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0.0.1. Notation. Symbol � means “I said this much and I will say no more”.

5. Exactness properties and the derived functors

5.1. Summary. For any abelian category A we can define in the category of complexes
C(A) a class of morphisms called quasi-isomorphisms (“qis”). Our long term goal is
to understand the derived category D(A) which is obtained from C(A) by inverting all
quasi-isomorphisms.

In particular, when A and B are abelian categories we ask which functors F : A → B
extend in a useful way to functors between derived categories D(F ) : D(A) → D(B).

D(F ) is called the derived version of F .(1)

5.1.1. The case of exact functors. Recall that any additive functor H : U → V between
additive categories has an obvious extension to complexes, denoted C(H) : C(U) → C(V)
(we just apply H to all objects and all morphisms in a complex U ∈ C(U)).(2) So,
for our functor between abelian categories F : A → B we can ask whether the functor
C(F ) : C(A) → C(B) between categories f complexes descends to a functorD(A) → D(B)
(which we would then call D(F ). Clearly, this works iff the functor C(F ) preserves quasi-
isomorphisms.

A functor F : A → B is worthy of being called an abelian functor, i.e., if it is compatible
with all structures that appear in the definition of abelian categories (i.e., it is an additive
functor and it preserves (co)kernels and (co)images). Equivalently, F should be additive
and it should preserve exactness of sequences of maps. So, such functors are called exact
(rather than “abelian”).

If F is exact then the extension C(F ) to complexes will preserve quasi-isomorphisms
(since these are defined in terms of cohomology, i.e., of (co)kernels, and (co)images).

So, exact functors F have an obvious extension to derived categoriesD(F ) : D(A) → D(B)
where for A ∈ Ob[D(A)] = Ob[C(A)], (DF )A is obtained by applying F itself to all
ingredients of A. However, exact functors are “simple” and the interesting functors are
generally not exact.

5.1.2. Half exact functors, injectives and projectives. The key insight is that F may have
a useful “extension” to the derived level under some weaker conditions. The basic case is
when F sis additive and left exact or right exact (“half exact”), in the sense that it only
preserves exactness of the “left part” or the “right part” of short exact sequences (SES).
to a “certain extent”.

1 We may denote the extension just by F , or more precisely by D(F ), or LF or RF , depending on the
way we produce the extension.

2 One often denotes C(F ) just by F .
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The main ingredient for extending half exact functors to derived categories comes from
considering exactness properties of the simplest functors – the ones that come from the
category itself. This distinguishes two subclasses of objects of A: the projective objects
a ∈ A are the ones for which the functor HomA(a,−) is exact and injective ones for which
HomA(−, a) is exact.

5.1.3. Extension constructions L and R for half-exact functors. If additive F : A → B is
only right exact then one resolves the failure of exactness at the left end by expressing all
object in terms of complexes of objects with good exactness properties on the left. This
means that we replace any object a ∈ A with its left resolutions P by projectives. We
denote this construction by

(LF )(a)
def
= F (P ).

So, LF (called the “left derived functor” of F ) is a construction that starts in A and its
result is in the category C(B) of complexes in B. Notice that LF gives a sequence of

constructions (LnF )(a)
def
= Hn[(LF )a] ∈ B for n ∈ Z.

Remark. We will improve the above LF in stages. Right now it is a construction from A
to C(B) which (!) depends on choices (of projective resolutions). We will make LF into a
functor in the section ?? by replacing C(B) by the homotopy category of complexes K(B).
In ... we will extend this version of LF to a functor between derived categories. �

Dually, for F left exact we use right resolutions a → I by injectives and this defines

(RF )a
def
= F (I) and (RnF )a

def
= Hn[(RF )a].

5.1.4. Existence of enough projectives or injectives. In order to use the extension con-
struction L (resp. R) for a functor F with the source A one needs that A has sufficiently
many projective (resp. injective) objects, so that any object has a projective (resp. injec-
tive) resolution. We will check that for any ring A the category m(A) of A-modules has
enough projectives and injectives.

5.2. Exactness properties of functors.

5.2.1. Exactness of a sequence of maps. A sequence of maps in an abelian categoryMa
αa−→

Ma+1 −→ · · ·
αb−1

−−→ Mb is said to be exact at Mi (for a < i < b) if Im(αi−1) = Ker(αi).
The whole sequence is said to be exact if it is exact at all Mi, a < i < b. (The sequence
may possibly be infinite in one or both directions.)

