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6. Homotopy category of complexes K(A)

6.0. Summary. On the way to inverting quasi-isomorphisms, in the first step we will
invert a special kind of quasi-isomorphisms – the homotopy equivalences. This is achieved
by passing from the category of complexes C(A) to the so called “homotopy category of
complexes” K(A).

6.0.1. The triangulated structure of K(A). Here, K(A) is defined for any additive cat-
egory A and it has extra properties if A is abelian. The new category K(A) is not an
abelian category (even if A is abelian!). However, it always has a similar if less familiar
structure of a triangulated category.

The similarity that I am talking about is that in an abelian category C one has the notion
of short exact sequences.(1) The analogue of short exact sequences which works in K(A)
(for additive A) is the notion of distinguished triangles, also called “exact triangles”.

We will formalize the properties of exact triangles in K(A) into the concept of a triangu-
lated category which turns out to be the standard framework for homological algebra.

Date: ?
1 This is essential since a short exact sequence 0 −→ a −→ b −→ c −→ 0 can be viewed as describing b as

a combination of two simpler objects a and c.
1
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6.0.2. K(A) and derived functors. The first use of the homotopy category of complexes
is that:

Any two projective resolutions of an object a ∈ A are canonically isomorphic in K(A).

So, in the setting of homotopy categories of complexes the derived functor constructions
LF,RF that we have introduced earlier will be actual functors (because K(A) will remove
the dependence on the choice of a projective resolution).

6.0.3. Distinguished triangles and triangulated categories. We start by listing in 6.1 the
special structures that the categories of complexes C(A) have. The most substantial
ones are the Hom-complex and the mapping cone (“distinguished triangles”). For us the
Hom-complex will motivate the introduction of homotopy category. The properties of the
distinguished triangles in C(A) will improve when we pass from to K(A). The result
will be axiomitized into the notion of a triangulated category. So K(A) will be our first
example of this notion.

6.1. Structures carried by categories C(A) of complexes. For any additive category
A we will observe here certain structures and properties of the category C(A) .

6.1.1. Structures on the category C(A). Here we list the relevant structures and then we
will explain them at length.

(A) Structures for additive category A.

(1) Shift functors. For any integer n there is a functor [n] : C(A) −→ C(A) which
shifts complexes n places to the left.

(2) The Hom-complex. For any a, b ∈ A, the abelian group HomA(a, b) is naturally
upgraded to a complex Hom•

A(a, b) in Ab.
(3) Mapping cones. Any map α ∈ HomC(A)(A,B) defines a complex Cα ∈ C(A) called

the mapping cone of α.
(4) The (distinguished) triangles. Triangles in C(A) are the diagrams of the form

A
α
−→B

β
−→C

γ
−→A[1]. We will see that any map α ∈ HomA(a, b) defines a triangle

a
α
−→ b

•
α
−→ Cα

••
α
−→ a[1] involving the mapping cone. The triangles of this form are

called the distinguished triangles.
(5) Subcategories Cb(A) etc. If ? is one of the symbols b,+,− we define a full subcat-

egory C?(A) of C(A), consisting respectively of bounded complexes: An = 0 for
|n| >> 0; complexes bounded from below: An = 0 for n << 0 (hence allowed to
stretch in the + direction), complexes bounded from above (so they may stretch
in the − direction).

(B) The additional structures when A is abelian

(1) The cohomology functors Hi : C(A) −→A, i ∈ Z.
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(2) The quasi-isomorphisms are a special class of morphisms (related to cohomology
functors).

(3) Truncation functors τ . For any integer n a complex A ∈ C(A) has two trunca-
tion’s: τ≤nA that lives in degrees ≤ n and τ≥nA which lives in degrees ≥ n.(2)

6.1.2. Remark on signs. In homological algebra formulas often incorporate some conve-
nient choices of signs (−1)?. We remark here that these can all be explained (or reinvented)
by systematical use of the super-commutativity rule. It says that when x of y are objects
of degrees a and b then the natural notion of commutativity in such graded setting is that

yx should equal to (−1)abxy.

In other words, “when y jumps over x this introduces the sign (−1)ab ”.

6.1.3. The shift functors [n] : C(A) → C(A) for n ∈ Z. They act on graded objects

by the rule that the pth term in A[n] is (A[n])p
def
= An+p, while on A[n] the differential

(A[n])p
dA[n]
−−→ A[n])p+1 is given as Ap+n

(−1)ndp+n
A−−−−−−→ Ap+1+n.

6.1.4. The category A• of gradedA-objects. The objects are the sequences A = (An)n∈Z of
objects An in A.(3) The morphisms f ∈ HomA•(A,B) are families f = (fn)n∈Z with fn ∈
HomA(A

n, Bn). So, HomA•(A,B) is itself a sequence of abelian groups HomA(A
n, Bn),

i.e., HomA•(A,B) lies in Ab•.

6.1.5. The Hom-complex Hom•(a, b). For two complexes A,B ∈ C(A), their

Hom-complex has terms Homn(A,B)
def
= HomA•(A,B[n]) ∈ Ab and the differential

Homn(A,B)
dnHom−−−→ Homn+1(A,B) is(4)

HomA(A,B[n])
dnHom−−−→ HomA(A,B[n+ 1]), dnHom(f)

def
= dB◦f + (−1)n+1f◦dA.

So, Hom0(A,B) is just HomA•(A,B), i.e., all systems f = (fn)n∈Z of fn : An → Bn.
We call elements h = (hn)n∈Z of Hom−1

A (A,B) = HomA•(A,B[−1]) the homotopies from
A to B.

