Homological algebra, Homework 3

Multilinear algebra III

Tensor algebras $T_A(M)$ of modules over commutative rings

Let A be a commutative ring with a unit. For any A-module M we will denote the by

$$T_A^n(M) \stackrel{\text{def}}{=} {\stackrel{n}{\otimes}}_A M \stackrel{\text{def}}{=} M^{\otimes n}, \ n \ge 0.$$

the *n*-tuple tensor product $M \underset{A}{\otimes} \cdot \cdot \cdot \otimes M$. For n = 0 this is – by definition – A itself, so it does not depend on M. For n = 1 this is the module M. For n > 1 we use the above construction of multiple tensor products.

1. Tensor algebra $T_A(M)$ of the A-module M. Show that the sum $T(M) \stackrel{\text{def}}{=} \sum_{n \geq 0} T^n(M)$ has a unique structure of an associative A-algebra, such that for all $p, q \geq 0$ and $m_i, n_j \in M$, the mutiplication in $T_A(M)$ is the cocatenation⁽¹⁾

$$(m_1 \otimes \cdots \otimes m_p) \cdot (n_1 \otimes \cdots \otimes n_q) = m_1 \otimes \cdots \otimes m_p \otimes n_1 \otimes \cdots \otimes n_q.$$

Remark. For this algebra structure structure pure tensors, i.e., those of the form $m_1 \otimes \cdots \otimes m_p$, are simply product $m_1 \cdots m_p$ of $m_i \in M = M^{\otimes 1} \subseteq TM$.

2. Universal property of tensor algebras. For each A-algebra B restriction

$$\operatorname{Hom}_{assoc.\ A-alg.\ with\ 1}(TM,B)\ni \phi \mapsto \phi|M\in \operatorname{Hom}_{A-modules}(M,B),$$
 is a bijection.

Remark. We say that T(M) is the A-algebra defined (generated) by the A-module M, or that T(M) is universal among all A-algebras B endowed with a map of A-modules $M \rightarrow B$.

Let k be a commutative algebra. Recall that all rings we consider are associative and have a unit. By an *algebra* we will always mean an associative algebra.

3. Algebras generated by generators and relations. To a k-module M and a set \mathcal{R} of algebraic relations between some elements of M, we will associate the *universal* algebra $k(M; \mathcal{R})$ in which these relations are satisfied.

What we mean by an algebraic relations between elements $m_{i,j}$ of M are intuitively the conditions of type

(*)
$$\sum_{i=1}^{k} a_i m_{i,1} \cdots m_{i,n_i} = 0$$

¹The meaning of this formula when p=0 is the action of A on its module $M^{\otimes q}$ and the same when q=0.

for some $a_i \in \mathbb{k}$. The precise meaning of such relations is that the expression on the left hand side defines an element $r = \sum_{i=1}^k a_i \cdot m_{i,1} \otimes \cdots \otimes m_{i,n_i}$ of the tensor algebra T(M). So any set of such relations defines

- (i) a subset $\mathcal{R}\subseteq T(M)$,
- (ii) a k-algebra $k(M; \mathcal{R}) \stackrel{\text{def}}{=} T(M) / < \mathcal{R} > \text{where} < \mathcal{R} > \text{denotes the 2sided ideal}$ in T(M) generated by \mathcal{R} ,
- (iii) a canonical map of k-modules $\iota \stackrel{\text{def}}{=} [M \subseteq T(M) \rightarrow k(M; \mathcal{R})].$
- (a) Show that for each \mathbb{k} -algebra B, $\operatorname{Hom}_{\mathbb{k}-algebras}[\mathbb{k}(M;\mathcal{R}),B]$ is naturally identified with the set of all $\beta \in \operatorname{Hom}_{\mathbb{k}-modules}(M,B)$, such that for all $r = \sum_{i=1}^k a_i \cdot m_{i,1} \otimes \cdots \otimes m_{i,n_i}$ in \mathcal{R} , the following relation between (images of) elements of M holds in B: $\sum_{i=1}^k a_i \cdot \beta(m_{i,1}) \cdots \beta(m_{i,n_i}) = 0$.

Remark. Let us summarize. An algebraic relation of type (*) between elements of M acquires meaning in any k-algebra B supplied with a map of k-modules $M \to B$. Algebra $k(M; \mathcal{R})$ is universal among all such k-algebras B that satisfy relations from \mathcal{R} .

