Homological algebra, Homework 2

Multilinear Algebra II

1. Tensoring over a field. If A is a field then A-modules are vector spaces over A. Let $u_{i}, i \in I, v_{j}, j \in J$, be bases of U and V, show that $u_{i} \otimes v_{j}, i \in I, j \in J$; is a basis of $U \otimes V$ and $\operatorname{dim}(U \otimes \underset{A}{ } V)=\operatorname{dim}(U) \cdot \operatorname{dim}(V)$.
2. Tensoring of finite abelian groups over \mathbb{Z}. Show that $\mathbb{Z}_{n} \underset{\mathbb{Z}}{ } \mathbb{Z}_{m} \cong \mathbb{Z}_{k}$ for some k and calculate k.
3. Tensoring of algebras. Let A be a commutative ring and let B and C be A-algebras. Then $B \otimes_{A} C$ has a canonical structure of an algebra such that

$$
\left(b_{1} \otimes c_{1}\right) \cdot\left(b_{2} \otimes c_{)}=b_{1} b_{2} \otimes c_{1} c_{2}\right.
$$

Multiple tensor products,
When one has a sequence of bimodules M_{1}, \ldots, M_{n} where each M_{i} is an $\left(A_{i-1}, A_{i}\right)$-bimodule $(1 \leq i \leq n)$ one defines the multiple tensor product $M_{1} \otimes_{A_{1}} M_{2} \otimes_{A_{2}} \cdots \otimes_{A_{n-1}} M_{n}$ as a quotient F / R of a free abelian group F with a basis $M_{1} \times \cdots \times M_{n}$, by the subgroup \mathcal{A} generated by the elements of the following forms (here $1 \leq i \leq n$ and $m_{i} \in M_{i}, a_{i} \in A_{i}$):
(1) $\left(m_{1}, \ldots, m_{i}^{\prime}+m_{i}^{\prime \prime}, \ldots, m_{n}\right)-\left(m_{1}, \ldots, m_{i}^{\prime}, \ldots, m_{n}\right)-\left(m_{1}, \ldots, m_{i}^{\prime \prime}, \ldots, m_{n}\right)$,
(2) $\left(m_{1}, \ldots, m_{i-1} \cdot a_{i}, \ldots, m_{n}\right)-\left(m_{1}, \ldots, a_{i} \cdot m_{i}, \ldots, m_{n}\right)$

The image of $\left(m_{1}, \ldots, m_{n}\right) \in F$ in $M_{1} \otimes_{A_{1}} M_{2} \otimes_{A_{2}} \cdots \otimes_{A_{n}} M_{n}$ is denoted $m_{1} \otimes \cdots \otimes m_{n}$. Denote by $\pi: M_{1} \times \cdots \times M_{n} \rightarrow M_{1} \otimes_{A_{1}} M_{2} \otimes_{A_{2}} \cdots \otimes_{A_{n-1}} M_{n}, \pi\left(m_{1}, \ldots, m_{n}\right)=m_{1} \otimes \cdots \otimes m_{n}$ the composition $M_{1} \times \cdots \times M_{n} \hookrightarrow F \rightarrow M_{1} \otimes_{A_{1}} M_{2} \otimes_{A_{2}} \cdots \otimes_{A_{n-1}} M_{n}$.
4. Multiple tensor products. (a) Show that in $M_{1} \otimes_{A_{1}} M_{2} \otimes_{A_{2}} \cdots \otimes_{A_{n-1}} M_{n}$
(1) $m_{1} \otimes \cdots \otimes m_{i}^{\prime}+m_{i}^{\prime \prime} \otimes \cdots \otimes m_{n}=m_{1} \otimes \cdots \otimes m_{i}^{\prime} \otimes \cdots \otimes m_{n}+m_{1} \otimes \cdots \otimes m_{i}^{\prime \prime} \otimes \cdots \otimes m_{n}$, ,
(2) $m_{1} \otimes \cdots \otimes m_{i-1} \cdot a_{i} \otimes m_{i} \otimes \cdots \otimes m_{n}=m_{1} \otimes \cdots \otimes m_{i-1} \otimes a_{i} \cdot m_{i} \otimes \cdots \otimes m_{n}$.
(b) Each element of $M_{1} \otimes_{A_{1}} M_{2} \otimes_{A_{2}} \cdots \otimes_{A_{n-1}} M_{n}$ is a finite sum of the form $\sum_{k=1}^{p} m_{k, 1} \otimes \cdots \otimes m_{k, n}$ with $m_{k, i} \in M_{i}$.
5. Bimodule structure. Show that $M_{1} \otimes M_{A_{1}} M_{A_{2}} \otimes \underset{A_{n-1}}{\otimes} M_{n}$ is an $\left(A_{0}, A_{n}\right)$-bimodule.
6. Universal property. Let M_{i} be an $\left(A_{i-1}, A_{i}\right)$-bimodule $(1 \leq i \leq n)$, and H an abelian group. We say that a map $\phi: M_{1} \times \cdots \times M_{n} \rightarrow H$ is balanced if it is additive in each factor and balanced in rings A_{1}, \ldots, A_{n-1}, i.e.,
(1) $\phi\left(m_{1}, \ldots, m_{i}^{\prime}+m_{i}^{\prime \prime}, \ldots, m_{n}\right)=\phi\left(m_{1}, \ldots, m_{i}^{\prime}+m_{i}^{\prime \prime}, \ldots, m_{n}\right)+\phi\left(m_{1}, \ldots, m_{i}^{\prime}+m_{i}^{\prime \prime}, \ldots, m_{n}\right)$, and
(2) $\phi\left(m_{1}, \ldots, m_{i-1}, a_{i} m_{i}, \ldots, m_{n}\right)=\phi\left(m_{1}, \ldots, m_{i-1} a_{i}, m_{i}, \ldots, m_{n}\right)$.