We say that two maps of complexes α1, α2 : A→ B are homotopic if α2−α1 is of the form
dHom(h) for some homotopy h ∈ HomA•(A,B[1]). This means that α2−α1 = dB◦h+h◦dA.
We denote this relation by α2 ≡ α2.

2 These functors will be introduced later.
3 If A has countable sums we can think of A as a single object

∏

n∈Z
An in A).

4 The sign comes from the super-commutativity rule!
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Lemma. (a) dHom is a differential.

(b) Z0[Hom•
A(A,B)] = HomC(A)(A,B).

(c) H0[Hom•
A(A,B)] = HomC(A)(A,B)/ ≡.

Proof. (a) We check that

(dHom)
2(f) = dn+1

Hom(d
n
Hom (f)) = d[df + (−1)n+1fd] + (−1)n+2[df + (−1)n+1fd]d

= d2B◦f + (−1)n+1dfd+ (−1)n+2dfd+ (−1)2n+3f ·d2 = 0.

(b) The LHS consists of all f ∈ Hom0(A,B) = HomA•(A,B) such that dHom(f) = dBf +
(−1)1fdA is zero, i.e., such that f is a morphism of complexes. (c) is now clear. �

Remark. Hom•
A gives another category structure on complexes since one has composition

Homm
A(B,C)×Hom

n
A(A,B) −→Homm+n

A (A,C) by (g, f) 7→
(

A
f
−→B[n]

g[n]
−−→ C[n+m]

)

.

6.1.6. The mapping cone Cα. The idea is that the cone of a map of complexes A
α
−→B is

another complex Cα which measures how far α is from being an isomorphism.

For us the mapping cones will eventually become an expression of the idea of a short exact
sequences of complexes (SES), which is meaningful even when such SES are not defined,
i.e., when A is additive but maybe not abelian.

Any map A
α
−→B of complexes defines a complex Cα called the cone of α with the terms

Cn
α = Bn⊕An+1 and the differential dnC : Bn⊕An+1 −→ Bn+1⊕An+2 that combines the

differentials in A and B and the map α by:

dnCα
(bn⊕an+1)

def
= (dnBb

n + αn+1an+1)⊕ − dn+1
A an+1, i.e., dC = (dB + α)⊕(−dA).

The fact that this is a differential is a part of the following lemma (here A = A[1] hence
dA = −dA).

Lemma. Let A, B be complexes in an additive category A and let C be the graded A-
object B⊕A. There is a canonical bijection between

• (i) Differentials dC on C such that the inclusion and projection B
φ
→֒C

ψ
։A are both

maps of complexes.
• (ii) Maps of complexes α ∈ HomC(A)(A[1], B).

Here,

• α gives dC = (dB + α)⊕dA
(5)

5 Cn dn

C−−→ Cn+1 is the map Bn⊕An dn

C−−→ Bn+1⊕An+1 given at bn ∈ Bn and an ∈ A
n by

d(bn⊕an)
def
= (dnBb

n + αnan)⊕ dnAa
n.
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• dC recovers α by composing with the other pair of inclusions and projections:

α = [A
σ[−1]
→֒ C[−1]

dC−→ C
τ
։B].

Proof. We have denoted the component maps of the splitting Cn = Bn⊕An by φ, ψ, σ, τ
so that φτ + σψ = 1C . The elements of Cn are of the form b⊕a = φb + σa with b ∈ Bn

and a ∈ A
n.

Now, we will get a bijection between maps of graded objects dC : C → C[1] such that

dCφ = φdB and dAψ = ψdC and maps of graded objects A[1]
α
−→ B. Starting with such

dC we get α
def
= [A[1]

σ[1]
−−→ C[1]

dC−→ C
τ
−→ B] and one recovers dC from this α by (since

ψσ = 1A[1]):

dC(φb+ σa) = dCφ b+ 1CdCσ a = φdB b+ (φτ + σψ)dCσ a

= φdB b+ φτdCσ a + (σdA)(ψσ) a = φ(dB b+ α a) + σdA a = (dB b+ α a)⊕ dA a.

Finally, dC is a differential iff α : A[1]→ B is a map of complexes:

d2C = dC◦[(dB + α)⊕ dA] = [d2B + dB◦α + α◦(−dA[1])]⊕ (dA)
2 = 0. �

6.1.7. Terminology. If A is abelian then the data in (ii) are precisely the data of a SES
of complexes 0 → B → C → A → 0 with a degreewise splitting, i.e., in each degree n
the exact sequence 0→ Bn → Cn → A

n → 0 in A is given a splitting Cn ∼= Bn⊕An.

We now stretch the terminology a bit. If A is only additive (so the exact sequences are

not defined) we can define split SES sequences in A as sequences 0 → a
α
−→ c

β
−→ b → 0

of the form 0 → a→֒a⊕b։b → 0, i.e., wit a chosen isomorphism c ∼= a⊕b such that
α is inclusion and β is projection. Then one defines degreewise split SES of complexes

as sequences of complexes the form 0 → B
φ
−→ C

ψ
−→ A → 0 where in each degree

0 → Bn φn

−→ Cn ψn

−→ A
n → 0 is a split SES sequence in A. In other words as a graded

object C is identified with B⊕A in such way that φ and ψ are the inclusion and the
projection.

Now we can restate the lemma 6.1.6 as the following being equivalent: (i) a degreewise
split SES in C(A), (ii) a morphisms of complexes in C(A) and (iii) a cone triangle in
C(A).

