HOMOLOGICAL ALGEBRA

Contents

X. Sheaves 1
0.1. Presheaves and sheaves 1
0.2. Global sections functor $\Gamma: \operatorname{Sheaves}(X) \rightarrow$ Set 3
0.3 . Projective line \mathbb{P}^{1} over \mathbb{C} 4
0.4. Čech cohomology of a sheaf \mathcal{A} with respect to a cover \mathcal{U} 4
0.5. Vector bundles 6
0.6. Čech cohomology of line bundles on \mathbb{P}^{1} 7
0.7 . Geometric representation theory 8
0.8. Relation to topology 8

X. Sheaves

Sheaves are a machinery which addresses an essential problem - the relation between local and global information. So they appear throughout mathematics.

0.1. Presheaves and sheaves.

0.1.1. Presheaves. Consider a topological space (X, τ) where τ is a topology on the set X. A presheaf on X with values in a given category \mathcal{C} consists of

- for each open $U \subseteq X$ an object $\mathcal{S}(U)$ in the category \mathcal{C},
- for each inclusion of open subsets $V \subseteq U \subseteq X$ a morphism $\mathcal{S}(U) \xrightarrow{\rho_{V}^{U}} \mathcal{S}(V)$ in \mathcal{C} (we call it the restriction map);
such that the trivial restriction ρ_{U}^{U} is $1_{\mathcal{S}(U)}$ and for $W \subseteq V \subseteq U$ we have $\rho_{V}^{U} \circ \rho_{V}^{U}=\rho_{W}^{U}$.
Remark. If τ is considered as a poset for $U \leq V$ if $U \supseteq V$ then a presheaf is just a functor $\mathcal{S}:(\tau, \leq) \rightarrow \mathcal{C}$.

Date: ?

Examples. (0) If Y is another topological space we can associate to each open $U \subseteq X$ the set $\mathcal{C}_{X}(U, Y) \stackrel{\text { def }}{=} \operatorname{Map}_{\mathcal{T}_{\text {op }}}(U, Y)$ of continuous maps from U to Y. Then $\mathcal{C}_{X}(-, Y)$ is a presheaf for the operations ρ_{V}^{U} given by restrictions of functions.
(1) Let M is any smooth manifold, say \mathbb{R}^{n}. Let V denote \mathbb{R} or \mathbb{C}. The notion of V-valued smooth functions on X gives a presheaf $\mathcal{C}_{M}^{\infty}(-, V)$ on M with values in the category $A l g_{\mathbb{R}}$ of \mathbb{R}-algebras. To each open $U \subseteq X$ it associates the \mathbb{R}-algebra $C^{\infty}(U, V)$ of smooth functions on U with values in V. The maps ρ_{V}^{U} are again the restriction maps.
(gluing) if the functions $f_{i} \in C^{\infty}\left(U_{i}\right)$ on open subsets $U_{i} \subseteq X, i \in I$, are compatible in the sense that $f_{i}=f_{j}$ on the intersections $U_{i j} \stackrel{\text { def }}{=} U_{i} \cap U_{j}$, then they glue into a unique smooth function f on $U=\cup_{i \in I} U_{i}$.

So, smooth functions can be restricted and glued from compatible pieces.
More generally, if we choose V to be any finite dimensional real vector space V we again get a presheaf $\mathcal{C}_{M}^{\mathcal{Y}}(-, V)$ on M but this time with values in the category $\mathcal{V} e c_{\mathbb{R}}$ of real vector spaces. We can even let V be any smooth manifold then $\mathcal{C}_{M}^{\mathcal{y}}(-, V)$ is a presheaf $\mathcal{C}_{M}^{\mathcal{Y}}(-, V)$ withe values in Set.
(3) To a set S one can associated the constant presheaf $\underline{S_{X}}$ on any topological space X - we choose $\underline{S_{X}}(U)$ to S for any U and all maps ρ_{V}^{U} to be identity.