5.2.2. Exact functors. Let F : A −→B be an additive functor between abelian categories.
(One can think of the case where A = m(k) and B = m(l) since the general case works
the same.)
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We will say that F is exact if it preserves short exact sequences, i.e., for any SES 0 −→

A′ α
−→A

β
−→A′′ −→0 in A, its F -image in B is exact, i.e., the sequence F (0) −→F (A′)

F (α)
−−→

F (A)
F (β)
−−→ F (A′′) −→F (0) is a SES in B.

We say, that F is left exactt if for any SES its F -image F (0) −→F (A′)
F (α)
−−→ F (A)

F (β)
−−→

F (A′′) is exact (so, F (β) need not be surjective).

F is right exact if F (A′)
F (α)
−−→ F (A)

F (β)
−−→ F (A′′) −→F (0) is exact (F (α) may fail to be

injective).

Lemma. (a) If F is LE it preserves inclusions and kernels. If F is RE it preserves sur-
jections and cokernels. If F is exact then it preserves (co)kernels, (co)images and the
cohomology of complexes.

(b) F is LE iff it preserves exactness of sequences of the form

0 → C ′ α
−→ C

β
−→C ′′.

F is RE iff it preserves exactness of sequences of the form

C ′ α
−→ C

β
−→C ′′ −→0.

F is exact iff it preserves exactness of sequences of the form C ′ α
−→ C

β
−→C ′′.

Proof. Consider the case when F is left exact. Let 0 → C ′ α
−→ C

β
−→ C ′′ be an exact

sequence (equivalently, C ′ α
−→ C is the kernel of β). This sequence fits into a commutative

diagram

0 −−−→ C ′ α
−−−→ C

β
−−−→ C ′′

=

x =

x i

x⊆

0 −−−→ C ′ α
−−−→ C

β′

−−−→ Im(β) −−−→ 0′

.

Since Ker(β ′) = Ker(β) (here β = i◦β ′ and i is an inclusion!), the second row is also
exact.

Now apply F to this diagram:

0 −−−→ FC ′ Fα
−−−→ FC

Fβ
−−−→ FC ′′

=

x =

x F (i)

x⊆

0 −−−→ FC ′ Fα
−−−→ FC

Fβ′

−−−→ F [Im(β)].

Since F is left exact the second row is exact. In particular, Fα is again an inclusion.

Because any inclusion 0 → C ′ α
−→ C appears in an exact sequence 0 → C ′ α

−→C
β
−→C ′′ (for

instance we could take C ′′ = Im(α)). this proves that F preserves inclusions.
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This property implies that F (i) is an inclusion. Then we see (the same as before), that
Ker(Fβ) = Ker(Fβ ′). So, the first row is exact. In particular F (Ker(β)) = FC ′ =
Ker(Fβ).

Since any map C
β
−→ C ′′ appears in an exact sequence 0 → C ′ α

−→ C
β
−→ C ′′ (with C ′ =

Ker(β)) this proves that F preserves kernels.

We have proved (a) and (b) for LE functors. The RE case follows by duality. So, if F is
exact then we already know that it preserves (co)kernels. Then it preserves (co)images
and cohomologies of a complex since these are all defined in terms of (co)kernels, say
Hn(C) = Coker[Cn−1 −→Ker(dn)].

We will check the last claim by thinking of complexes. If F is exact and C ′ α
−→ C

β
−→ C ′′

is exact then βα = 0 so we can think of it as a complex in degrees −1, 0, 1 (put zeros
elsewhere). Then for its F -image we have

H0(FC ′ Fα
−→ FC

Fβ
−→ FC ′′) = F (H0(C ′ α

−→ C
β
−→C ′′]) = F (0) = 0. �

Remark. The properties in the lemma are stronger then the definitions of exactness.
However they follow from the definition of exactness properties by a diagram chase which
uses the definition of exactness property in two or more places.

5.2.3. Half exactness of contravariant functors. This will be needed for the functors
HomA(−, a).

We say that a contravariant functor F from A to B is left exact if it has this property

when viewed as an ordinary functor from A to Bo. So, we ask that if 0 → a′
α
−→ a′

β
−→ a′′

is exact in A then its F -image in B is exact, i.e., Fa′′
Fβ
−→ Fa

Fα
−→ Fa′ → 0 is exact in

B.(3)

The same convention gives the following notion of right exactness of a contravariant F :

we ask that for a′
α
−→ a

β
−→ a′′ −→0 in A, its F -image F (0) −→F (a′′)

F (β)
−−→ F (a)

F (α)
−−→ F (a′)

is exact.

