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X. Sheaves

Sheaves are a machinery which addresses an essential problem – the relation between local
and global information. So they appear throughout mathematics.

0.1. Presheaves and sheaves.

0.1.1. Presheaves. Consider a topological space (X, τ) where τ is a topology on the set
X . A presheaf on X with values in a given category C consists of

• for each open U⊆X an object S(U) in the category C,

• for each inclusion of open subsets V⊆U⊆X a morphism S(U)
ρUV−→ S(V ) in C (we

call it the restriction map);

such that the trivial restriction ρUU is 1S(U) and for W⊆V⊆U we have ρUV ◦ρ
U
V = ρUW .

Remark. If τ is considered as a poset for U ≤ V if U⊇V then a presheaf is just a functor
S : (τ,≤) → C.
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Examples. (0) If Y is another topological space we can associate to each open U⊆X the

set CX(U, Y )
def
= MapT op(U, Y ) of continuous maps from U to Y . Then CX(−, Y ) is a

presheaf for the operations ρUV given by restrictions of functions.

(1) Let M is any smooth manifold, say Rn. Let V denote R or C. The notion of V -valued
smooth functions on X gives a presheaf C∞

M (−, V ) on M with values in the category
AlgR of R-algebras. To each open U⊆X it associates the R-algebra C∞(U, V ) of smooth
functions on U with values in V . The maps ρUV are again the restriction maps.

(gluing) if the functions fi ∈ C∞(Ui) on open subsets Ui⊆X, i ∈ I, are compatible in

the sense that fi = fj on the intersections Uij
def
= Ui ∩ Uj, then they glue into a unique

smooth function f on U = ∪i∈I Ui.

So, smooth functions can be restricted and glued from compatible pieces.

More generally, if we choose V to be any finite dimensional real vector space V we again
get a presheaf CY

M (−, V ) on M but this time with values in the category VecR of real
vector spaces. We can even let V be any smooth manifold then CY

M(−, V ) is a presheaf
CY
M(−, V ) withe values in Set.

(3) To a set S one can associated the constant presheaf SX on any topological space X

— we choose SX(U) to S for any U and all maps ρUV to be identity.

Remark. We will mostly consider categories of structured sets , i.e., categories C whose
objects are sets with some extra structure (“of type C”). For instance C could be one of
categories Set, Ab, Ring, m(k) etc.

Then for a C-valued presheaf S anyS(U) is in particular a set and we can consider its
elements. An element s ∈ S(U) is called a section of the presheaf S on U .

We will say that for W⊆U, V , two sections a ∈ S(U) and b ∈ S(V ) are the same on W if
ρUWa = ρVW b in the set S(W ).

0.1.2. Sheaves on a topological space. Any presheaf F is a mechanism that relates some
global information F(X) to local information F(U) for open U ’s by restriction maps ρUV .
However, we are really interested in a stronger relation.

Let C be some category of structured sets. A C-valued sheaf F on a topological space
(X, T ) is a C-valued presheaf that satisfies the following gluing property:

• Let U = (Ui)i∈I be an open cover of an open U⊆X . Let f• be a family of sections
fi ∈ F(Ui), i ∈ I, which are compatible in the sense that for any pair i, j ∈ I the

sections fi and fj are the same on Uij
def
= Ui∩Uj (i.e., ρ

Ui

Uij
fi = ρUi

Uij
fj). Then there

is a unique f ∈ S(U) such that ρUUi
f = fi in S(Ui), i ∈ I.

Examples. (a) Local property. The gluing property holds for arbitrary functions: if one
knows them on Ui and they agree on intersections then they do define a function of U .
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The property remains to hold for classes of functions which are defined by a local property.
For instance examples CX(−, Y ) and C∞(−, V ) are sheaves because continuity and infinite
differentiability of a function can be checked on arbitrary near each point (on an arbitrary
small neighborhood). For instance, for a given function f being: (i) a function with values
in a given S, (ii) non-vanishing (i.e., invertible), (iii) a solution of a given system (∗) of
differential equations; these are all local conditions: they can be checked in a neighborhood
of each point.