6.1.8. The distinguished triangles. For a map of complexes A
α
−→B its cone triangle is

A
α
−→B

•
α
−→ Cα

••
α
−→ A[1], with

•
αn(bn) = bn⊕0 and

••
αn(bn⊕an+1)

def
= an+1.

In other words,
•
α and

••
α are the inclusion and projection for the two summands of the

graded object Cα = B⊕A[1]. (Then
•
α and

••
α are maps of complexes by the lemma 6.1.6.)

The distinguished triangles are defined as the ones isomorphic to cone triangles. Now we
restate the lemma 6.1.6 using new terminology:
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Lemma. The distinguished triangles are equivalent to degreewise split short exact se-
quences of complexes. The two inverse constructions are given by

• Any cone triangle A
α
−→ B

•
α
−→ Cα

••
α
−→ A[1] contains a degreewise split SES of

complexes

0 −→B
•
α
−→ Cα

••
α
−→ A[1] −→0.

• To any degreewise split SES of complexes

0 −→B
φ
−→C

ψ
−→ A −→0 with Cn ∼= Bn⊕An,

one associates the cone triangle of the map of complexes A
α
−→ B where A =

A[−1] and for any a ∈ A element α(a) ∈ B is the B component of the element
dC(0B⊕a) ∈ C.

Example. For a degreewise split SES 0 −→B
φ
−→C

ψ
−→ A −→0 the triangle

A[−1]
α
−→B

φ
−→C

ψ
−→ A

is canonically isomorphic in C(A) to the cone triangle A[−1]
α
−→ B

•
α
−→ Cα

••
α
−→ A of the

map α.

Proof. This is just the lemma 6.1.6 with the notation A = A[−1]. �

6.1.9. Subcategories C?(A)⊆C(A). For Z⊆Z we can denote by CZ(A) the full subcat-
egory consisting of complexes A such that An = 0 when n 6∈ Z. For instance one has

C≤n def
= C(−∞,n] and C≥n def

= C([n,∞), as well as C{0}(A) which is equivalent to A.

6.2. Properties of cohomology functors. Here A is necessarily abelian.

Lemma. (a) C(A) is again an abelian category and a sequence of complexes is exact iff
it is exact on each level!

Proof. For a map of complexes A
α
−→ B we can define Kn = Ker(An

αn

−→ Bn) and
Cn = An/αn(Bn). This gives complexes since dA induces a differential dK on K and
dB a differential dC on C. Moreover, it is easy to check that in category C(A) one has
K = Ker(α) and C = Coker(α). Now one finds that Im(α)n = Im(αn) = αn(An) and
Coim(α)n = Coim(αn) = An/Ker(αn), so the canonical map Coim −→ Im is given by
isomorphisms An/Ker(αn)−→

∼=
αn(An). Now the exactness claim is clear. �
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6.2.1. Lemma. A short exact sequence of complexes 0 −→A −→B −→C −→0 gives a long
exact sequence of cohomologies.

· · ·
∂n−1

−−→ Hn(A)
Hn(α)
−−−→ Hn(B)

Hn(β)
−−−→ Hn(C)

∂n

−→ Hn+1(A)
Hn+1(α)
−−−−→ Hn+1(B)

Hn+1(β)
−−−−→ · · ·

Proof. We need to construct for a class γ ∈ Hn(C) a class ∂γ ∈ Hn+1. So if γ = [c] is the
class of a cocycle c, we need

(1) From a cocycle c ∈ Zn(C) a cocycle a ∈ Zn+1.
(2) Independence of [a] on the choice of c or any other auxiliary choices.
(3) The sequence of cohomology groups is exact.

Recall that a sequence of complexes. 0 −→A −→B −→C −→0 is a short exact sequence if
for each integer n the sequence 0 −→An −→Bn −→Cn −→0 is exact.

The following calculation is in the set-theoretic language appropriate for module categories
but can be rephrased in the language of abelian categories (and also the result for module
categories implies the result for abelian categories since any abelian category is equivalent
to a full subcategory of a module category).

(1) Since βn is surjective, c = βnb for b ∈ Bn, Now db = αn+1a for some a ∈ An+1 since
βn+1(db) = dβn+1b = dc = 0. Moreover, a is a cocycle since αn+2(dn+1a) = dn+1(αn+1a) =
dn+1(dnb) = 0.

(2) So we want to associate to γ = [c] the class α = [a] ∈ Hn+1(A). For that [a] should
be independent of the choices of c, B and a. So let [c] = [c′] and c′ = βnb′ with b′ ∈ Bn,
and db′ = αn+1a′ for some a′ ∈ An+1.

Since [c] = [c′] one has c′ = c+dz for some z ∈ Cn−1. Choose y ∈ Bn−1 so that z = βn−1y,
then

βnb′ = c′ = c+ dz = βnb+ d(βn−1y) = βnb+ βndy = βn(b+ dy).

The exactness at B now shows that b′ = b+ dy + αnx for some x ∈ An. So,

αn+1a′ = db′ = db+ dαnx = αn+1a + αn(dx) = αn+1(a + dx).

Exactness at A implies that actually a′ = a + dx.

(3) I omit the easier part: the compositions of any two maps are zero.

Exactness at Hn(B). Let b ∈ Zn(B), then Hn(β)[b] = [βnb] is zero iff βnb = dz for some

z ∈ Cn−1. Let us lift this z to some y ∈ Bn−1, i.e., z = βn−1y. Then βn(b−dy) = dz−dz =
0, hence b− dy = αna for some a ∈ An. Now a is a cocycle since αn(da) = d(b− dy) = 0,
and [b] = [b− dy] = Hn(α)[a].