5.3. Examples of half exact functors.

5.3.1. The basic example of half exact functors. It involves functors that come from the
structure of an abelian category.

3 Notice that if we would consider F as a functor Ao → B we would get a different notion of left

exactness. The requirement would be that for 0 → a′′
α
−→ a

β
−→ a′ exact in Ao (i.e., a′

β
−→ a

α
−→ a′′ −→ 0

exact in A), the F -image 0 → Fa′′
Fα
−−→ Fa

Fβ
−−→ Fa′ be exact in B.
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Lemma. (a) A sequence b′
α
−→ b

β
−→ b′′ −→ 0 in an abelian category A is exact iff for any

a ∈ A the following sequence of Hom’ is exact in Ab

0 → Hom(b′′, a)
β∗

−→ Hom(b, a)
α∗

−→ Hom(b′, a).

(b) A sequence 0 → b′
α
−→ b

β
−→ b′′ is exact iff for any a ∈ A the sequence of Hom’ is exact:

0 → Hom(a, b′)
β∗

−→ Hom(a, b)
α∗

−→ Hom(a, b′′).

�

Proof. By duality, it suffices to prove (a).

b′
α
−→ b

β
−→ b′′ −→ 0 is exact iff b −→

β
b′ is the cokernel of α (i.e., b′′ = Coker(α)). then

the lemma implies that the above sequence of Hom’s is exact. By definition this means
precisely that any map φ : a→ b into b, such that α∗φ = φ◦α is zero, comes from a unique
map ψ : a→ b′ (in the sense that φ = β∗ψ, i.e., that φ = ψ◦β. However, this is exactly
the exactness of the sequence of Hom’s in the lemma for any a ∈ A ! �

Corollary. (a) In an abelian category A for any a ∈ A, the functor HomA(a,−) : A −→Ab
is left exact while the functor HomA(−, a) : Ao −→Ab is right exact!

(b) Left adjoints are right exact!

Proof. The second part of (a) is the claim that for a ∈ A, applying Hom(−, a) to any

SES 0 → b′
α
−→ b

β
−→ b′′ → the result 0 → Hom(b′′, a)

β∗

−→ Hom(b, a)
α∗

−→ Hom(b′, a) is exact.
This is proved in the lemma.(4)

(b) Let F : A → B have a right adjoint G. We want F (being a left adjoint of G) to be

right exact, i.e., for exact 0 → a′
α
−→ a

β
−→ a′′ → 0 we want Ga′

Gα
−→ Ga

Gβ
−→ Ga′′ → 0 to

be exact. However, by the lemma it is equivalent to the claim that for any b ∈ B

0 → Hom(Ga′′, b)
β∗

−→ Hom(Ga, b)
α∗

−→ Hom(Ga′, b)

is exact. By adjointness this sequence is the same as �

0 → Hom(a′′, F b)
β∗

−→ Hom(a, F b)
α∗

−→ Hom(a′, F b).

However, we know that this is exact by the lemma. �

4 Here is also a direct proof that Hom(a,−) is left exact.

(1) α∗ is injective. if a
µ
−→ b′ and 0 = α∗(µ)

def
= α◦µ, then µ factors through the kernel Ker(α) (by the

definition of the kernel). However, Ker(α) = 0 (by definition of a short exact sequence), hence µ = 0.

(2) Ker(β∗) = Im(α∗). First, β∗◦α∗ = (β◦α)∗ = 0∗ = 0, hence Im(α∗)⊆Ker(β∗). If a
ν
−→ b and

0 = β∗(ν), i.e., 0 = β◦ν, then ν factors through the kernel Ker(β). But Ker(β) = a′ and the factorization
now means that ν is in Im(α∗).
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Example. A counterexample. Let A = Ab and apply Hom(a,−) for a = Z/2Z to 0 −→

2Z
α
−→ Z

β
−→ Z/2Z −→0. Then idZ/2Z does not lift to a map from Z/2Z to Z. So β∗ need

not be surjective.

Corollary. (a) A sequence b′
α
−→ b

β
−→ b −→ 0 in an abelian category A is exact iff for any

a ∈ A

0 → Hom(a, b′′)
β∗

−→ Hom(a, b)
α∗

−→ Hom(a, b′)

is exact.

(b) Left adjoints are right exact.

Proof. (a) If b′
α
−→ b

β
−→ b −→0 is exact then the lemma implies that the above sequence of

Hom’s is exact.