Other classes of functions need not form sheaves. Say, on R associating to each open U
the square integrable functions L2(U) is a presheaf but not a sheaf since the constant
function is locally L2 but not globally. Another property that is not local is compact
support (denoted here Cc(−)), actually for U⊇V one does not even have a restriction map
Cc(U) → Cc(V ).(1)

(b) Sheafification. The constant presheaf SX is not a sheaf because if U, V⊆X are disjoint
and a, b ∈ S are viewed as sections a ∈ SX(U) and b ∈ SX(V ) then they agree on the
intersection U ∩V = ∅ but can not be glued a section in S(U ∪V ) = S. However, it is an
obvious improvement SX⊇SX which is a sheaf. The constant sheaf SX on X is defined by

SX(U) is the set of locally constant functions from U to X.

[Notice that SX can be viewed as the presheaf of constant functions with values in S and
“constant” is not a local property.

We will generalize this example by a procedure (“sheafification”) which canonically im-
proves any presheaf to a sheaf.

(c) Most any geometric structure can be described as a ringed space (X,OX) where X is
a topological space and OX is a sheaf of rings on X which we call the structure sheaf of
the geometric object. For instance OX can be continuous functions CX(−,R) or smooth
functions C∞

X (−,R) or holomorphic functions of or “polynomial”. In each of these cases
the topology on X and the sheaf contain all information on the structure of X .

0.2. Global sections functor Γ : Sheaves(X) → Set. Elements of S(U) are called the
sections of a sheaf S on U⊆X (this terminology is from classical geometry). By Γ(X,S)
we denote the set S(X) of global sections.

The construction S7→Γ(S) means that we are looking at global objects in a given class
S of objects. We will see that that the construction Γ comes with a hidden part, the
cohomology S7→H•(X,S) of sheaves on X .

Γ acquires different meaning when applied to different classes of sheaves. For instance
for the constant sheaf ptX , Γ(X, ptX) is the set of connected components of X . On any
smooth manifold X , Γ(C∞) = C∞(X) is “huge” and there are no higher cohomologies

1 One does have a map in the wrong direction Cc(V )⊆Cc(U), so Cc has a dual property of being a
cosheaf!.
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(“nothing hidden”). The holomorphic setting is more subtle in this sense, on a compact
connected complex manifold Γ(X,HH) consists of only the constant functions and a lot
of information may be stored in higher cohomology groups.

0.2.1. Solutions of differential equations. Solutions of a system (∗) of differential equation
on X form a sheaf Sol(∗). If X is an interval I in R and (∗) is one equation of the form

y(n) + a1(t)y
(n−1) + · · ·+ a0(t) = 0 with ai ∈ C∞(I) then any point c ∈ I gives evaluation

isomorphism of vector spaces Sol(∗)(I)
Ec−→ C

n by Ec(y) = (y(c), ..., y(n−1)(c)) (solutions
correspond to initial conditions!). The sheaf theoretic encoding of this property of the
initial value problem is :

Lemma. Sol(∗) is a constant sheaf on X .

On the other hand let (∗) be the equation zy′ = λy considered as equation in holomorphic
functions on X = C

∗. The solutions are multiples of functions zλ defined using a branch of

logarithm. On any disc D⊆X , evaluation at a point c ∈ D still gives Sol(∗)(D)
∼=
−→C, so the

local behavior of the is simple – it is a locally constant sheaf. However, Γ(X,Sol(∗)) = 0
if λ 6∈ Z (any global solution would change by a factor of e2πiλ as we move once around
the origin). So locally there is the expected amount but nothing globally.

0.3. Projective line P1 over C. P1 = C ∪ ∞ can be covered by U1 = U = C and
U2 = V = P1 − {0}. We think of X = P1 as a complex manifold by identifying U and V
with C using coordinates u, v such that on U ∩ V one has uv = 1.

Lemma. Γ(P1,OP1) = C.

Proof. (1) Proof using a cover. A holomorphic function f on X restricts to f |U =
∑

n≥0 αnu
n and to f |V =

∑

n≥0 βnv
n. On U ∩ V = C∗,

∑

n≥0 αnu
n =

∑

n≥0 βnu
−n, and

therefore αn = βn = 0 for n 6= 0.

(2) Proof using maximum modulus principle. The restriction of a holomorphic function
f on X to U = C is a bounded holomorphic function (since X is compact), hence a
constant.

0.4. Čech cohomology of a sheaf A with respect to a cover U . Let U = (Ui)i∈I be

an open cover of X . We will use finite intersections Ui0,...,ip

def
= Ui0 ∩ · · · ∩ Uip .

