of modules over commutative rings

4. Exterior algebra of $\mathbf{a} \mathbb{k}$-module. For any \mathbb{k}-module M, the exterior algebra $\dot{\wedge} M=$ $\underset{\mathfrak{k}}{\dot{\wedge} M}$ is defined as the \mathbb{k}-algebra generated by M and by anti-commutativity relations $\mathcal{R}=$ $\{x \otimes y+y \otimes x, x, y \in M\}$. The multiplication operation in $\dot{\wedge} M$ is denoted \wedge, so that the image of $m_{1} \otimes \cdots \otimes m_{n} \in T(M)$ in $\dot{\wedge} M$ is denoted $m_{1} \wedge \cdots \wedge m_{n} \in \stackrel{n}{\wedge} M$.
(a) $\dot{\wedge} M$ is a graded algebra. Show that
(1) the ideal $I=<\mathcal{R}>$ in $T(M)$ is homogeneous, i.e., $I=\oplus_{n \geq 0} I^{n}$ for $I^{n} \stackrel{\text { def }}{=} I \cap T^{n} M$.
(2) $\dot{\wedge} M=T(M) / I$ is isomorphic to $\oplus_{n \geq 0} \stackrel{n}{\wedge} M$ for $\stackrel{n}{\wedge} M \stackrel{\text { def }}{=} T^{n}(M) / I^{n}$.
(3) $\dot{\wedge} M$ is a graded algebra, i.e., $\wedge^{n} M \cdot{ }^{n} M \subseteq \subseteq^{n+m} M, n, m \geq 0$.
5. Universal property of the exterior algebra. Show that for each \mathbb{k}-algebra B, $\operatorname{Hom}_{\mathbb{k}-\text { algebras }}\lfloor\wedge M, B]$ can be identified with the set of all $\phi: \operatorname{Hom}_{\mathbb{k}-\text { modules }}(M, B)$, such that the ϕ-images of elements of M anti-commute in B, i.e.,

$$
\phi(y) \phi(x)=-\phi(x) \phi(y), x, y \in M
$$

6. Basic properties of exterior algebras.

(1) Low degrees. ${ }^{\wedge} M=T^{0}(M)=\mathbb{k}$ and $\stackrel{1}{\wedge} M=T^{1}(M)=M$.
(2) Bilinear forms extend to exterior algebras. For any \mathbb{k}-modules L and M, and any \mathbb{k}-bilinear map $<,>: L \times M \rightarrow \mathbb{k}$ (i.e., linear in each variable); there is a unique \mathbb{k}-bilinear map $<,>: \stackrel{n}{\wedge} L \times \stackrel{n}{\wedge} M \rightarrow \mathbb{k}$, such that

$$
<l_{1} \wedge \cdots l_{n}, m_{1} \wedge \cdots \wedge m_{n}>=\operatorname{det}\left(<l_{i}, m_{j}>\right), \quad l_{i} \in L, m_{j} \in M
$$

(3) Free modules. If M is a free \mathbb{k}-module with a basis e_{1}, \ldots, e_{d}, then $\stackrel{k}{\wedge} M$ is a free \mathbb{k}-module with a basis $e^{J}=e_{j_{1}} \wedge \cdots \wedge e_{j_{k}}$, indexed by all subsets $J=\left\{j_{1}<\cdots<\right.$ $\left.j_{n}\right\} \subseteq I$ with k elements.
(4) Dimension. $\operatorname{dim}\left(\stackrel{\bullet}{\mathbb{C}^{n}}\right)=2^{n}$.

Categories

C1. Yoneda lemma. Let \mathcal{C} be a category.
(1) Any object $a \in \mathcal{C}$ defines a functor $F_{a}: \mathcal{C}^{o} \rightarrow \mathcal{S e t}$ by

$$
F_{a}(c) \stackrel{\text { def }}{=} \operatorname{Hom}_{\mathcal{C}}(c, a) .
$$

(2) Explain what does a "morphism of functors $\Phi: F_{a} \rightarrow F_{b}$ " consists of (which data and which properties)? What is a composition $\Psi \circ \Phi$ of morphisms of functors $\Phi: F_{a} \rightarrow F_{b}$ and $\Psi: F_{b} \rightarrow F_{c}$? What is $i d_{F_{a}}$?
(3) Any morphism of objects $\phi: a \stackrel{\cong}{\leftrightarrows} b$ in \mathcal{C} defines a morphism of functors $\widetilde{\phi}: F_{a} \rightarrow F_{b}$.
(4) $\widetilde{\psi \circ \phi}=\widetilde{\psi} \circ \widetilde{\phi}$ and $\widetilde{i d_{a}}=i d_{F_{a}}$. If ϕ is isomorphism in \mathcal{C} then $\widetilde{\phi}$ is an isomorphism of functors.
(5) Any morphism of functors $\Phi: F_{a} \rightarrow F_{b}$. defines a morphism of objects $\bar{\Phi} \in$ $\operatorname{Hom}_{\mathcal{C}}(a, b)$.
(6) $\overline{\Psi \circ \Phi}=\bar{\Psi} \circ \bar{\Phi}$ and $\overline{i d_{F_{a}}}=i d_{a}$. If Φ is isomorphism of functors then $\widetilde{\phi}$ is an isomorphism in \mathcal{C}.
(7) The two procedures above give inverse bijections between $\operatorname{Hom}_{\mathcal{C}}(a, b)$ and the set of morphisms of functors $F_{a} \rightarrow F_{b}$.
(8) Functor $\operatorname{Hom}_{\mathcal{C}}(-, a)$ determines a up to a unique isomorphism.

Sheaves

S1. Let $X=\mathbb{P}^{1}{ }_{\mathbb{C}}$.
(1) Show that the tangent sheaf \mathcal{T}_{X} is isomorphic to $\mathcal{O}(2)$.
(2) Show that the cotangent sheaf \mathcal{T}_{X}^{*} is isomorphic to $\mathcal{O}(-2)$.
(3) Find the dimensions of the Čech cohomology groups of \mathcal{T}_{X} and \mathcal{T}_{X}^{*}. (For the standard open cover of X.)

[^0]: ${ }^{1}$ The meaning of this formula when $p=0$ is the action of A on its module $M^{\otimes q}$ and the same when $q=0$.