The claim that the sequence of Hom’s is exact for any a is the claim that any map
φ : a → b into b, such that α∗φ = φ◦α is zero, comes from a unique map ψ : a → b′ (in
the sense that φ = β∗ψ, i.e., that φ = ψ◦β. This is precisely the definition of β being a
cokernel of α.

5.3.2. Example. Functoriality of categories of modules over rings. Recall that for a map
of rings φ : A → B we have an adjoint triple (φ∗ = IndBA, φ

∗, φ∗ = CoindBA) of functors
between A and B modules. Therefore, φ∗ is exact (this is anyway clear from since it does
not change the structure of abelian groups and the exactness for modules only involves
the level of abelian groups) while IndBAM = B⊗AM is right exact and CoindBAM =
HomA(B,M is left exact. �

5.3.3. Example: representations of groups. For a group G let Repk(G) be the category of
all representations of G over a commutative ring k. Here, a representations of G is a pair
(V, π) of a k-modules V and a map of groups G

π
−→ GLk(V ). We often denote π(g)v by

gv, and we often omit V or π from the notation.

Consider the functors I, C : Repk(G) −→m(k) of invariants and coinvariants

I(V )
def
= V G def

= {v ∈ V, gv = v, g ∈ G} and C(V )
def
= V/[

∑

g∈G

(g − 1)V.

is right exact.

Lemma. (a) Repk(G) is an abelian category.

(b) For a subgroup A⊆G the forgetful functor F : Repk(G) → Repk(A) has adjoints
IndGA,F , Coind

G
A).

(c) Let m(k)
T
−→ Repk(G) be the functor that adds to any k-module M the trivial action

of G, i.e., g·m = m for m ∈ M and g ∈ G. Then (C, T , I) is an adjoint triple. The
functor I of G-invariants is left exact. The functor C of G-coinvariants is right exact.
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Proof. (a) Representations of G are the same as modules for the algebra k[G]
def
= ⊕g∈G kg

(the multiplication is obvious).

(b) Here F is i∗ for for the inclusion of rings k[A]
i
⊆k[G]. So the left adjoint is i∗M =

k[G]⊗k[A]M called the inductions and the right adjoint is i⋆M = Homk[A](k[G],M).

(c) From the categorical point of view these two functors come from the same object of
Repk(G) –the trivial G-modules k :

I(V ) ∼= HomG(k, V ) and C(V ) ∼= k⊗k[G]V.

For instance, the canonical isomorphism of functors I
η
−→
∼=

HomRepk(G)(k,−) from Repk(G)

to Vectk consists of maps V G ηV
−→
∼=

HomRepk(G)(k, V ) that sends a G-fixed vector w ∈ I(V )

to a linear map ηV (w) : k −→V , given by multiplying w with scalars: k ∋ c 7→ c·v ∈ V .
One easily checks that ηV is an isomorphism of vector spaces.

Now the adjunction claim is a case of ?? and the exactness claim is a case of the corollary
5.3.1.b. �

Counterexample. It is more interesting to see how exactness fails. For invariants take
k = C. Then a representation π of G = Z is the same as a C-vector space V with
an invertible linear operator A (= π(1)). Therefore, I(V,A) is the 1-eigenspace V1 of
A. Short exact sequences in Repk(Z) are all isomorphic to the ones of the form 0 −→
(V ′, A|V ′) −→ (V,A) −→ (V ′′, A) −→ 0, i.e., one has a vector space V with an invertible
linear operator A, an A-invariant subspace V ′ (we restrict A to it), and the quotient
space V ′′ = V/V ′ (we factor A to it). So the exactness on the right means that any
w ∈ V/V ′ such that Aw = w comes from some v in V such that Av = v.

If V = Ce1⊕Ce2 with A = ( 1 1
0 1 ) and V ′ = Ce1 then 0 −→ I(V ′, A|V ′) −→ I(V,A) −→

I(V ′′, A) −→0, is just 0 −→Ce1
id
−→ Ce1

0
−→V ′′ −→0, and the exactness fails on the right.

5.3.4. Example: tensoring.

Lemma. Tensoring is right exact in each argument, i.e., for any left k-module M the
functor M⊗

k
− : mr(k) −→Ab is right exact, and so is −⊗

k
N : m(k) −→Ab for any right

k-module N .

Proof. Homework. �

5.4. Projective and injective objects and resolutions.
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5.4.1. Projectives and injectives. Let A be an abelian category. The exactness properties
of functors HomA(a,−) and HomA(−, a) lead to the following classes of objects.