Exterior algebras of modules over commutative rings

- (a) $^{\bullet}M$ is a graded algebra. Show that
 - (1) the ideal $I = \langle \mathcal{R} \rangle$ in T(M) is homogeneous, i.e., $I = \bigoplus_{n \geq 0} I^n$ for $I^n \stackrel{\text{def}}{=} I \cap T^n M$.
 - (2) $\stackrel{\bullet}{\wedge} M = T(M)/I$ is isomorphic to $\bigoplus_{n>0} \stackrel{n}{\wedge} M$ for $\stackrel{n}{\wedge} M \stackrel{\text{def}}{=} T^n(M)/I^n$.
 - (3) $\stackrel{\bullet}{\wedge} M$ is a graded algebra, i.e., $\stackrel{n}{\wedge} M \stackrel{\overline{m}}{\cdot \wedge} M \subseteq \stackrel{n+m}{\wedge} M, \ n, m \ge 0.$
- 5. Universal property of the exterior algebra. Show that for each \mathbb{k} -algebra B, $\operatorname{Hom}_{\mathbb{k}-algebras}[\stackrel{\bullet}{\wedge}M, B]$ can be identified with the set of all ϕ : $\operatorname{Hom}_{\mathbb{k}-modules}(M, B)$, such that the ϕ -images of elements of M anti-commute in B, i.e.,

$$\phi(y)\phi(x) = -\phi(x)\phi(y), \ x, y \in M.$$

- 6. Basic properties of exterior algebras.
 - (1) Low degrees. ${}^{0} \wedge M = T^{0}(M) = \mathbb{k}$ and ${}^{1} \wedge M = T^{1}(M) = M$.

(2) Bilinear forms extend to exterior algebras. For any k-modules L and M, and any k-bilinear map <, $>: L \times M \to k$ (i.e., linear in each variable); there is a unique k-bilinear map <, $>: \stackrel{n}{\wedge} L \times \stackrel{n}{\wedge} M \to k$, such that

$$\langle l_1 \wedge \cdots \mid l_n, m_1 \wedge \cdots \wedge m_n \rangle = \det(\langle l_i, m_j \rangle), \quad l_i \in L, m_j \in M.$$

- (3) **Free modules.** If M is a free k-module with a basis $e_1, ..., e_d$, then ${}^k M$ is a free k-module with a basis $e^J = e_{j_1} \wedge \cdots \wedge e_{j_k}$, indexed by all subsets $J = \{j_1 < \cdots < j_n\} \subseteq I$ with k elements.
- (4) **Dimension.** $\dim(\wedge^{\bullet} \mathbb{C}^n) = 2^n$.

Categories

C1. Yoneda lemma. Let \mathcal{C} be a category.

(1) Any object $a \in \mathcal{C}$ defines a functor $F_a : \mathcal{C}^o \to \mathcal{S}et$ by

$$F_a(c) \stackrel{\text{def}}{=} \text{Hom}_{\mathcal{C}}(c, a).$$

- (2) Explain what does a "morphism of functors $\Phi: F_a \to F_b$ " consists of (which data and which properties)? What is a composition $\Psi \circ \Phi$ of morphisms of functors $\Phi: F_a \to F_b$ and $\Psi: F_b \to F_c$? What is id_{F_a} ?
- (3) Any morphism of objects $\phi: a \xrightarrow{\cong} b$ in \mathcal{C} defines a morphism of functors $\widetilde{\phi}: F_a \to F_b$.
- (4) $\widetilde{\psi \circ \phi} = \widetilde{\psi} \circ \widetilde{\phi}$ and $i\widetilde{d}_a = id_{F_a}$. If ϕ is isomorphism in \mathcal{C} then $\widetilde{\phi}$ is an isomorphism of functors.
- (5) Any morphism of functors $\Phi: F_a \to F_b$. defines a morphism of objects $\overline{\Phi} \in \operatorname{Hom}_{\mathcal{C}}(a,b)$.
- (6) $\overline{\Psi \circ \Phi} = \overline{\Psi} \circ \overline{\Phi}$ and $\overline{id_{F_a}} = id_a$. If Φ is isomorphism of functors then $\widetilde{\phi}$ is an isomorphism in \mathcal{C} .
- (7) The two procedures above give inverse bijections between $\operatorname{Hom}_{\mathcal{C}}(a,b)$ and the set of morphisms of functors $F_a \to F_b$.
- (8) Functor $\operatorname{Hom}_{\mathcal{C}}(-,a)$ determines a up to a unique isomorphism.

Sheaves

S1. Let $X = \mathbb{P}^1_{\mathbb{C}}$.

- (1) Show that the tangent sheaf \mathcal{T}_X is isomorphic to $\mathcal{O}(2)$.
- (2) Show that the cotangent sheaf \mathcal{T}_X^* is isomorphic to $\mathcal{O}(-2)$.
- (3) Find the dimensions of the Čech cohomology groups of \mathcal{T}_X and \mathcal{T}_X^* . (For the standard open cover of X.)