Remark. We will mostly consider categories of structured sets, i.e., categories \mathcal{C} whose objects are sets with some extra structure ("of type \mathcal{C} "). For instance \mathcal{C} could be one of categories \mathcal{S} et, $\mathcal{A} b$, \mathcal{R} ing, $\mathfrak{m}(\mathbb{k})$ etc.
Then for a \mathcal{C}-valued presheaf \mathcal{S} any $\mathcal{S}(U)$ is in particular a set and we can consider its elements. An element $s \in \mathcal{S}(U)$ is called a section of the presheaf \mathcal{S} on U.

We will say that for $W \subseteq U, V$, two sections $a \in \mathcal{S}(U)$ and $b \in \mathcal{S}(V)$ are the same on W if $\rho_{W}^{U} a=\rho_{W}^{V} b$ in the set $\mathcal{S}(W)$.
0.1.2. Sheaves on a topological space. Any presheaf \mathcal{F} is a mechanism that relates some global information $\mathcal{F}(X)$ to local information $\mathcal{F}(U)$ for open U 's by restriction maps ρ_{V}^{U}. However, we are really interested in a stronger relation.

Let \mathcal{C} be some category of structured sets. A \mathcal{C}-valued sheaf \mathcal{F} on a topological space (X, \mathcal{T}) is a \mathcal{C}-valued presheaf that satisfies the following gluing property:

- Let $\mathcal{U}=\left(U_{i}\right)_{i \in I}$ be an open cover of an open $U \subseteq X$. Let f_{\bullet} be a family of sections $f_{i} \in \mathcal{F}\left(U_{i}\right), i \in I$, which are compatible in the sense that for any pair $i, j \in I$ the sections f_{i} and f_{j} are the same on $U_{i j} \stackrel{\text { def }}{=} U_{i} \cap U_{j}$ (i.e., $\rho_{U_{i j}}^{U_{i}} f_{i}=\rho_{U_{i j}}^{U_{i}} f_{j}$). Then there is a unique $f \in \mathcal{S}(U)$ such that $\rho_{U_{i}}^{U} f=f_{i}$ in $\mathcal{S}\left(U_{i}\right), i \in I$.

Examples. (a) Local property. The gluing property holds for arbitrary functions: if one knows them on U_{i} and they agree on intersections then they do define a function of U.

The property remains to hold for classes of functions which are defined by a local property. For instance examples $\mathcal{C}_{X}(-, Y)$ and $\mathcal{C}^{\infty}(-, V)$ are sheaves because continuity and infinite differentiability of a function can be checked on arbitrary near each point (on an arbitrary small neighborhood). For instance, for a given function f being: (i) a function with values in a given S, (ii) non-vanishing (i.e., invertible), (iii) a solution of a given system $(*)$ of differential equations; these are all local conditions: they can be checked in a neighborhood of each point.
Other classes of functions need not form sheaves. Say, on \mathbb{R} associating to each open U the square integrable functions $L^{2}(U)$ is a presheaf but not a sheaf since the constant function is locally L^{2} but not globally. Another property that is not local is compact support (denoted here $C_{c}(-)$), actually for $U \supseteq V$ one does not even have a restriction map $C_{c}(U) \rightarrow C_{c}(V)$. ${ }^{\sqrt{1}}$
(b) Sheafification. The constant presheaf $\underline{S_{X}}$ is not a sheaf because if $U, V \subseteq X$ are disjoint and $a, b \in S$ are viewed as sections $a \in \overline{\overline{S_{X}}}(U)$ and $b \in \underline{S_{X}}(V)$ then they agree on the intersection $U \cap V=\emptyset$ but can not be glued a section in $\mathcal{S}(U \cup V)=S$. However, it is an obvious improvement $S_{X} \supseteq \underline{S_{X}}$ which is a sheaf. The constant sheaf S_{X} on X is defined by

$$
S_{X}(U) \text { is the set of locally constant functions from } U \text { to } X \text {. }
$$

