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0.0.1. Notation. Symbol � meas “I said this much and I will say no more”.

3. Categories

We will use the language of categories seriously on several levels. Some examples:

• Abelian categories. This is a basic setting for homological algebra. It explains why
we can calculate with sheaves “the same” as with abelian groups.
• Triangulated categories. This is the “optimal” setting for homological algebra
needed for more subtle calculations and constructions.
• Study of sheaves. Categories appear from the beginning since we are interested in
sheaves with values in a certain category. The notion of a stalk of a sheaf, i.e., a
restriction of a sheaf is an instance of a notion of a limit in a category.

3.0.2. Why categories? Set theory studies groups objects. category theory studies groups
of related objects. The interpretation of “related” in category theory is that it makes
sense to go from one such object to another via something (a “morphism”). Since this is
indeed what we usually do, the language of categories is convenient.

3.0.3. From sets to categories. For a set A the basic question is “what are its elements?”.
For a category C the basic question is “how are its elements related?”.

So, the change of point of view from set theory to categories is that “what is this object?”
is replaced by “how does this object relate or interact with others?”.(1)

1 The latter point of view is standard in physics where one does not hope to know what elementary
particles are but all experiments are done to see how particles interact.
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Remark. Historically, language of sets was used in mathematics to describe any math-
ematical object precisely – as a system of sets. This was very useful but it also some-
times made mathematics cumbersome as objects of natural interest may have lengthy
descriptions.(2)

3.0.4. Upgrading concepts from set theory to category theory. As the categorical way of
thinking is more subtle a single notion in sets may have several upgrades. Some examples:

• empty set 7→ initial object;
• union of sets 7→ sum of objects, more generally a direct (inductive) limit of objects;
• product of sets, 7→ product of objects or more generally “projective limit of
objects”;
• abelian groups 7→ additive category, abelian category, triangulated categories;
• maps between sets 7→ functors between categories;
• subsets 7→ subcategories, full subcategories;
• bijections 7→ equivalences of categories.

The process of constructing a (useful) categorical upgrade is called categorification (this
is now by itself an exciting branch of mathematics).

Remark. This enriched language of categories has been recognized as fundamental for
describing various complicated phenomena in mathematics. In particular, the study of
special classes of categories mushroomed somewhat similarly as the study of special
classes of functions in analysis (continuous, smooth, analytic, 3.17 times differentiable,
p-integrable etc.).

3.1. Categories. To define a category one use the notion of a class. There is a number
of versions of foundational aspects of mathematics and the precise meaning of “class”
depends on the choice you make. We will use a flexible and imprecise idea that a class is
any “collection of mathematical objects that is well defined by certain property.(3)

A category C consists of

(1) a class Ob(C), its elements are called objects of C,
(2) for any a, b ∈ Ob(C) a class HomC(a, b) whose elements are called morphisms

(“maps”) from a to b in C,
(3) for any a, b, c ∈ Ob(C) a function HomC(b, c)×HomC(a, b) −→ HomC(a, c), called

composition,
(4) for any a ∈ Ob(C) an element 1a ∈ HomC(a, a),

such that

2 Physicists excel at finding colorful replacements for “cumbersome” in this sentence.
3 One role for foundations of mathematics is to pinpoint a class of constructions which is large enough

for your purposes and small enough that it does not allow contradictions that come from lumping together
objects of all sizes (say, “set of all sets”). However, such concerns rarely come up in practice.
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• the composition is associative and
• 1a is a neutral element for composition.

Instead of a ∈ Ob(C) we will usually just say that a ∈ C.

Remarks. A category is said to be small if the class Ob(C) is a set. One often considers
categories such that all classes HomC(a, b) are sets.(4)

3.1.1. Examples.

(1) Any type of structure S on sets defines a category S: its objects are sets that
carry such structure and morphisms are maps of sets that are compatible with
this structure. This is how category Set of sets leads to the categories Ab of
abelian groups, m(k) of modules for a ring k (denoted also Vec(k) if k is a field),
Group of groups, Ring of rings, T op of topological spaces etc.