Exactness at Hn(A). Let a ∈ Zn(A) be such that Hn(α)[a] = [αna] is zero, i.e., αna = db

for some b ∈ Bn−1. Then c = βb is a cocycle since dc = βn(db) = βnαna = 0; and by the
definition of the connecting morphisms (in (1)), [a] = δn−1[c].
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Exactness at Hn(C). Let c ∈ Zn(C) be such that ∂n[c] = 0. Remember that this means

that c = βb and db = αa with [a] = 0, i.e., a = dx with x ∈ An−1. But then db =
α(dx) = d(αx), so b − αx is a cocycle, and then c = β(b) = β(b − α(x)) implies that
[c] = Hn(β)[b− α(x)].

6.3. The homotopy category K(A) of complexes in A. The following definitions
are just repeated from 6.1.5.

6.3.1. The homotopy relation. We say that two maps of complexes A
α,β
−−→ B are homotopic

(we denote this α ≡ β), if there is a sequence h of maps hn : An −→Bn−1, such that

β − α = dh+ hd, i.e., βn − αn = dn−1
B hn + hn+1dnA.

Then we say that h is a homotopy from α to β.

A map of complexes A
α
−→B is said to be a homotopical equivalence if there is a map β in

the opposite direction such that β◦α ≡ 1A and α◦β ≡ 1B. Then we write A ≡ B and we
say that β is a homotopy inverse of α.

Lemma. (a) Homotopic maps are the same on cohomology.

(b) Homotopical equivalences are quasi-isomorphisms.

(c) A complex A is homotopy equivalent to the zero object iff 1A = hd + dh. Then the
complex A is acyclic, i.e., H∗(A) = 0.

(d) α ≡ β implies µ◦α ≡ µ◦β and α◦ν ≡ β◦ν.

Proof. (a) Denote for a ∈ Zn(A) by [a] the corresponding cohomology class in Hn(A)
and by H∗(α) : H∗(A)→ H∗(B) the action of α on cohomology classes. Then H∗(β)[a]−
H∗(α)[a] = [(β − α)a] = [dn−1

B hn(a) + hn+1dnA(a)] = [dn−1
B (hna)] = 0.

(b) If β◦α ≡ 1A and α◦β ≡ 1B then H∗(β)◦H∗(α) = H∗(β◦α) = H∗(1A) = 1H∗(A) etc.

(c) A map of complexes 0
α
−→A is necessarily α = 0. It is a homotopy equivalence if there

is a map A
β
−→ 0 (then necessarily β = 0) such that β◦α ≡ 10 and α◦β ≡ 1A. The first

equation is 0 = 0 and in the second, the LHS is always zero, the condition is that on A
we have 1A ≡ 0.

(d) If β−α = dB◦h+h◦dA then for X
ν
−→A

α
−→B

µ
−→ Y one has µ◦β−µ◦α = dC◦(µ◦h)+

(µ◦h)◦dA etc.

6.3.2. Homotopy category K(A). The objects are again just the complexes but the maps
are the homotopy classes [φ] of maps of complexes φ (for the second equality see 6.1.5):

HomK(A)(A,B)
def
= HomC(A)(A,B)/ ≡ = H0[Hom•

A(A,B)].
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Now, the identity morphisms for A inK(A) is the class [1A] and the composition is defined

by [β]◦[α]
def
= [β◦α] (this makes sense by the part (d) of the lemma 6.3!).

6.3.3. Remarks. (1) Observe that for a homotopy equivalence α : A −→B the correspond-
ing map in K(A), [α] : A −→B is an isomorphism. So we have accomplished a part of our
long term goal – we have inverted some quasi-isomorphisms: the homotopy equivalences!

(2) More precisely, we know what are isomorphisms in K(A). The homotopy class [α] of
a map of complexes α, is an isomorphism in K(A) iff α is a homotopy equivalence!

Lemma. (a) K(A) is an additive category.

(b) The shift functors [n] on C(A) descend to functors on K(A).

Proof. (a) By its definition HomK(A)(A,B) is an abelian group. K(A) gets zero object
and finite sums(=products) from C(A). Claim (b) follows from the action of shifts on
homotopies. �

6.3.4. Homotopy in topology and algebra. Historically, the homotopy for complexes has
been introduced based on the notion of homotopy for maps of topological spaces. The
relation is that a (geometric) homotopy H between two maps F0, F1 : Y → X of topolog-
ical spaces gives an (algebraic) homotopy h between the corresponding morphisms C∗(αi)
of complexes of singular chains.(6)

6.4. Triangulated category structure on K(A).

6.4.1. Shifts, triangles, rotations. We will say that a shift functor on a category T is
an action of Z on T , i.e., a collection of functors [n] : T → T for n ∈ Z, such that
[m]◦[n] = [m+ n] and [0] = idT . Then the functor [1] is itself called the shift.

A triangle in a category T with a shift is a diagram on T of the form a→ b→ c→ a[1].

If T is additive we define the rotation operation on triangles that takes a
α
−→ b

β
−→ c

γ
−→ a[1]

to

b
β
−→ c

γ
−→ a[1]

−α[1]
−−−→ b[1].