[Notice that $\underline{S_{X}}$ can be viewed as the presheaf of constant functions with values in S and "constant" is not a local property.
We will generalize this example by a procedure ("sheafification") which canonically improves any presheaf to a sheaf.
(c) Most any geometric structure can be described as a ringed space $\left(X, \mathcal{O}_{X}\right)$ where X is a topological space and \mathcal{O}_{X} is a sheaf of rings on X which we call the structure sheaf of the geometric object. For instance \mathcal{O}_{X} can be continuous functions $\mathbb{C}_{X}(-, \mathbb{R})$ or smooth functions $\mathcal{C}_{X}^{\infty}(-, \mathbb{R})$ or holomorphic functions of or "polynomial". In each of these cases the topology on X and the sheaf contain all information on the structure of X.
0.2. Global sections functor $\Gamma: \operatorname{Sheaves}(X) \rightarrow$ Set. Elements of $\mathcal{S}(U)$ are called the sections of a sheaf \mathcal{S} on $U \subseteq X$ (this terminology is from classical geometry). By $\Gamma(X, \mathcal{S})$ we denote the set $\mathcal{S}(X)$ of global sections.
The construction $\mathcal{S} \mapsto \Gamma(\mathcal{S})$ means that we are looking at global objects in a given class \mathcal{S} of objects. We will see that that the construction Γ comes with a hidden part, the cohomology $\mathcal{S} \mapsto H^{\bullet}(X, \mathcal{S})$ of sheaves on X.
Γ acquires different meaning when applied to different classes of sheaves. For instance for the constant sheaf $\mathrm{pt}_{X}, \Gamma\left(X, \mathrm{pt}_{X}\right)$ is the set of connected components of X. On any smooth manifold $X, \Gamma\left(C^{\infty}\right)=C^{\infty}(X)$ is "huge" and there are no higher cohomologies

[^0]("nothing hidden"). The holomorphic setting is more subtle in this sense, on a compact connected complex manifold $\Gamma\left(X, \mathcal{H}_{H}\right)$ consists of only the constant functions and a lot of information may be stored in higher cohomology groups.
0.2.1. Solutions of differential equations. Solutions of a system $(*)$ of differential equation on X form a sheaf $\mathcal{S o l}_{(*)}$. If X is an interval I in \mathcal{R} and $(*)$ is one equation of the form $y^{(n)}+a_{1}(t) y^{(n-1)}+\cdots+a_{0}(t)=0$ with $a_{i} \in C^{\infty}(I)$ then any point $c \in I$ gives evaluation isomorphism of vector spaces $\mathcal{S o l}_{(*)}(I) \xrightarrow{E_{c}} \mathbb{C}^{n}$ by $E_{c}(y)=\left(y(c), \ldots, y^{(n-1)}(c)\right)$ (solutions correspond to initial conditions!). The sheaf theoretic encoding of this property of the initial value problem is :

Lemma. $\mathcal{S o l}_{(*)}$ is a constant sheaf on X.
On the other hand let $(*)$ be the equation $z y^{\prime}=\lambda y$ considered as equation in holomorphic functions on $X=\mathbb{C}^{*}$. The solutions are multiples of functions z^{λ} defined using a branch of logarithm. On any disc $D \subseteq X$, evaluation at a point $c \in D$ still gives $\mathcal{S o l}_{(*)}(D) \xlongequal{\cong} \mathbb{C}$, so the local behavior of the is simple - it is a locally constant sheaf. However, $\Gamma\left(X, \mathcal{S o l}_{(*)}\right)=0$ if $\lambda \notin \mathbb{Z}$ (any global solution would change by a factor of $e^{2 \pi i \lambda}$ as we move once around the origin). So locally there is the expected amount but nothing globally.
0.3. Projective line \mathbb{P}^{1} over $\mathbb{C} . \mathbb{P}^{1}=\mathbb{C} \cup \infty$ can be covered by $U_{1}=U=\mathbb{C}$ and $U_{2}=V=\mathbb{P}^{1}-\{0\}$. We think of $X=\mathbb{P}^{1}$ as a complex manifold by identifying U and V with \mathbb{C} using coordinates u, v such that on $U \cap V$ one has $u v=1$.