(2) There are also purely categorical constructions of new categories from old ones.
For instance, to a category C one attaches the opposite category Co so that objects
are the same but the “direction of arrows reverses”:

HomCo(a, b)
def
= HomC(b, a).

(3) Some familiar structures in a set A make A into a category. For instance a partial
order ≤ on a set I defines a category with Ob = I while Hom(a, b) is a point if
a ≤ b (call this point (a, b)), and ∅ otherwise. Similarly for an equivalence relation
on a set I.

(4) If C is a category, any topological space X defines the category Sh(X, C) of sheaves
on X with values in the category C.

(5) A subcategory of a category C is a category C′ such that Ob(C′)⊆Ob(C), for any
a, b ∈ C′, HomC′(a, b) is a subset of HomS(a, b) and the composition and units are
as in C.

3.1.2. Notation. One denotes f ∈ HomC(a, b) graphically by f : a → b or a
f
−→ b. One

calls f a morphism or just a map in C. We write f : a−→
∼=
b if f has an inverse. One

sometimes denotes HomC(a, b) by C(a, b)

3.2. Functors. A functor F from a category A to a category B consists of

(1) for each object a ∈ A an object F (a) ∈ B;
(2) for each morphism α ∈ HomA(a

′, a′′) in A a morphism F (α) ∈ HomB(Fa
′, Fa′′)

in B;

such that

• (i) F preserves compositions and units, i.e., F (β◦α) = F (β)◦F (α) and

4 This version does not suffice for the lemma 3.6.2 below.
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• (ii) F (1a) = 1Fa.

Remark. A functor means a natural construction, i.e., a way of constructing from each
object A ∈ A some object F (a) ∈ B, which is sufficiently natural so that it extends to
“relations between objects”, i.e., to morphisms in A.

Examples. (0) For any category A there is the identity functor 1A : A −→A. Two functors

A
F
−→ B and B

G
−→ C can be composed to a functor A

G◦F
−−→ C.

(1) An object a ∈ A defines two functors,

HomA(a,−) : A −→Set and HomA(−, a) : A
o −→Set.

Moreover, HomA(−,−) is a functor from Ao×A to sets!(5)

(2) For a ring k, tensoring is a functor −⊗k− : m
r(k)×ml(k) −→Ab.

(3) As we see in these examples, when the extension of the functor from objects to
morphisms is obvious one often omits the details. (However, this extension is sometimes
highly nontrivial.)

3.2.1. The direct and inverse image of modules. Any map of rings k
φ
−→ l gives two functors

between their categories of modules

• the pull-back (or inverse image) functor φ∗ : m(l) −→m(k), where φ∗N is the same
as N as a set or an abelian group, but now it is considered as module for k via φ.

• the push-forward (or direct image) functor φ∗ : m(k) −→m(l) where φ∗M
def
= l⊗kM .

(This is also called change of coefficients from k to l).

Proof. To see that these are functors, we need to define them also on maps. So, a
map β : N ′ −→ N ′′ in m(l) gives a map φ∗(β) : φ∗(N ′) −→ φ∗(N ′′) in m(k) which as a
function between sets is really just β : N ′ −→ N ′′. On the other hand, α : M ′ −→M ′′

in m(k) gives φ∗(α) : φ∗(M
′) −→ φ∗(M

′′) in m(l), this is just the map 1l⊗α : l⊗kM
′ −→

l⊗kM
′′, c⊗x7→ c⊗α(x). We will skip checking the property required for a functor. �

Remark. Here we see a general feature of the subject that

functors often come in pairs (“adjoint pairs of functors”, see 3.7) and often one of them
is “stupid” and the other one an “interesting” construction.

5 Exercise. Define the product A×B of categories A and B.
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3.2.2. Contravariant functors. This is just a terminology meaning “going the wrong way”.
We say that a contravariant functor F from A to B is given by assigning to any a ∈ A
some F (a) ∈ B, and for each map α ∈ HomA(a

′, a′′) in A a map F (α) ∈ HomB(Fa
′′, Fa′),

such that F (β◦α) = F (α)◦F (β) and F (1a) = 1Fa.

This is not really a new notion since a contravariant functor F from A to B is the same
as a functor F from A to Bo (or a functor F from Ao to B).