6 Such H is a continuous family of continuous maps H : [0, 1] → Map(Y,X) such that H(i) = Fi for
i = 0, 1, i.e., , H is a single continuous map H : [0, 1]×Y → X such that H(i, x) = Fi(x) for i = 0, 1
and x ∈ X . Such H indeed gives an (algebraic) homotopy hn : Cn(Y ) −→> Cn+1(X)[1] between the two
morphisms of complexes of singular chains C∗(Y ) −−−−→

C∗(Fi)
> C∗(X) given by the maps Fi.
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6.4.2. Triangulated categories. These are additive categories with a shift functor and a
class D of triangles (called distinguished or exact triangles); that satisfy the following
conditions

• (T0) The class D is closed under isomorphisms.
• (T1) Any map α inn T appears as the first map in some distinguished triangle.

• (T2) For any object A ∈ T , the triangle A
1A−→ A

0
−→0 −→A[1] is distinguished.

• (T3) (Rotation) A triangle is in D iff its rotation is in D.
• (T4) Any diagram with distinguished rows

A
α

−−−→ B
β

−−−→ C
γ

−−−→ A[1]

µ





y

ν





y

A′ α′

−−−→ B′ β′

−−−→ C ′ γ′

−−−→ A′[1]

can be completed to a morphism of triangles

A
α

−−−→ B
β

−−−→ C
γ

−−−→ A[1]

µ





y

ν





y

η





y

µ[1]





y

A′ α′

−−−→ B′ β′

−−−→ C ′ γ′

−−−→ A′[1].

• (T5) (Octahedral axiom) If maps A
α
−→ B

β
−→C and the composition A

γ=β◦α
−−−−→ C,

appear in distinguished triangles

(1) A
α
−→B

α′

−→ C1
α′′

−→ A[1],

(2) B
β
−→C

β′

−→ A1
β′′

−→ B[1],

(3) A
γ
−→C

γ′

−→ B1
γ′′

−→ C[1]; then there is a distinguished triangle

C1
φ
−→B1

ψ
−→ A1

χ
−→C1[1]

that fits into the commutative diagram

A
α

−−−→ B
α′

−−−→ C1
α′′

−−−→ A[1]

=





y

β





y

φ





y

=





y

A
γ

−−−→ C
γ′

−−−→ B1
γ′′

−−−→ A[1]

α





y

=





y

ψ





y

β[1]





y

B
β

−−−→ C
β′

−−−→ C1
β′′

−−−→ B[1]

χ





y

=





y

C1[1]
α′[1]
←−−− B1[1]
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6.4.3. Remarks. (0) The notion of triangulated category appears in the thesis of Verdier.
His advisor was Grothendieck.

(1) Axiom (T5) is most complicated and the least used. It is called “octahedral” because
it can naturally be drawn on an octahedron. It asserts that the distinguished triangles
for α, β, β◦α are related by three maps φ, ψ, χ that form another distinguished triangle
and satisfy 5 commutativity conditions given by 5 squares.(7)

It is not known whether (T5) follows from other axioms.

To see the intuitive meaning of (T5) one may consider what it says when T = K(A) for
an abelian A. One can choose complexes A,B,C to live in degree zero, i.e., so that
these are objects of A and the maps α, β are inclusions A→֒B →֒C in A.

(2) In (T4), the map γ is not unique nor is there a canonical choice. This is a source of some
difficulties in using triangulated categories.(8) This is resolved by upgrading triangulated
categories to the level of differential graded categories. The starting point here is the
above construction of the Hom-complex.

6.4.4. The triangulated structure on K(A). Though K(A) is not an abelian category it
has a structure that allow us to make similar computations. First, recall that the shift
functor [1] on C(A) factors to a shift functor [1] : K(A)→ K(A). Now we define the class
D of distinguished triangles in K(A) as all triangles in K(A) isomorphic to the image

A
[α]
−→ B

[
•
α]
−→ Cα

[
••
α ]
−→ A[1] in K(A) of some cone triangle in C(A) (equivalently, to the

image of some distinguished triangle in C(A)).

Theorem. For any additive category A, K(A) is a triangulated category (for the standard
notion of shifts and distinguished triangles).

Proof. Property (T0) comes from the definition of D.

(T1) Any map φ ∈ HomK(A)(A,B) in K(A) is a homotopy class φ = [α] of some map of

complexes α ∈ HomC(A)(A,B). Then we have in C(A) the cone triangle A
α
−→B

β
−→C

γ
−→

A[1] and its image in K(A) is a distinguished triangle A
[α]
−→ B

[β]
−→ C

[γ]
−→ A[1] in K(A)

which starts with [α].

(T2) means that the cone C1A = C of the identity map on A is isomorphic in K(A) to the
zero complex, i.e., that the cone C1A is homotopically equivalent to the zero complex. For

7 Actually, maps φ, ψ such that the upper 4 squares (out of 5) commute exist by (T4). However, one
needs to be able to choose such φ, ψ so that they can be completed to a distinguished triangle φ, ψ, χ for
some χ such that the lowest square commutes.

8 One problem is that in the present formalism there are no cones for maps of functors. This claim

concerns the situation where F
η
−→ G is a morphisms between two functors F,G : C → T and T is

triangulated. Then for each c ∈ C there exists a distinguished triangle F (c)
ηc

−→ G(c)
µc

−→ C(c)
νc−→ F (c)[1],

however there is in general no way to choose C : Ob(C) → Ob(T ) to be a functor (and we would also
want µ, η to be morphisms of functors).
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this we need a homotopy between maps 1C, 0 in EndC(A)(A). We choose hn : Cn
1A
−→Cn−1

1A
to be identity on the common summand and zero on its complement, i.e.,

An⊕An+1 hn

−→ An−1⊕An, hn(an⊕an+1)
def
= 0⊕an.