Lemma. $\Gamma\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}\right)=\mathbb{C}$.
Proof. (1) Proof using a cover. A holomorphic function f on X restricts to $f \mid U=$ $\sum_{n \geq 0} \alpha_{n} u^{n}$ and to $f \mid V=\sum_{n \geq 0} \beta_{n} v^{n}$. On $U \cap V=\mathbb{C}^{*}, \sum_{n \geq 0} \alpha_{n} u^{n}=\sum_{n \geq 0} \beta_{n} u^{-n}$, and therefore $\alpha_{n}=\beta_{n}=0$ for $n \neq 0$.
(2) Proof using maximum modulus principle. The restriction of a holomorphic function f on X to $U=\mathbb{C}$ is a bounded holomorphic function (since X is compact), hence a constant.
0.4. Čech cohomology of a sheaf \mathcal{A} with respect to a cover \mathcal{U}. Let $\mathcal{U}=\left(U_{i}\right)_{i \in I}$ be an open cover of X. We will use finite intersections $U_{i_{0}, \ldots, i_{p}} \stackrel{\text { def }}{=} U_{i_{0}} \cap \cdots \cap U_{i_{p}}$.
0.4.1. Calculations of global sections using a cover. Motivated by the calculation of global sections in 0.3, to a sheaf \mathcal{A} on X we associate

- Set $\mathcal{C}^{0}(\mathcal{U}, \mathcal{A}) \stackrel{\text { def }}{=} \prod_{i \in I} \mathcal{A}\left(U_{i}\right)$ whose elements are systems $f=\left(f_{i}\right)_{i \in I}$ with one section $f_{i} \in \mathcal{A}\left(U_{i}\right)$ for each open set U_{i},
- $\mathcal{C}^{1}(\mathcal{U}, \mathcal{A}) \stackrel{\text { def }}{=} \prod_{(i, j) \in I^{2}} \mathcal{A}\left(U_{i j}\right)$ whose elements are systems $g=\left(g_{i j}\right)_{I^{2}}$ of sections $g_{i j}$ on all intersections $U_{i j}$.

Now, if \mathcal{A} is a sheaf of abelian groups we can reformulate the calculations of global sections of \mathcal{A} in terms of the open cover \mathcal{U}

For this we encode the comparison of f_{i} 's on intersections $U_{i j}$ in terms of a map d : $\mathcal{C}^{0}(\mathcal{U}, \mathcal{A}) \xrightarrow{d} \mathcal{C}^{1}(\mathcal{U}, \mathcal{A})$ which sends $f=\left(f_{i}\right)_{I} \in \mathcal{C}^{0}$ to df $f \in C^{1}$ with

$$
(d f f)_{i j}=\rho_{U_{i j}}^{U_{j}} f_{j}-\rho_{U_{i j}}^{U_{i}} f_{i} .
$$

More informally, $(d f f)_{i j}=f_{j}\left|U_{i j}-f_{i}\right| U_{i j}$.
Lemma. $\Gamma(\mathcal{A}) \xrightarrow{\cong} \operatorname{Ker}\left[C^{0}(\mathcal{U}, \mathcal{A}) \xrightarrow{d} C^{1}(\mathcal{U}, \mathcal{A})\right]$.
0.4.2. Čech complex $\mathcal{C}^{\bullet}(\mathcal{U}, \mathcal{A})$. Emboldened, we try more of the same and define the abelian groups

$$
\mathcal{C}^{n}(\mathcal{U}, \mathcal{A}) \stackrel{\text { def }}{=} \prod_{\left(i_{0}, \ldots, i_{n}\right) \in I^{n}} \mathcal{A}\left(U_{i_{0}, \ldots, i_{n}}\right)
$$

of systems of sections on multiple intersections, and relate them by the maps $\mathcal{C}^{n}(\mathcal{U}, \mathcal{A}) \xrightarrow{d^{n}}$ $\mathcal{C}^{n+1}(\mathcal{U}, \mathcal{A})$ which sends $f=\left(f_{i_{0}, \ldots, i_{n}}\right)_{I^{n}} \in \mathcal{C}^{n}$ to $d^{n} f \in \mathcal{C}^{n+1}$ with

$$
\left(d^{n} f\right)_{i_{0}, \ldots, i_{n+1}}=\sum_{s=0}^{n+1}(-1)^{s} f_{i_{0}, \ldots, i_{s-1}, i_{s+1}, \ldots, i_{n+1}}
$$