We say that p ∈ A is a projective object if the functor HomA(p,−) : A −→Ab is exact.

Dually, we say that i ∈ A is an injective object if the contravariant functor HomA(−, i) :
A −→Ab is exact, i.e., the functor HomA(−, i) : A −→Abo is exact.

Proposition. (a) p ∈ A is projective iff for any map p
φ
−→ b′′ from p, and any quotient map

b
q
−→b′′ the map β from p to the quotient lifts to a map to b.

(b) i ∈ A is injective iff for any map a′
ψ
−→ i into i, and any inclusion map a′→֒a, the map

α from the subobject to i extends to a map from a.

Proof. (a) Since for any p the functor HomA(p,−) is left exact, what we need is that

for any short exact sequence 0 −→ b′
α
−→ b

β
−→ b′′ −→ 0 its image 0 −→ HomA(p, b

′)
α∗−→

HomA(p, b
′)

β∗
−→ HomA(p, b

′′) −→0 is exact except possibly at HomA(p, b
′′). So, exactness

is the claim that the map Hom(p, b)
β∗
−→ Hom(p, b′′) is surjective for any surjective map

b
q
−→b′′. This is exactly the above lifting property.

(b) Again, since HomA(−, i) is always a right exact contravariant functor, i.e., , for

any short exact sequence 0 −→ a′
α
−→ a

β
−→ a′′ −→ 0, exactness of its HomA(−, i)-image

0 −→HomA(a
′′, i)

α
−→ HomA(a, i)

β
−→ HomA(a

′, i) −→ 0 may only fail at the right end. So,

exactness is equivalent to surjectivity of Hom(i, a)
α∗

−→ Hom(i, a′) for α∗(φ) = φ◦α. This
is exactly the above extension requirement. �

Lemma. (a) ⊕i∈I pi is projective iff all summands pi are projective.

(b) Product
∏

i∈I Ji is injective iff all factors Ji are injective.

Proof. (a) The functor HomA(⊕i∈I pi, b) is isomorphic to
∏

i∈I HomA(pi, b). Now the
claim follows since in Ab the sequences 0 → Bi → B→B

′′
i → 0 are exact for all i ∈ I iff

the product sequence 0 →
∏

i∈I Bi →
∏

i∈I B→

∏
i∈I B

′′
i → 0 is exact. �

5.4.2. Resolutions. We say that abelian category A has enough projectives if any object
is a quotient of a projective object. We say that A has enough injectives if any object is
a subobject of an injective object.

A right resolution of an object a ∈ A is any exact sequence 0 → a → r0 → r1 −→ · · ·.
Dually, a left resolution of an a is any exact sequence · · · → l−1 → l0 → a −→0.

A projective resolution of a ∈ A is any left resolution · · · → p−1 → p0 → a −→0 where all
pn are projective, A left resolution of an a is any exact sequence 0 → a → i0 → i1 −→· · ·
where all in are injective.
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Lemma. In an abelian category A the following is equivalent

(a) Any object of A has a projective resolution iff A has enough projectives.

(b) Any object of A has an injective resolution iff A has enough injectives.

Proof. (b) Let a ∈ A. If A has enough injectives a embeds into an injective object a
ε
−→I0.

We view the quotient I0
q0
։Coker(ε) as the error of representing a by the injective object

I0. We choose its embedding Coker(ε)
i0
→֒I1 into an injective object. This gives exact

sequence 0 → a
ε
−→I0

d0
−→ I1 for d0

def
= [I0

q0
−→ Coker(ε)

i0−→ I1]. Now we embed Coker(d0)
into an injective I2 etc.

Conversely, if any a ∈ A has an injective resolution I then a embeds into I0. �

5.4.3. Adjoints of exact functors.

Lemma. Let F : A −→B be an exact functor between abelian categories. Its right adjoint
preserves injectives and its left adjoint preserves projectives.

Proof. For the right adjoint G and an injective b ∈ B, functor HomA[−, Gb] ∼=

HomB[F−, b] is exact as a composition of two exact functors A
F
−→ B

HomB(−,b)
−−−−−−→ Ab. �

Corollary. For a map of rings k
φ
−→ l functor φ∗ : m(k) −→m(l), φ∗(M) = l⊗kM preserves

projectivity and φ⋆ : m(k) −→m(l), φ⋆(M) = Homk(l,M) preserves injectivity.