Then indeed

(dn−1
C hn + hn+1dnC)(a

n⊕an+1) = dn−1
C (0⊕an) + hn+1[(dAa

n + 1Aa
n+1)⊕− dn+1

A an+1)]

= (1Aa
n⊕− dAa

n) + 0⊕(dAa
n + 1Aa

n+1) = an⊕an+1 = (1C − 0)(an⊕an+1).

Requirement (T3) says that if one applies rotation to any cone triangle in C(A), A
α
−→

B
β=

•
α

−−→ Cα
••
α
−→ A[1], then for β

def
=

•
α, the rotated triangle

B
β
−→Cα

••
α
−→ A[1]

−α[1]
−−−→ B[1]

is isomorphic in K(A) to the cone triangle

B
β
−→Cα

•

β
−→Cβ

••

β
−→ B[1].

This requires a map of complexes A
ζ
−→ Cβ such that the following diagram commutes

in K(A):

B
β

−−−→ Cα
γ

−−−→ A[1]
−α[1]
−−−→ B[1]

=





y

=





y

ζ





y

=





y

B
β

−−−→ Cα

•

β
−−−→ Cβ

••
α

−−−→ B[1]

and that ζ has a homotopy inverse ξ. Notice that Cn
α = Bn⊕An+1 and Cn

β = Cn
α⊕B

n+1 =

(Bn⊕An+1)⊕Bn+1 We define the maps An+1 ζn

−→ Cn
β

ξn

−→ An+1 by

An+1 ζn

−→ Bn⊕An+1⊕Bn+1 ζn

−→ An+1, ζ(an+1)
def
= 0⊕an+1⊕−αan+1, ξ(bn⊕an+1⊕bn+1)

def
= an+1.

It suffices to check that

(1) ζ and ξ are maps of complexes,
(2) ζ and ξ are inverse homotopy equivalences, precisely

ξ◦ζ = 1A[1] and ζ◦ξ ≡ 1Cβ
.

(3) The diagram commutes, i.e., ζ◦γ = φ and µ◦ζ = −α[1].

All conditions except one are straightforward from formulas. However, the homotopy
relation ζ◦ξ ≡ 1Cβ

in EndA•(Cβ) requires a choice of homotopy hn : Cn
β → Cn−1

β such
that

1Cβ
− ζ◦ξ = dCβ

h+ hdCβ
.

This works for the maps

hn : Bn⊕An+1⊕Bn+1 → Bn−1⊕An⊕Bn, hn(bn⊕an+1⊕bn+1) = 0⊕0⊕bn.
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(T4) One can certainly replace the rows with isomorphic ones which are images in K(A)
of cone triangles for two maps of complexes α0, α

′
0 in C(A). Then the diagram is the

image in K(A) of a diagram in C(A)

A
α0−−−→ B

•
α0−−−→ Cα

••
α0−−−→ A[1]

µ0





y

ν0





y

A′ α′
0−−−→ B′

•
α
′

0−−−→ Cα′

••
α

′

0−−−→ A′[1]

for any representatives µ0, ν0 of homotopy classes µ, ν.

However, the square in this diagram need not commute in C(A).(9) So, we only have
the homotopical commutativity [ν]◦[α] = [α′]◦[µ] which means that there exist homotopy
maps hn : An −→(B′)n−1 such that

ν0◦α0 − α
′
0◦µ0 = dB′h+ hdA.

Now, it turns out to be possible to construct a map of complexes Cα
η
−→Cα′ such that the

diagram

B
β

−−−→ Cα
γ

−−−→ A[1]

ν0





y

η0





y

µ0[1]





y

B′ β′

−−−→ Cα′

γ′

−−−→ A′[1]

commutes in C(A). This will incorporate the above homotopy correction to commutativ-
ity:

ηn : Bn⊕An+1 −→(B′)n⊕(A′)n+1, η(bn⊕an+1)
def
= (ν0b

n + hn+1an+1)⊕µ0a
n+1.

One just has to check that η is a map of complexes and that the two squares commute.

(T5) We omit verification of this property which is a description of a certain “complicated”
relation between compositions of maps and cones of maps. �

Lemma. The construction of the homotopy category works the same for any of the sub-
categories C?(A)⊆C(A) where ? is one of the symbols b,+,−. We get full subcategories
K?(A) of K(A).

6.5. Distinguished triangles in K(A), SES in C(A) and LES of cohomologies.

9 If we could choose representatives µ0, ν0 so that the diagram in C(A) still commutes, then a repre-
sentative η0 of η would simply come from the functoriality (“naturality”) of the cone construction.
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6.5.1. A short passage from degreewise split SES in C(A) to distinguished triangles in
K(A). We know that in C(A) there is an equivalence between distinguished triangles
B → C → A and degreewise split SES 0 → A→ B → C → 0. This simple relation uses
a “rotation” since A = A[1]. However, when triangles are considered in K(A) one can
state the correspondence in a simpler way.

Lemma. Let A be an additive category.

(a) Any degreewise split SES in C(A)

0 −→P −→Q −→R −→0

gives a canonical distinguished triangle in K(A) of the form

P
φ
−→Q

ψ
−→ R

−α
−→ P [1].

Here, the map R
α
−→ P is the component of the differential dQ given by the splittings

Qn ∼= P n⊕Rn, i.e., αn
def
= [Rn→֒Qn

dnQ
−→ Qn+1

։P n+1].