Lemma. $\left(\mathcal{C} \bullet(\mathcal{U}, \mathcal{A}), d^{\bullet}\right)$ is a complex, i.e., $d . \circ d^{n-1}=0$.
0.4.3. Čech cohomology $\check{H}^{\bullet}(X, \mathcal{U} ; \mathcal{A})$. It is defined as the cohomology of the Čech complex $\mathcal{C} \bullet(\mathcal{U}, \mathcal{A})$. We have already observed that

Lemma. $\check{H}^{0}(X, \mathcal{U} ; \mathcal{A})=\Gamma(\mathcal{A})$.
0.4.4. The "small Čech complex". If the set I has a complete ordering, we can choose in $\mathcal{C}^{n}(\mathcal{U}, \mathcal{A}) \stackrel{\text { def }}{=} \prod_{\left(i_{0}, \ldots, i_{n}\right) \in I^{n}} \mathcal{A}\left(U_{i_{0}, \ldots, i_{n}}\right)$ a subgroup $C^{n}(\mathcal{U}, \mathcal{A}) \stackrel{\text { def }}{=} \prod_{i_{0}<\cdots<i_{n}} \mathcal{A}\left(U_{i_{0}, \ldots, i_{n}}\right)$. This is what we will usually use in computations since it is smaller but it also computes the Čech cohomology:

Lemma. (a) $C^{\bullet}(\mathcal{U}, \mathcal{A}) \subseteq \check{C}^{\bullet}(\mathcal{U}, \mathcal{A})$ is a subcomplex (i.e., it is invariant under the differential).
(b) Map of complexes $C^{\bullet}(\mathcal{U}, \mathcal{A}) \subseteq \mathcal{C}^{\bullet}(\mathcal{U}, \mathcal{A})$ is a quasi-isomorphism.

Proof. (a) is clear. (b) is intuitively plausible since the extra data in \mathcal{C} is a duplication of data in $C \bullet$, say \mathcal{C}^{1} contains $\mathcal{S}\left(U_{i i}\right)=\mathcal{S}\left(U_{i}\right) \subseteq C^{0}$ and for $i<j$ it contains $\mathcal{S}\left(U_{i j}\right)$ the second time under the name $\mathcal{S}\left(U_{j i}\right)$.
0.5. Vector bundles. We recall the notion of a vector bundle, i.e., a vector space smeared over a topological space. We will be interested in calculating cohomology of sheaves associated to vector bundles.
0.5.1. Vector bundle over space X. In general one can extend many notions to the relative setting over some base X. For instance, a reasonable notion of a "vector space over a set $X "$ is a collection $V=\left(V_{x}\right)_{x \in X}$ of vector spaces, one for each point of X. Then the total space $V=\sqcup_{x \in X} V_{x}$ maps to X and the fibers are vector spaces. If X is a topological space, we want the family of V_{x} to be "continuous in x ". This leads to the notion of a vector bundle over a topological space.

Le $\mathbb{k}=\mathbb{R}$ or \mathbb{C}. The data for a \mathbb{k}-vector bundle of rank n over a topological space X consists of a map of topological spaces $\pi: V \rightarrow X$ and the vector space structures on fibers $V_{x}=\pi^{-1} x, x \in X$. These data should locally be isomorphic to to $X \times \mathbb{k}^{n}$ in the sense that each point has a neighborhood U such that there exists a homeomorphism $\phi: V \mid U \stackrel{\text { def }}{=} \pi^{-1} U \xrightarrow{\cong} U \times \mathbb{K}^{n}$ such that

and that the corresponding maps of fibers $V_{x} \rightarrow \mathbb{k}^{n}, x \in U$, are isomorphisms of vector bundles.

Similarly one defines vector bundle over manifolds or over complex manifolds by requiring that π are local trivialization maps ϕ are smooth or holomorphic.