3.3. Constructions of objects in a category: limits. We start with specific construc-
tions such as initial object in a category or product of objects in a category. This is then
generalized to the notion of limits in categories which is the general framework for com-
bining objects into a new object. We find the formula for limits in category of sets and
its generalization to arbitrary categories.

3.3.1. Some special objects and maps. We say that i ∈ C is an initial object if for any
a ∈ C set HomC(i, a) has precisely one element “it is a point”). Also, t ∈ C is a terminal
or final object if for any a ∈ C set HomC(a, t) is a point. We say that z ∈ C is a zero
object if it is both initial and terminal.

A map φ ∈ HomC(a, b) is said to be an isomorphism if it is invertible, i.e., if there is a
ψ ∈ HomC(b, a) such that ...

Examples. (i) In Set empty set is the only initial object while terminal objects are pre-
cisely the one-point sets, and so there are no zero objects.

(ii) In Ab initial, terminal and zero objects coincide – these are the zero groups 0 (groups
with one element).

(iii) In Ring, Z is the initial object and the terminal object is the one element ring
0 = {0}. If the subcategory Ring′ where we require that 1R 6= 0R there is no terminal
object.

Lemma. Initial, final or zero object in C (if it exists) is unique up to a canonical iso-
morphism. This means that for any two initial objects i, j in C we have a canonical
isomorphism α : i−→

∼=
j. (The same for terminal and zero objects.)

Proof. For two final objects f1, f2 in C set HomC(fi, fj) has one elementαji. This unique-
ness implies that αii = 1fi and then that αij◦αji is 1fi. So, αji : i→ j is an isomorphism
and it is canonical (no choices). �

3.3.2. Which notion of “equality” is useful in categories? This (trivial) “philosophical”
remark explains much about how one navigates in categories.

Two elements a, b of a set A are either equal or not. If a, b are two objects in a category
C the situation is richer, they can be :
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• (i) the same a = b ,
• (ii) isomorphic a ∼= b (meaning that there exists and isomorphism from a to b),
• (iii) isomorphic by a canonical (given) isomorphism.

It turns out that (i) is too restrictive, (ii) is too lax and (iii) is the most useful – the
correct analogue of equality of elements of a set. In practice this means that we will often
be imprecise and use a shorthand “a = b” while we really mean that “I have in mind a
specific isomorphism φ : a−→

∼=
b”.

Example. With (i) the problem is that in practice it “never happens”, for instance in the

category Vecfdk of finite dimensional vector spaces over a field k the double dual V ∗∗ is
not literally the same vector space as V but it is natural to identify them. With (ii) the
problem is that if a and b are isomorphic but I have not made a choice of an isomorphism
α : a−→

∼=
b then I can not replace a with b in computations where it would be convenient.

The convention (iii) provides (according to the lemma) a shorthand “terminal object in
a category C is unique” for the precise statement that “any two terminal objects in C are
canonically isomorphic”.(6)

3.3.3. Products of objects. A product of objects a and b in C is a triple (Π, p, q) where
Π ∈ C is an object while p ∈ HomC(Π, a), q ∈ HomC(Π, b) are maps such that for any
x ∈ C the function

HomC(x,Π) ∋ φ 7→ (p◦φ, q◦φ) ∈ HomC(x, a)×HomC(x, b)

is a bijection. In shorthand, a map into Π is “the same” as a pair of maps into a and into
b (i.e., there is a canonical bijection between these two kinds of data).

Remarks. (0) Clearly, the above categorical notion of a product is just the abstract for-
mulation of properties of the product of sets.

(1) From our experience we expect that a product of a and b should be a specific object
built from a and b. However, this is not what the categorical definition above says. For
given a, b there may be many triples (Π, p, q) satisfying the product property. However it
is easy to see that any two such (Πi, pi, qi), i = 1, 2; are related by a canonical isomorphism
φ : Π1−→∼=

Φ2 provided by the the defining property of the product. This is another example

of 3.3.2.