(b) Any distinguished triangle in K(A) is isomorphic to one that comes from a degreewise
split SES by the construction in (a).

Proof. (b) (a) We know by lemma 6.1.8 that for SES as above, with degreewise splittings
Qn ∼= P n⊕Rn, the triangle

R[−1]
α
−→ P

φ
−→Q

ψ
−→ (R[−1])[1]

(with α defined as stated in the present lemma), is isomorphic in C(A) to the cone triangle
for α, so it is distinguished.

Since we are in K(A) we can rotate this triangle using the property (T3) to get an exact

triangle P
φ
−→R

ψ
−→ Q

α[1]
−−→ P [1].

(b) follows because the relation between degreewise split SES and cone triangles in C(A)
is an equivalence(10) and so is the rotation operation in D. �

Remark. This simpler correspondence is however not an equivalence as SES are considered
in C(A) and distinguished triangles in K(A).

6.5.2. Cohomologies. Here A must be abelian so that cohomology is defined. Notice that
the cohomology functors Hi : C(A) → A factor to Hi : K(A) → A. (This is the claim
that for a map of complexes α : A → B the map Hi(α) : Hi(A) → Hi(B) depends on on
the class [α]. This is the lemma 6.3.1.a.)

10 Here word “equivalence” can be interpreted as “equivalent data” or as “bijection of isomorphism
classes” or as “equivalence of categories” if one defines the natural categories for these two kinds of
objects.



15

Corollary. If A is abelian, any distinguished triangle X
α
−→ Y

β
−→Z

γ
−→X [1] in K(A) gives

a long exact sequence (LES) of cohomologies

· · · −→Hi(X)
Hi(α)
−−−→ Hi(Y )

Hi(β)
−−−→ Hi(Z)

Hi(γ)
−−−→ Hi+1(X) −→· · ·.

Proof. Notice that the maps in our sequence of cohomologies are well defined since H( 1
2
) :

Hi(Z)→ Hi(X [1]) = Hi+1X . For exactness recall that inK(A), our distinguished triangle

X
α
−→ Y

β
−→ Z

γ
−→X [1] is isomorphic to a triangle of the form P

[φ]
−→ Q

ψ]
−→ R

[−α]
−−→ P [1],

associated to some degreewise split SES 0 → P
φ
−→Q

ψ
−→ R → 0 in C(A). We know that

a SES of complexes does indeed provide a long exact sequence of cohomologies.

It remain to check that the cohomology objects in these two long sequences are the same
and that the maps between cohomologies in two sequences are the same. �

6.5.3. Acyclic complexes. We say that a complex A is acyclic if all cohomologies vanish.

Corollary. For an abelian category A A map α : A −→B in C(A) is a qis iff the complex
Cα is acyclic.

Proof. This is clear from the long exact sequence of cohomologies for the cone triangle. �

6.5.4. Extension of additive functors to homotopy categories. Here we consider the trivial
extensions C(F ) and K(F ) of an additive functor F : A → B between two additive
categories. We will use this to construct the interesting extensions LF,RF in 6.6.3.

Lemma. (a) There is a canonical functor C(A) −→K(A) which sends each complex A to
itself and each map of complexes φ to its homotopy class [φ].

(b) Any additive functor between additive categories A
F
−→ B has canonical extensions

to (homotopic) categories of complexes such that

A −−−→
⊆

C(A)
qA
−−−→ K(A)





y
F C(F )





y

K(F )





y

B −−−→
⊆

C(B)
qA−−−→ K(B)

commutes.(11)

(c) F extends to a functor A• F •

−→ B• and for any A,B ∈ C(A) this gives a map between
Hom-complexes Hom•

A(A,B) −→Hom•
B(FA, FB).

Proof. (a) is clear.

11 K(F ) is uniquelly determined by the commutativity of the second square.



16

In (c) functor F • is just F in each degree, i.e., [F •A]n = F (An). We get maps

F n : Homn
A(A,B) −→Homn

B(FA, FB) as HomA•(A,B[n])
F •

−→ HomB•(FA, FB[n]). These
maps clearly intertwine the differentials on Hom-complexes.

In (b), for any A ∈ C(A) we define the complex C(F )A as the graded object
F •A above with the differentials F (dnA). For C(F ) to factor to K(F ) we need
that C(F ) is compatible with homotopies, this follows from (c) since a map of
complexes F • : Hom•

A(A,B) −→ Hom•
B(FA, FB) gives a map of 0th cohomologies

H0(F •) : HomK(A)(A,B) −→HomK(B)(FA, FB). �

6.6. Derived functors and functorial projective resolutions.

6.6.1. Lifts of maps to projective resolutions.

Lemma. Consider two complexes

· · · −→P−n −→· · ·
d−1
P−−→ P 0 εa−→ a −→0 −→· · ·

· · · −→B−n −→· · ·
d−1
B−−→ B0 εB−→ b −→0 −→· · ·

such that all P k are projective and the second complex is exact. Then any map α : a −→b

in A lifts to a map complexes P
φ
−→B which makes the following diagram commutative:

· · · −−−→ P−1
d−1
P−−−→ P 0 εa−−−→ a −−−→ 0 −−−→ · · ·

φ−1





y
φ0





y

α





y

=





y

· · · −−−→ B−1
d−1
B−−−→ B0 εb−−−→ b −−−→ 0 −−−→ · · ·.

(b) Any two such lifts are canonically homotopic.