0.5.2. Examples.

(1) The smallest interesting example is the Moebius strip. Moebius strip is a line bundle over S^{1} (it projects to the central curve S^{1} and the fibers are real lines).
(2) (Co)tangent bundles On each manifold X there are the tangent and cotangent vector bundles $T X, T^{*} X$. In terms of local coordinates x_{i} at a, the fibers are $T_{a} X=\oplus \mathbb{R} \frac{\partial}{\partial x_{i}}$ and $T_{a}^{*} X=\oplus \mathbb{R} d x_{i}$.
(3) Any vector bundle can be obtained by gluing trivial vector bundles $V_{i}=U_{i} \times \mathbb{k}^{n}$ on an open cover $\mathcal{U}=\left(U_{i}\right)_{i \in I}$, The gluing data is given by transition functions

$$
\phi_{i j}: U_{i j} \rightarrow G L_{n}(\mathbb{k}) .
$$

The corresponding vector bundle is the quotient

$$
V=\left[\sqcup_{i \in I} U_{i} \times \mathbb{k}^{n}\right] / \sim
$$

for the equivalence relation given by: $\left(u_{i}, z\right) \in U_{i} \times \mathbb{k}^{n}=V_{i}$ and $\left(u_{j}, w\right) \in U_{j} \times \mathbb{k}^{n}=$ V_{j} are equivalent iff they are related by the corresponding transition function, i.e., $u_{i}=u_{j}$ and $z=\phi_{i j}\left(u_{j}\right) \cdot w$.
0.5.3. Sheaf \mathcal{V} associated to a vector bundle V. Let $V \xrightarrow{\pi} M$ be a vector bundle over M. Define the sections of the vector bundle V over an open $U \subseteq X$, by

$$
\mathcal{V}(U) \stackrel{\text { def }}{=}\left\{s: U \rightarrow V ; \pi \circ s=i d_{U}\right\} .
$$

More precisely,
If V is obtained by gluing trivial vector bundles $V_{i}=U_{i} \times \mathbb{C}^{n}$ by transition functions $\phi_{i j}$, then $\mathcal{V}(U)$ consists of all systems of $f_{i} \in \mathcal{H}\left(U_{i} \cap U, \mathbb{C}^{n}\right)$ such that on all intersections $U_{i j} \cap U$ one has $f_{i}=\phi_{i j} f_{j}$.

0.6. Čech cohomology of line bundles on \mathbb{P}^{1}.

Lemma. $\check{H}^{\bullet}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}\right)=\check{H}^{0}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}\right)=\mathbb{C}$.
Proof. Since the cover we use $\mathcal{U}=\left\{U_{1}, U_{2}\right\}$ has two elements, $C^{n}=0$ for $n>1$. We know $\check{H}^{0}=\Gamma\left(\mathcal{O}_{\mathbb{P}^{1}}\right)=\mathbb{C}$, so it remains to understand $\check{H}^{1}=C^{1} / d C^{0}=\mathcal{O}(U \cap V) /[\mathcal{O}(U)+\mathcal{O}(V)$, i.e., all Laurent series $\phi=\sum_{-\infty}^{+\infty} \gamma_{n} u^{n}$ that converge on \mathbb{C}^{*}, modulo the series $\sum_{0}^{+\infty} \lambda_{n} u^{n}$ and $\sum_{0}^{+\infty} \beta_{n} u^{-n}$, that converge on \mathbb{C} and on $\mathbb{P}^{1}-0$. However, if a Laurent series $\phi=\sum_{-\infty}^{+\infty} \gamma_{n} u^{n}$ converges on \mathbb{C}^{*},then Laurent series $\phi^{+}=\sum_{0}^{+\infty} \gamma_{n} u^{n}$ converges on \mathbb{C}, and $\phi^{-}=\sum_{-\infty}^{-1} \gamma_{n} u^{n}$ converge on $\mathbb{C}^{*} \cup \infty$.
0.6.1. Line bundles L_{n} on \mathbb{P}^{1}. On \mathbb{P}^{1} let L_{n} be the vector bundle obtained by gluing trivial vector bundles $U \times \mathbb{C}, V \times \mathbb{C}$ over $U \cap V$ by identifying $(u, \xi) \in U \times \mathbb{C}$ and $(v, \zeta) \in V \times \mathbb{C}$ if $u v=1$ and $\zeta=u^{n} \cdot \xi$. So for $U_{1}=U$ and $U_{s}=V$ one has $\phi_{12}(u)=u^{n}, U \in U \cap V \subseteq U$. Let \mathcal{L}_{n} be the sheaf of holomorphic sections of L_{n}.

