Homological algebra, Homework 10

\bigcirc

Ext and Tor

Problem 1. If M, N are modules for a ring A we know that the functor $\operatorname{Hom}_{A}(-, M)$: $\mathfrak{m}(A)^{o} \rightarrow \mathcal{A} b$ is right exact and the functor $\operatorname{Hom}_{A}(N,-): \mathfrak{m}(A) \rightarrow \mathcal{A} b$ is left exact. Their derived functors are called Ext-functors :
${ }^{\prime} \operatorname{Ext}_{A}^{i}(N, M) \stackrel{\text { def }}{=} L^{i} \operatorname{Hom}_{A}(-, M)(N) \quad$ and $\quad " \operatorname{Ext}_{A}^{i}(N, M) \stackrel{\text { def }}{=} R^{i} \operatorname{Hom}_{A}(N,-)(M)$.
Prove that ${ }^{\prime}$ Ext $={ }^{\prime \prime}$ Ext (then we will denote either construction just by $\operatorname{Ext}_{A}^{n}(M, N)$):
(1) For a projective resolution P of M and an injective resolution I of N define a structure of a bicomplex on $\operatorname{Hom}_{A}(P, Q)$.
(2) Use the two spectral sequences of this bicomplex to construct canonical isomorphisms ${ }^{\prime} \operatorname{Ext}_{A}^{n}(M, N) \cong{ }^{\prime \prime} \operatorname{Ext}_{A}^{n}(M, N)$.

Problem 2. Let M be a right A-module and N a left A-module for a ring A. We know that the functors

$$
M \otimes_{A}-: \mathfrak{m}^{l}(A)^{o} \rightarrow \mathcal{A} b \quad \text { and } \quad-\otimes_{A} N: \mathfrak{m}^{r}(A)^{o} \rightarrow \mathcal{A} b
$$

are both right exact. Their derived functors are called Tor-functors :

$$
\operatorname{Tor}_{n}^{A}(M, N) \stackrel{\text { def }}{=} R^{-n}\left(-\otimes_{A} N\right)(M) \quad \text { and } \quad " \operatorname{Tor}_{n}^{A}(M . N) \stackrel{\text { def }}{=} R^{-n}\left(M \otimes_{A}-\right)(N)
$$

Prove that 'Tor $=$ " Tor using spectral sequences. (Then we will denote either construction simply by $\operatorname{Tor}_{n}^{A}(M, N)$.)

Group cohomology IV

Recall how we have introduced the group cohomology $H^{*}(G, M)$ for a group G and a representation $M \in \operatorname{Re} p_{\mathcal{A} b}(G)$ of G in the category of abelian groups. First we have though of representations of G as modules for the group algebra $\mathbb{Z}[G]$. Then we chose a specific resolution P of the the trivial G-module \mathbb{Z} by free $\mathbb{Z}[G]$-modules. This gives a complex $\operatorname{Hom}_{G}(P, M)$ in abelian groups and $H^{*}(G, M)$ was defined as the cohomology of the complex $\operatorname{Hom}_{G}(P, M)$.

Problem 3. Prove that
(1) In terms of the above Ext-terminology we can now write $H^{n}(G, M)$ as $' \operatorname{Ext}_{\mathbb{Z}[G]}^{n}(\mathbb{Z}, M)$.
(2) " $\operatorname{Ext}_{\mathbb{Z}[G]}^{n}(\mathbb{Z}, M)$ are the derived functors $\left(R^{n} I\right)(M)$ of the left exact functor of invariants

$$
I: \operatorname{Rep}_{\mathcal{A} b}(G) \rightarrow \mathcal{A} b, \quad I(M) \stackrel{\text { def }}{=}\{m \in M ; g m=m \text { for all } g \in G\}
$$

(3) The group cohomology functors $H^{n}(G,-)$ are the derived functors $R^{n} I$ of the functor I of G-invariants.

Now we define the group homology $H_{n}(G, M)$ as the left derived functors $\left(L^{-n} C\right) M$ of the functor of coinvariants

$$
C: \operatorname{Rep}_{\mathcal{A} b}(G) \rightarrow \mathcal{A} b, \quad C(M) \stackrel{\text { def }}{=} \frac{M}{\sum_{g \in G}(g-1) M} .
$$

Problem 4. Prove that
(1) The functor C of G-coinvariants is isomorphic to the functor $\mathbb{Z} \otimes_{\mathbb{Z}(G)}-$.
(2) C is right exact.
(3) The group homology functors $H_{n}(G, M)$ defined above can be computed as

$$
H^{-n}\left(P \otimes_{\mathbb{Z}[G]} M\right)
$$

for any free resolution P of the trivial $\mathbb{Z}[G]$-module \mathbb{Z}.

Problem 5. Prove that the first group homology functor $H_{1}(G,-)$ applied to the trivial G-module \mathbb{Z} gives the maximal abelian quotient $G^{\text {ab }}$ of the group G.