Proof. These are the two adjoints of the forgetful functor φ∗ which is exact. �

5.5. Projectives and injectives in categories of modules m(A). Let A be a ring.
We will show that m(A) has enough projectives and enough injectives.

5.5.1. Projectives. The following lemma shows that the notion of projectivity is a “cate-
gorical extension” of the familiar notion of free modules.

Lemma. (a) An A-module P is projective iff P is a summand of a free module.

(b) Module categories have enough projectives.

Proof. (a’) Summands of free modules are projective. We first consider the A-module

AA = A. The functor m(A)
HomA(A,−)
−−−−−−→ Ab is canonically isomorphic to the forgetful

functor m(A)
F
−→ Ab which forgets the action of A. The isomorphism HomA(A,M)−→

∼=
M

is the evaluation at 1A. F is clearly exact hence the A-module AA = A is projective.

Now any free A-module is projective by lemma 5.4.1.a and its summands are projective
by the same reference.
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(a”) Projective modules are summands of free modules. If P is a projective A-module we

choose a free module F and a surjection F
q
−→P . Since P is projective the map from P

given by P
1P−→ P lifts to σ : P → F . This splits q and we see that P is a summand of F .

(b) Any module M is a quotient of some free module F (say F = ⊕m∈M Am). �

5.5.2. Injectives in Ab. We say an abelian group M is divisible if for any n ∈ {1, 2, 3, ...}
the multiplication n : M −→M with n ∈ {1, 2, 3, ...} is surjective (i.e., for a ∈ M there is
some ã ∈M such that a = n·ã).

Lemma. An abelian group I is injective iff it is divisible.

The proof will use the following axiom of set theory(5) which is in some form an essential
part of “any” strict definition of set theory:

• “Zorn lemma”. Let (I,≤) be a (non-empty) partially ordered set such that any
chain J in I (i.e., any totally ordered subset) is dominated by some element of I
(i.e., there is some i ∈ I such that i ≥ j, j ∈ J). Then I has a maximal element.

Proof. For any a ∈ I and n > 0 we can consider 1
n
Z⊇Z

α
−→ I with α(1) = a. If I is

injective then α extends to α̃ : 1
n
Z −→I and then a = nα̃( 1

n
).

Conversely, if I is divisible we need to show that it injective, i.e., that if A⊇B then any

map B
β
−→ I extends to A.

Consider the set E of all pairs (C, γ) with B⊆C⊆A and γ : C −→I an extension of β. It is
partially ordered with (C, γ) ≤ (C ′, γ′) if C⊆C ′ and γ′ extends γ. We make the following
observations

(1) For any totally ordered subset E ′⊆E there is an element (C, γ) ∈ E which domi-
nates all elements of E ′.

• This is clear: we take C = ∪(C′,γ′)∈E ′ C ′ and then γ is obvious.
(2) If (C, γ) ∈ E and C 6= A then (C, γ) is not maximal:

• Choose a ∈ A which is not in C and let C̃ = C + Z·a. Then C ∩ Z·a is of
the form Z·na for some n ≥ 0. If n = 0 then C̃ = C⊕Z·a and one can extend
γ to C̃ by zero on Z·a. If n > 0 we remember that I is n-divisible, hence
γ(na) ∈ I is of the form nx for some x ∈ I.

Then one can extend γ : C → I to γ̃ : C̃ → I by γ̃(a) = x. We first define a

map C⊕Z·a
γ̂
−→ I by γ̂(c⊕Z)

def
= γ(c)+nx. Then we descend it to the quotient

C̃ = (C⊕Za)/Z·(na⊕− na) because γ̂)[na⊕(−na)] = γ(na)− nx = 0.

The second observation would suffice if A/B would be a finitely generated abelian group
(we could extend from B to A in finitely many steps). It is less clear if we want to consider
arbitrary large groups. However this set theoretic problem is removed by Zorn lemma.

5 It is equivalent to the “axiom of choice”.
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Using the first observation Zorn lemma guarantees that a maximal extension (C, γ) exists.
Then (2) implies that C = A. �

5.5.3. Pontryagin duality (representation theory and harmonic analysis) [Can be skipped].
The following is just a motivation for our next tool.

Consider the category Ablc of locally compact abelian topological groups (with Hausdorff
topology), Examples include Rn, discrete abelian groups such as Z and compact abelian

groups such as the circle group T
def
= {z ∈ C∗; |z| = 1}. The duality operation on Ablc is

Â
def
= MapAblc(A,T).

The elements of M̂ are called characters of M .