0.4.1. Calculations of global sections using a cover. Motivated by the calculation of global
sections in 0.3, to a sheaf A on X we associate

• Set C0(U ,A)
def
=

∏

i∈I A(Ui) whose elements are systems f = (fi)i∈I with one
section fi ∈ A(Ui) for each open set Ui,

• C1(U ,A)
def
=

∏

(i,j)∈I2 A(Uij) whose elements are systems g = (gij)I2 of sections
gij on all intersections Uij .
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Now, if A is a sheaf of abelian groups we can reformulate the calculations of global sections
of A in terms of the open cover U

For this we encode the comparison of fi’s on intersections Uij in terms of a map d :

C0(U ,A)
d
−→C1(U ,A) which sends f = (fi)I ∈ C0 to dff ∈ C1 with

(dff)ij = ρ
Uj

Uij
fj − ρUi

Uij
fi.

More informally, (dff)ij = fj |Uij − fi|Uij .

Lemma. Γ(A)
∼=
−→ Ker[C0(U ,A)

d
−→C1(U ,A)].

0.4.2. Čech complex C•(U ,A). Emboldened, we try more of the same and define the
abelian groups

Cn(U ,A)
def
=

∏

(i0,...,in)∈In

A(Ui0,...,in)

of systems of sections on multiple intersections, and relate them by the maps Cn(U ,A)
dn

−→
Cn+1(U ,A) which sends f = (fi0,...,in)In ∈ Cn to dn f ∈ Cn+1 with

(dn f)i0,...,in+1
=

n+1
∑

s=0

(−1)sfi0,...,is−1,is+1,...,in+1
.

Lemma. (C•(U ,A), d•) is a complex, i.e., d.◦dn−1 = 0.

0.4.3. Čech cohomology Ȟ•(X,U ;A). It is defined as the cohomology of the Čech complex
C•(U ,A). We have already observed that

Lemma. Ȟ0(X,U ;A) = Γ(A).

0.4.4. The “small Čech complex”. If the set I has a complete ordering, we can choose

in Cn(U ,A)
def
=

∏

(i0,...,in)∈In
A(Ui0,...,in) a subgroup Cn(U ,A)

def
=

∏

i0<···<in
A(Ui0,...,in).

This is what we will usually use in computations since it is smaller but it also computes
the Čech cohomology:

Lemma. (a) C•(U ,A)⊆Č•(U ,A) is a subcomplex (i.e., it is invariant under the differen-
tial).

(b) Map of complexes C•(U ,A)⊆C•(U ,A) is a quasi-isomorphism.

Proof. (a) is clear. (b) is intuitively plausible since the extra data in C is a duplication
of data in C•, say C1 contains S(Uii) = S(Ui)⊆C0 and for i < j it contains S(Uij) the
second time under the name S(Uji).
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0.5. Vector bundles. We recall the notion of a vector bundle, i.e., a vector space
smeared over a topological space. We will be interested in calculating cohomology of
sheaves associated to vector bundles.

0.5.1. Vector bundle over space X. In general one can extend many notions to the relative
setting over some base X . For instance, a reasonable notion of a “vector space over a set
X” is a collection V = (Vx)x∈X of vector spaces, one for each point of X . Then the total
space V = ⊔x∈X Vx maps to X and the fibers are vector spaces. If X is a topological
space, we want the family of Vx to be “continuous in x”. This leads to the notion of a
vector bundle over a topological space.

Le k = R or C. The data for a k-vector bundle of rank n over a topological space X
consists of a map of topological spaces π : V → X and the vector space structures on
fibers Vx = π−1x, x ∈ X . These data should locally be isomorphic to to X×k

n in the
sense that each point has a neighborhood U such that there exists a homeomorphism

φ : V |U
def
= π−1U

∼=
−→ U×k

n such that

V |U
φ

−−−→ U×k
n

π





y

pr1





y

X
=

−−−→ X

and that the corresponding maps of fibers Vx → k
n, x ∈ U , are isomorphisms of vector

bundles.

Similarly one defines vector bundle over manifolds or over complex manifolds by requiring
that π are local trivialization maps φ are smooth or holomorphic.

0.5.2. Examples.

(1) The smallest interesting example is the Moebius strip. Moebius strip is a line
bundle over S1 (it projects to the central curve S1 and the fibers are real lines).

(2) (Co)tangent bundles On each manifold X there are the tangent and cotangent
vector bundles TX, T ∗X . In terms of local coordinates xi at a, the fibers are
TaX = ⊕ R

∂
∂xi

and T ∗
aX = ⊕ Rdxi.

(3) Any vector bundle can be obtained by gluing trivial vector bundles Vi = Ui×kn

on an open cover U = (Ui)i∈I , The gluing data is given by transition functions

φij : Uij −→GLn(k).