(2) In some categories the categorical notion of the product has a canonical realization.
For instance in Set we have the usual notion of the product A1×A2 of two sets (the set
of pairs (a, b) with ai ∈ Ai), is a realization of the categorical notion of the product.(7)

6 Another poetic wording is that the terminal object is “a well defined object with possibly many
realizations”.

7 Set A1×A2 comes with two projections pri : A1×A2 → Ai and (A1×A2, pr1, pr2) is a categorical
product since we know a map into A1×A2 is the same as a pair of maps into A1 and A2 !
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(3) The advantage of the categorical notion of the product is that it is more flexible – it
works uniformly in many settings where the set theoretic construction as a set of pairs
does not make sense.

Example. A product of two objects a and b in a given category C need not exist! (For an
example show that in a poset the product means supremum!)

3.3.4. Sums. A sum of objects a and b in C is a triple (Σ, i, j) where Σ ∈ C is an object
while i ∈ HomC(a,Σ), j ∈ HomC(b,Σ) are maps such that for any x ∈ C the function

HomC(Σ, x) ∋ φ 7→ (φ◦i, φ◦j) ∈ HomC(a, x)×HomC(b, x)

is a bijection.

Example. In Set the sums exist and the sum of a and b is the disjoint union a ⊔ b.

3.3.5. Sums and products of families of objects. This is the same as for two objects. A
product in C of a family of objects ai ∈ C, i ∈ I, is a pair (P, (pi)i∈I)) where P ∈ C and
pi : P −→ai are such that the map

HomC(x, P ) ∋ φ 7→ (pi◦φ)i∈I ∈ Πi∈I HomC(x, ai)

is a bijection.

A sum of ai ∈ C, i ∈ I is a pair (S, (ji)i∈I)) where ji : ai −→S gives a bijection

HomC(S, x) ∋ φ 7→ (φ◦ji)i∈I ∈ Πi∈I HomC(ai, x).

Remark. The notation for products is
∏

i∈I ai. and for sums ⊔i∈I ai or ⊕i∈I ai. Sums are
are also called coproducts (here “co” indicates that this is the dual notion to products,
i.e., a coproduct in C is a product in Co).

Example. In the category Set the categorical products are just the usual products, i.e.,∏
i∈I Mi consists of all families m = (mi)i∈I with mi ∈ Mi, i ∈ I. The sums are the

disjoint unions.

Lemma. For a ring k the category m(k) has sums and products.

(1) As a set, the product
∏

i∈I Mi of modules is the same as the product in sets.(8)

(2) A sum of modules ⊕i∈I Mi is the submodule of
∏

i∈I Mi consisting of all “finite”

families m = (mi)i∈I (i.e., mi = 0 for all but finitely many i ∈ I).(9)

Remarks. This is how we get familiar with categorical constructions: by checking what
they mean in familiar categories.

8 However, now a family m = (mi)i∈I ∈
∏

i∈I Mi is often written as a (possibly infinite) sum
∑

i∈I mi
def
= (mi)i∈I).

9 So, sums in modules and in sets are not compatible!
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3.4. Limits in categories. Categorical thinking allows us to extend the idea of limits
from analysis to many other settings.(10)

Example. In some instances it is clear what one should mean by a limit of a family of
objects. Consider a sequence of increasing subsets A0⊆ A1⊆· · · of a set A, we will say
that its limit lim

→
Ai is the subset ∪i≥0Ai of A. Similarly, the limit of a decreasing sequence

of subsets B0⊇ B1⊆· · · of A, will be the subset lim
←

Bi
def
= ∩i≥0 Bi of A.

In general there will be two kinds of limits in categories, extending these two examples.

3.4.1. Inductive limits. An inductive system of objects of C over a poset(11) (I,≤), consists
of

(1) a family of objects ai ∈ C, i ∈ I; and a
(2) system of maps φji : ai −→aj for all i ≤ j in I;

such that

• φii = 1ai, i ∈ I and
• φkj◦φji = φki when i ≤ j ≤ k.

A short way to say this is that an inductive system a (consisting of ai’s and αji’s) is a
functor a : (I,≤)→ C defined on a poset.