Theorem. [Pontryagin] (a) For A in Ablc the dual Â is naturally a topological group (for
the compact open topology) and it again lies in Ablc.

(b) The biduality map A→
ˆ̂
A is an isomorphism.

(c) There is a canonical Fourier transform isomorphism of Hilbert spaces

FA : L2(A, µ)−→
∼=
L2(Â, µ̂).(6)

(d) A is discrete iff Â is compact.

Example. One has R̂ ∼= R and T̂ = Z. The corresponding Fourier transforms from (c)
are the standard Fourier transform for functions on R and the Fourier series expansion of
periodic functions on an interval.

This theorem is a basis of representation theory and harmonic analysis.

5.5.4. Algebraic duality in abelian groups. For any abelian group M let us denote

M̂ = Hom(M,Q/Z).

Remark. Here we have simplified the circle group T which is a natural object in topological
groups to its subgroup µ = {z ∈ C∗, (∃n > 0) zn = 1} of roots of unity which is a purely
algebraic object. (Notice that exp(2πi−) : Q/Z−→

∼=
µ.)

6 The measure µ is any Haar measure on A, i.e., a measure which is invariant under multiplica-
tion functions (“translations”) ma : A → A by ma(b) = ab. The measure µ̂ is the Haar measure on

Âdetermined by the µ.
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Lemma. (a) The biduality map ιM :M −→
̂̂
M is injective.

(b) Category of abelian groups has enough injectives.

Proof. (a) For m ∈ M, χ ∈ M̂ , ιM(m) (χ)
def
= χ(m). So, ιM(m) = 0 means that m is

killed by each character χ of M .

If m 6= 0 then the cyclic group Z·m is 6= 0 Z·m is 6= 0 and we can easily see that
it has a nontrivial character χ0 6= 0. (If |m| = ∞ then any choice of χ0(m) ∈ Q/Z
extends uniquely to a character χ0 of Zm. If |m| = n < ∞ then χ0 can be chosen as an
isomorphism with the subgroup 1

n
Z/Z of Q/Z.)

Since Q/Z is injective we can extend χ0 to a character χ of M and χ(m) 6= 0.

(b) To M we associate a huge injective abelian group IM =
∏

x∈M̂ Q/Z·x = (Q/Z)M̂ , its

elements are M̂ -families c = (cχ)χ∈M̂ of elements of Q/Z (we denote such family also as

a (possibly infinite) formal sum
∑

χ∈M̂ cχ·χ). The canonical map of abelian groups

M
ζ
−→IM , ζ(m)

def
= (χ(m))χ∈M̂ =

∑

χ∈M̂

χ(m)·χ, m ∈ M ;

is injective by part (a). �

5.5.5. Injectives in categories of modules.

5.5.6. Theorem. Module categories m(A) have enough injectives.

Proof. The problem will be reduced to the case A = Z via the canonical map of rings

Z
φ
−→ A. Any A-module M gives a Z-module φ∗M which is M considered as an abelian

group. By the lemma 5.5.4.b there is an embedding M
ι
−→ J into an injective abelian

group.

Moreover, by corollary 5.4.3 φ⋆IM is an injective A-module. So it suffices to have an
embedding M →֒φ⋆IM .

The adjoint pair (φ∗, φ⋆) gives a map of A-modules M
ζ
−→ φ⋆φ

∗M = HomZ(A,M), by
ζ(m) c = cm, m ∈ M, c ∈ A. It remains to check that both maps in the composition

M
ζ
−→φ⋆(M)

φ⋆(ι)
−−→ φ⋆(IM) are injective. For ζ it is obvious since ζ(m) 1A = m. For φ⋆(ι)

we notice that φ⋆ = HomZ(A,−) is left exact, so it takes inclusion ι to inclusion φ⋆(ι).

5.5.7. Examples. (1) An injective resolution of the Z-module Z: 0 −→Z −→Q −→Q/Z −→0.

(2) Injective resolutions are often big, hence more difficult to use in specific calculations
then say, the free resolutions. We will need them mostly for the functor Γ(X,−) of global
sections of sheaves, and the functors HomA(a,−).
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5.6. Deriving the half exact functors: the basic construction. Here we recall (re-
peat) the constructions of LF and RF from 5.1 but we say things in a different order. We
first point out that these constructions make sense for any functor F but then we notice
that LF is an extension of F only when F is left exact.