Proof. (a) The map P 0 αεa−−→ b factors through εb since P
0 is projective and εB : B0 −→B

is surjective. This gives a map P 0 φ0

−→ B0 such that εb◦φ
0 = α◦εa.

Notice that the composition P−1
d−1
P−−→ P 0 φ0

−→ B0 goes to Ker(εb)⊆B
0 since

εB(φ
0d−1
P ) = (αεa)d

−1
P = α◦0 = 0

because the first row is a complex.

Now, exactness of the second row shows that d−1
B : B

−1
→ B0 factors through the sur-

jection d−1
B : P−1

։Ker(εb). So, since P−1 is projective the map φ0◦d−1
P : P−1 −→Ker(εb)

factors through d−1
B : B−1 −→ Ker(εb), giving a map φ−1 : P−1 −→ B−1, such that

φ0◦d−1
P = d−1

B ◦φ
−1.

In this way we construct all φn inductively.
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(b) If we have lifts φi : P → B of maps αi : a→ b then φ2− φ1 lifts α2−α1. So, two lifts
φi of α give a lift φ = φ2 − φ1 of 0 : a→ b. So, we need to see that any a lift φ : P → B
of 0 : a→ b is of the form dh+ hd for hn : P n → Bn−1.

The proof is the same as in (a). First, φ0 : P 0 → B0 goes to Ker(εB) since the lifting
relation is εBφ

0 = 0◦εA = 0. Since P 0 is projective and d−1
B : B0 → Ker(εb) is surjective,

the map φ0 : P 0 −→Ker(εB) lifts to a map h0 : P 0 −→B−1. This h0 satisfies

φ0 = d−1
B ◦h

0

(and this is d−1
B ◦h

0 + h1◦d0B since the two factors in the last term are both zero).

Now one continuous similarly

d−1
B ◦φ

−1 = φ0◦d−1
P = d−1

B ◦h
0◦d−1

P ,

hence the map φ−1 − d−1
B ◦h

0 : P−1 → B−1 goes to Ker(d−1
B ). Since d−2

B : B−2Ker(d−1
B ) is

surjective, map φ−1 − d−1
B ◦h

0 lifts to a map h−1 : P−1 −→B−2. This means that

φ−1 − d−1
B ◦h

0 = h−1◦d−2
P .

Etc. �

Corollary. (a) If P and Q are projective resolutions of objects a and b in A, then any
map a −→b lifts uniquely to a map P −→Q.

(b) Any two projective resolutions of the same object of A are canonically isomorphic in
K(A).

6.6.2. Projective resolution functor. The last corollary can be restated (in shorthand) as

Corollary. If abelian A has enough projectives then then there is a canonical projective
resolution functor P : A → K−(A).

Proof. The precise meaning is the following. The first claim is that there is a functor
P : A → K−(A) such that for each a ∈ A, Pa is a projective resolution of a. In order to
construct it we need to choose for each a ∈ A a projective resolution Pa of a. Then by
the lemma any map α : a→ b in A has a unique lift P(α) : Pa → Pb (by a lift we mean a
map of complexes such that the diagram as in lemma commutes). Uniqueness now implies

that P is a functor – for instance for a
α
−→ b

β
−→ c we have P(β)◦P(α) = P(βα) since both

sides are lifts of βα.

The second information is that though P is not literally unique (it depends on our choices)
any two versions P ′,P ′′ are canonically isomorphic. The reason is that for any a ∈ A
lemma tells us that the map 1a has unique lifts ζa : P ′

a → P
′′
a and ξa : P ′′

a → P
′
a. Then

ξa◦ζa = idP ′
a
since again both sides lift 1a. �

6.6.3. Derived functors LF : A → K−(B) and RG : A → K+(B).
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Lemma. Let A be abelian and B additive. If A has enough projectives then for any
additive functor F : A −→B its left derived functor LF : A −→K≤0(B) is well defined by
replacing objects with their projective resolutions

LF (a)
def
= C(F )(P )

where P is any projective resolution of a.

Proof. We choose a projective resolution functor P : A → K−(A) and define LF as a

composition of functors A
P
−→ K(A)

K(F )
−−−→ K(B). Then for any projective resolution P of

a we have canonical isomorphism P−→
∼=
Pa hence K(F )(P )−→

∼=
(LF )a. �

Remark. Remember that H0[(LF )(A) ∼= F (A).

6.7. Appendix. Here are some useful claims which we do not cover.

Lemma. A. In a triangulated category (T , [1],D) the composition of any two maps in a
distinguished triangle is zero.

Lemma. B. A homotopy h between two maps α1, α2 ∈ HomC(A)(A,B) gives an isomor-
phism of the corresponding mapping cones Cα1−→∼=

Cα2 in C(A).

Lemma. C. [dsSES and exact triangles in K(A).](12) Consider a sequence 0→ A
α
−→B

β
−→

C → 0 in C(A).

(a) If βα = 0 then β canonically factors through the cone of α, i.e., there is a canonical
µ that makes the following commutative (actually, µ(bn⊕an+1) = β(b)):

A
α

−−−→ B
•
α

−−−→ Cα

=





y

=





y

µ





y

A
α

−−−→ B
β

−−−→ C.

(b) If the sequence 0→ A
α
−→B

β
−→C → 0 is exact then µ is a qis.

(c) If the sequence 0 → A
α
−→ B

β
−→ C → 0 is exact and degreewise split then µ is a

homotopy equivalence.

Remark. Eventually, any SES in C(A) will give a distinguished triangle in D(A), at if
outer terms have injective or projective resolution.

12 This is a version of our lemmas on the same subject.
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