The corresponding vector bundle is the quotient

V = [⊔i∈I Ui×k
n]/ ∼

for the equivalence relation given by: (ui, z) ∈ Ui×kn = Vi and (uj, w) ∈ Uj×kn =
Vj are equivalent iff they are related by the corresponding transition function, i.e.,
ui = uj and z = φij(uj)·w.
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0.5.3. Sheaf V associated to a vector bundle V . Let V
π
−→M be a vector bundle over M .

Define the sections of the vector bundle V over an open U⊆X , by

V(U)
def
= {s : U → V ; π◦s = idU}.

More precisely,

If V is obtained by gluing trivial vector bundles Vi = Ui×C
n by transition functions φij,

then V(U) consists of all systems of fi ∈ H(Ui ∩ U,Cn) such that on all intersections
Uij ∩ U one has fi = φijfj .

0.6. Čech cohomology of line bundles on P1.

Lemma. Ȟ•(P1,OP1) = Ȟ0(P1,OP1) = C.

Proof. Since the cover we use U = {U1, U2} has two elements, Cn = 0 for n > 1. We know
Ȟ0 = Γ(OP1) = C, so it remains to understand Ȟ1 = C1/dC0 = O(U∩V )/[O(U)+O(V ),
i.e., all Laurent series φ =

∑+∞

−∞ γnu
n that converge on C∗, modulo the series

∑+∞

0 λnu
n

and
∑+∞

0 βnu
−n, that converge on C and on P1 − 0. However, if a Laurent series

φ =
∑+∞

−∞ γnu
n converges on C

∗,then Laurent series φ+ =
∑+∞

0 γnu
n converges on C,

and φ− =
∑−1

−∞ γnu
n converge on C∗ ∪∞.

0.6.1. Line bundles Ln on P1. On P1 let Ln be the vector bundle obtained by gluing trivial
vector bundles U×C, V×C over U ∩ V by identifying (u, ξ) ∈ U×C and (v, ζ) ∈ V×C if
uv = 1 and ζ = un·ξ. So for U1 = U and Us = V one has φ12(u) = un, U ∈ U ∩ V⊆U .
Let Ln be the sheaf of holomorphic sections of Ln.

Lemma. (a) Γ(P1,Ln) = 0 for n < 0 and for n ≥ 0 the dimension is n + 1 and

Γ(P1,Ln) ∼= C≤n[u]
def
= the polynomials in u of degree ≤ n

∼= Cn[x, y]
def
= homogeneous polynomials in x, y of degree n.

(b) Ȟ1
U(P

1;Ln) = 0 for n ≥ −1 and for d ≥ 1, we have dim[Ȟ1
U(P

1;L−d)] = d− 1.

0.6.2. Sheaves of meromorphic functions associated to divisors. For distinct points

P1, ..., Pn on P1, and integers Di, define the sheaf L = O(
∑

DiPi) by L(U)
def
= “all

holomorphic functions f on U − {P1, ..., Pn}, such that ordPi
f ≥ −Di. Then

Lemma. O(
∑

DiPi) ∼= L∑
Di
.
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0.7. Geometric representation theory. Group SL2(C) acts on C2 and therefore on

• (i) polynomial functions O(C2) = C[x, y],
• (ii) each Cn[x, y];
• (iii) complex manifold P1 (the set of all lines in C2), and less obviously on
• (iv) each Ln, hence also on
• (v) each H i(P1,Ln).

In fact,

Lemma. Cn[x, y] = Γ(P1,Ln), n = 0, 1, 2, .. is the list of

all irreducible finite dimensional holomorphic representations of SL2.

By restricting the action to SU(2)⊆SL(2,C) we find that this is also the list of all irre-
ducible finite dimensional representations of SU(2) on complex vector spaces.

0.7.1. Borel-Weil-Bott theorem. For each semisimple (reductive) complex group G there
is a space B (the flag variety of G) such that all irreducible finite dimensional holomorphic
representations of G are obtained as global sections of all line bundles on B.

0.8. Relation to topology. Let k be any field. The cohomology of the constant sheaf
kX on a topological space X coincides with the cohomologyH•(X, k) ofX with coefficients
in k. The cohomology is defined as the dual of homology

H i(X, k)
def
= Hi(X, k)∗.

For instance,

Lemma. For X = S1, Ȟ∗
U(X, kX) is dual to H∗(X, k).
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