5.6.1. Left and right derived functors RF , first definition. Let F : A → B be an additive
functor. If A has enough injectives we can define the right derived version RF of F by
replacing each object a ∈ A by its chosen injective resolution I. So, RF goes from A to
C(B) by

RF (a)
def
= F (I) and we get (RnF )a

def
= Hn[(RF )a] ∈ B (n ∈ Z).

Dually, if A has enough projectives we can define the left derived version LF of F by
replacing a ∈ A by its chosen projective resolution P . So,

LF (a)
def
= F (P ) and we get (LnF )a

def
= Hn[(LF )a] ∈ B (n ∈ Z).

Notice that RnF = 0 for n < 0 and LnF = 0 for n > 0.

Remark. The complexes RF (a), LF (a) in general do depend on the choice of the resolu-
tions I, P (example: f = idA). It will eventually turn out that their cohomology objects
(RnF )a and (LnF )a do not (section ??).

Lemma. (a) There is a canonical map F → R0F .

(b) If the functor F : A −→B is left exact, this an isomorphism of functors F−→
∼=
RoF .

(c) R0F is always left exact.

The dual claims hold for L0F .

Proof. (a) Let 0 → a
u
−→ I0

d0
−→ I1

d1
−→ · · · be an injective resolution of M , so the sequence

is exact and all Ip are injective. Applying F gives 0 → Fa
F (u)
−−→ F (I0)

F (d0)
−−−→ F (I1)· · ·.

On the other hand, RFa = F (I) is the complex · · · −→ 0 → F (I0)
F (d0)
−−−→ F (I1)

F (d1)
−−−→

F (I1) −→ · · ·, hence R0F (a) = H0[(RF )a] = Ker[F (d0). Now, 0 = do◦u gives
F (do)◦F (u) = F (do◦u) = F (0) = 0, hence F (u) : Fa → F (I0) factors to a map
Fa→ Ker[F (d0)].

(b) If F is left exact then 0 → Fa
F (u)
−−→ F (I0)

F (d0)
−−−→ F (I1) is exact, hence the map

Fa→ Ker[F (d0)] is an isomorphism. �

5.6.2. The case when F is contravariant. A contravariant functor F from A to B is really
a functor F : A0 → B and as such we know how to derive it.
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For, instance if F is left exact then LF (M) = F (· · · −→P−2 −→P−1 d−1

−−→ P 0 −→0 −→· · ·)
equals

· · · −→0 −→F (P−0)
d−1

−−→ F (P−1) −→F (P−2) −→0 −→· · ·,

and we get H0[LF (M)] = Ker[F (P−0)
d−1

−−→ F (P−1)]. However, applying F to the exact

sequence P−1 d−1

−−→ P 0 −→M −→ 0 gives an exact sequence 0 −→ F (M) −→ F (P 0)
F (d−1)
−−−−→

F (P−1). So the canonical map F (M) −→ Ker[F (P−0)
d−1

−−→ F (P−1)] is an isomorphism.

5.6.3. The direct and inverse image functors in algebraic Geometry. We consider a simple

map, the inclusion 0
i
∈ An

k of a point in an affine space. It gives a restriction of polynomial
functions which is a map of rings ρ : O(An) → O(0), i.e., k[x1, ..., xn] → k by xi 7→0.

This defines the “forgetful” functor

ρ∗ : m(k) = m[O(0)] → m[O(An)]

and its adjoints (ρ∗, ρ
∗, ρ⋆).

We will also denote these constructions by (i∗, i∗, i
!).(7) Then i∗ is called the direct image

(push forward) functor (along the map i) while i∗ is the inverse image (pull back) functor
and i! is the extraordinary inverse image functor.

Here, i∗M = ρ∗M
def
= O(0)⊗O(An)M = M/

∑
i xiM since O(0) = O(An)/

∑
i xiO(An).

Also,

i!M = ρ⋆M
def
= HomO(An)[O(0),M ] = {m ∈M ; xim = 0}.

The functor i∗ is exact so there is no problem driving it. Here, i∗ is right exact and i! is
left exact. So, one can consider their derived functors Li∗ and Ri!. We will eventually see
that both are calculated using the Koszul resolution.

Remark. In general for any embedding of algebraic varieties i : Y →֒X one has functors
i∗, i

∗, i! between modules for the rings of functions O(X) and O(Y ). As long as X and Y
are smooth the computation of derived inverse images reduces to the Koszul resolution.

7 The double notation appears because we can think the situation in terms of the map in geometry
i : 0 ∈ An or in terms of the map of rings ρ : O(An) → O(0).
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