\heartsuit

Ext and Tor

Problem 1. If M, N are modules for a ring A we know that the functor $\operatorname{Hom}_A(-, M)$: $\mathfrak{m}(A)^o \to \mathcal{A}b$ is right exact and the functor $\operatorname{Hom}_A(N, -)$: $\mathfrak{m}(A) \to \mathcal{A}b$ is left exact. Their derived functors are called Ext-functors :

 $'\operatorname{Ext}_{A}^{i}(N,M) \stackrel{\text{def}}{=} L^{i}\operatorname{Hom}_{A}(-,M)$ (N) and $''\operatorname{Ext}_{A}^{i}(N,M) \stackrel{\text{def}}{=} R^{i}\operatorname{Hom}_{A}(N,-)$ (M). Prove that 'Ext =" Ext (then we will denote either construction just by $\operatorname{Ext}_{A}^{n}(M,N)$):

- (1) For a projective resolution P of M and an injective resolution I of N define a structure of a bicomplex on $\text{Hom}_A(P, Q)$.
- (2) Use the two spectral sequences of this bicomplex to construct canonical isomorphisms $'\operatorname{Ext}_{A}^{n}(M, N) \cong'' \operatorname{Ext}_{A}^{n}(M, N)$.

Problem 2. Let M be a right A-module and N a left A-module for a ring A. We know that the functors

$$M \otimes_A - : \mathfrak{m}^l(A)^o \to \mathcal{A}b \quad \text{and} \quad - \otimes_A N : \mathfrak{m}^r(A)^o \to \mathcal{A}b$$

are both right exact. Their derived functors are called Tor-functors :

 $\operatorname{Tor}_n^A(M,N) \stackrel{\text{def}}{=} R^{-n}(-\otimes_A N)(M) \text{ and } \operatorname{Tor}_n^A(M.N) \stackrel{\text{def}}{=} R^{-n}(M \otimes_A -)(N).$

Prove that 'Tor =" Tor using spectral sequences. (Then we will denote either construction simply by $\operatorname{Tor}_n^A(M, N)$.)

Group cohomology IV

Recall how we have introduced the group cohomology $H^*(G, M)$ for a group G and a representation $M \in Rep_{Ab}(G)$ of G in the category of abelian groups. First we have though of representations of G as modules for the group algebra $\mathbb{Z}[G]$. Then we chose a specific resolution P of the the trivial G-module \mathbb{Z} by free $\mathbb{Z}[G]$ -modules. This gives a complex $Hom_G(P, M)$ in abelian groups and $H^*(G, M)$ was defined as the cohomology of the complex $Hom_G(P, M)$.

Problem 3. Prove that

- (1) In terms of the above Ext-terminology we can now write $H^n(G, M)$ as $'\operatorname{Ext}^n_{\mathbb{Z}[G]}(\mathbb{Z}, M)$.
- (2) "Ext $_{\mathbb{Z}[G]}^{n'}(\mathbb{Z}, M)$ are the derived functors $(\mathbb{R}^{n}I)(M)$ of the left exact functor of invariants

 $I: Rep_{\mathcal{A}b}(G) \to \mathcal{A}b, \quad I(M) \stackrel{\text{def}}{=} \{m \in M; gm = m \text{ for all } g \in G\}.$

(3) The group cohomology functors $H^n(G, -)$ are the derived functors $R^n I$ of the functor I of G-invariants.

Now we define the group homology $H_n(G, M)$ as the left derived functors $(L^{-n}C)M$ of the functor of *coinvariants*

$$C: \operatorname{Rep}_{\mathcal{A}b}(G) \to \mathcal{A}b, \quad C(M) \stackrel{\text{def}}{=} \frac{M}{\sum_{g \in G} (g-1)M}$$

Problem 4. Prove that

- (1) The functor C of G-coinvariants is isomorphic to the functor $\mathbb{Z} \otimes_{\mathbb{Z}(G)} -$.
- (2) C is right exact.
- (3) The group homology functors $H_n(G, M)$ defined above can be computed as

$$H^{-n}(P \otimes_{\mathbb{Z}[G]} M)$$

for any free resolution P of the trivial $\mathbb{Z}[G]$ -module \mathbb{Z} .

Problem 5. Prove that the first group homology functor $H_1(G, -)$ applied to the trivial G-module \mathbb{Z} gives the maximal abelian quotient G^{ab} of the group G.