Lemma. (a) $\Gamma\left(\mathbb{P}^{1}, \mathcal{L}_{n}\right)=0$ for $n<0$ and for $n \geq 0$ the dimension is $n+1$ and

$$
\begin{aligned}
& \Gamma\left(\mathbb{P}^{1}, \mathcal{L}_{n}\right) \cong \mathbb{C}_{\leq n}[u] \stackrel{\text { def }}{=} \text { the polynomials in } u \text { of degree } \leq n \\
& \cong \mathbb{C}_{n}[x, y] \stackrel{\text { def }}{=} \text { homogeneous polynomials in } x, y \text { of degree } n
\end{aligned}
$$

(b) $\check{H}_{\mathcal{U}}^{1}\left(\mathbb{P}^{1} ; \mathcal{L}_{n}\right)=0$ for $n \geq-1$ and for $d \geq 1$, we have $\operatorname{dim}\left[\check{H}_{\mathcal{U}}^{1}\left(\mathbb{P}^{1} ; \mathcal{L}_{-d}\right)\right]=d-1$.
0.6.2. Sheaves of meromorphic functions associated to divisors. For distinct points P_{1}, \ldots, P_{n} on \mathbb{P}^{1}, and integers D_{i}, define the sheaf $\mathcal{L}=\mathcal{O}\left(\sum D_{i} P_{i}\right)$ by $\mathcal{L}(U) \stackrel{\text { def }}{=}$ "all holomorphic functions f on $U-\left\{P_{1}, \ldots, P_{n}\right\}$, such that $\operatorname{ord}_{P_{i}} f \geq-D_{i}$. Then

Lemma. $\mathcal{O}\left(\sum D_{i} P_{i}\right) \cong \mathcal{L}_{\sum D_{i}}$.
0.7. Geometric representation theory. Group $S L_{2}(\mathbb{C})$ acts on \mathbb{C}^{2} and therefore on

- (i) polynomial functions $\mathcal{O}\left(\mathbb{C}^{2}\right)=\mathbb{C}[x, y]$,
- (ii) each $\mathbb{C}_{n}[x, y]$;
- (iii) complex manifold \mathbb{P}^{1} (the set of all lines in \mathbb{C}^{2}), and less obviously on
- (iv) each \mathcal{L}_{n}, hence also on
- (v) each $H^{i}\left(\mathbb{P}^{1}, \mathcal{L}_{n}\right)$.

In fact,
Lemma. $\mathbb{C}_{n}[x, y]=\Gamma\left(\mathbb{P}^{1}, \mathcal{L}_{n}\right), n=0,1,2, .$. is the list of
all irreducible finite dimensional holomorphic representations of $S L_{2}$.
By restricting the action to $S U(2) \subseteq S L(2, \mathbb{C})$ we find that this is also the list of all irreducible finite dimensional representations of $S U(2)$ on complex vector spaces.
0.7.1. Borel-Weil-Bott theorem. For each semisimple (reductive) complex group G there is a space \mathcal{B} (the flag variety of G) such that all irreducible finite dimensional holomorphic representations of G are obtained as global sections of all line bundles on \mathcal{B}.
0.8. Relation to topology. Let \mathbb{k} be any field. The cohomology of the constant sheaf \mathbb{k}_{X} on a topological space X coincides with the cohomology $H^{\bullet}(X, \mathbb{k})$ of X with coefficients in \mathbb{k}. The cohomology is defined as the dual of homology

$$
H^{i}(X, \mathbb{k}) \stackrel{\text { def }}{=} H_{i}(X, \mathbb{k})^{*} .
$$

For instance,
Lemma. For $X=S^{1}, \check{H}_{\mathcal{U}}^{*}\left(X, \mathbb{k}_{X}\right)$ is dual to $H_{*}(X, \mathbb{k})$.

[^0]: ${ }^{1}$ One does have a map in the wrong direction $C_{c}(V) \subseteq C_{c}(U)$, so C_{c} has a dual property of being a cosheaf.