Show that (a) Map π is balanced. and (b) Map π gives a bijection between all balanced $\operatorname{maps} \phi: M_{1} \times \cdots \times M_{n} \rightarrow H$ and all maps of abelian groups $\psi: M_{1} \otimes_{A_{1}} \cdots \otimes_{A_{n-1}} M_{n} \rightarrow H$, by $\psi \mapsto \psi \circ \pi$. ${ }^{(1)}$
7. Associativity. This definition is associative in the sense that there are canonical isomorphisms

$$
\begin{aligned}
& \left(M_{1} \otimes \cdots \underset{A_{1}}{\otimes} \otimes M_{p_{1}-1}\right) \underset{A_{p_{1}}}{\otimes}\left(M_{p_{1}+1} \underset{A_{p_{1}+1}}{\otimes} \cdots \underset{A_{p_{1}+p_{2}-1}}{\otimes} M_{p_{1}+p_{2}}\right) \underset{A_{p_{1}+p_{2}}}{\otimes} \cdots \otimes\left(M_{p_{1}+\cdots+p_{k-1}+1} \otimes \cdots \otimes M_{p_{1}+\cdots+p_{k}}\right) \\
& \cong M_{A_{1}}^{\otimes} \underset{A_{1}}{\otimes} M_{2} \otimes \cdots \underset{A_{p_{1}+\cdots+p_{k}-1}}{\otimes} M_{p_{1}+\cdots+p_{k}} .
\end{aligned}
$$

8. Two factors. For $n=2$ this notion of a tensor product agrees with the one introduced previously.
9. Commutative rings. If the rings A_{i} are all commutative explain how the above construction defines a multiple tensoring operation $M_{1} \otimes_{A_{1}} M_{2} \otimes_{A_{2}} \cdots \otimes_{A_{n-1}} M_{n}$ for when each M_{i} is a left module for A_{i-1} and A_{i}, and these two actions commute.

Duality of modules over a ring

D1. Dualizing maps. Let \mathbb{k} be a ring. For a left \mathbb{k}-module $M=\mathbb{k} \in \mathfrak{m}^{l}(\mathbb{k})$ show that
(a) The map that assigns to $a \in \mathbb{k}$ the operator of right multiplication $R_{a} x \stackrel{\text { def }}{=} x \cdot a$, gives an isomorphism of right \mathbb{k}-modules $\mathbb{k} \xrightarrow{R} \mathbb{k}^{*}$. [One could denote it more precisely by $\mathbb{k}_{R} \xrightarrow{R}\left({ }_{k} \mathbb{K}\right)^{*}$.
(b) $\iota_{\mathbb{k}}$ is an isomorphism.

D2. The dual of the structure sheaf of a point in a plane. For the point Y in a plane \mathbb{A}^{2} show that

$$
L \mathbb{D}[\mathcal{O}(Y)] \cong \mathcal{O}(Y)[-2]
$$

(i.e., calculate the cohomology of $\mathbb{D} P^{\bullet}$ for the resolution P^{\bullet} from ??).

[^0]
[^0]: ${ }^{1}$ We say that π is universal among all balanced maps from $M_{1} \times \cdots \times M_{n}$ to an abelian group, because every such map ϕ factors through π.