Remark. A “candidate” for the limit of ai as i becomes large in (I,≤) should be be an
object L ∈ C that should lie “beyond all ai’s” and be “compatible with the transition
maps αji : a→aj in the system”. The meaning of the first idea is that L should be related
to ai’s by some maps λi : ai → L and of the second requirement that for i ≤ j we have
λj◦αji = λi.

Let us extend the poset I to a poset I⊔∞ where i ≤ ∞ for i ∈ I. Then a “candidate” is
exactly the data for extending the functor a : (I,≤) → C to a functor â : (I⊔∞,≤)→ C
(the extension is by â(∞) = L. �Now we can state

An limit of an inductive system a is an extension (L, λ) of a to I⊔∞ (i.e., L ∈ C and
λi : ai −→L, i ∈ I, with λj◦αji = λi for i ≤ j), such that (L, λ) is the universal extension
in the sense that

for any extension (B, β) (here βi : ai → B), there is a unique map f : L −→B such that
βi = f◦λi, i ∈ I.

10 This is one of the two most useful ideas in category theory. The other one is the notion of adjoint
functors, see 3.7.

The derivatives of functions extend to a notion of derivatives of functors but we will not cover that.
11 Meaning a partially ordered set.
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Informally, i.e., in shorthand, we write lim
→ I,≤

ai = L (while we remember maps λi).

Remark. Notice that all extensions (L, λ) of a from I to I⊔∞ naturally form a category

E where morphisms (L′, λ′) −→ (L′′, λ′′) in E are simply morphisms L′
f
−→ L′′ in C which

are compatible with structure maps λ′ and λ′′, i.e.,

a′p
µp

−−−→ a′′ι(p)

α′

qp

y α′′

qp

y

a′q
µq

−−−→ a′′ι(q)

.

So, any inductive system a defines a category E and a limit of a is the same as an initial
object in E .

Corollary. The limit object lim
→ I,≤

ai in C is well defined up to a canonical isomorphism.

Proof. First, any two limits (Lk, λk), k = 1, 2, are initial objects in E so there is a canonical
isomorphism ζ : (L1, λ1)−→

∼=
(L2, λ2) in E . However, a morphism φ : (L1, λ1) −→ (L2, λ2) in

E is the same as a morphisms φ : L1 → L2 in C which intertwines λ2 and λ2. So, ζ is in
particular a (canonical) isomorphism ζ : L1−→

∼=
L2 in C. �

3.4.2. Projective limits. Projective systems in C can be defined as inductive systems in
Co. So, a projective system of objects of C, over a poset (I,≤), consists of

(1) a family of objects ai ∈ C, i ∈ I; and
(2) for all i ≤ j in I a map αji : aj −→ai

such that αii = 1ai and αji◦αkj = αki when i ≤ j ≤ k.

Its limit is a pair (L, λ of L ∈ C and maps λi : L −→ai such that

• αji◦λj = λi for i ≤ j, is universal in the sense that for any (C, γ) of the same form
there is a unique map f : C −→L such that βi = λi◦f, i ∈ I.

This means that the limit of a projective system is the final object of the category of
extensions of a : (I,≤)→ C to I⊔∞. Again, informally, we write lim

← I,≤
ai = L.

3.4.3. Limits are functorial. Let IS(C) be the category of inductive systems in C. Objects
are pairs (I, a) consisting of a poset (I,≤) and an inductive system a : (I. ≤)→ C given
by a system of ai’s and αji’s.

A morphism (I ′, a′) −→ (I ′′, a′′) consists of a map of posets ι : I ′ → I ′′ and a system of
maps µk : a′k −→ a′′ι(k), i ∈ I ′, compatible with the structure maps of the two inductive
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systems i.e., for p ≤ q in I ′ the following diagram commutes:

a′p
µp

−−−→ a′′ι(p)

α′

qp

y α′′

qp

y

a′q
µq

−−−→ a′′ι(q)

.

Lemma. If limits of both systems exist then a map (ι, µ) of systems defines a map

lim
→ k∈I′

a′k
lim
→

µi

−−−→ lim
→ l∈I′′

a′′l .

Proof. By definition of lim
→

a′k we know how to construct a map from it to lim
→

a′′l . �

Corollary. If J⊆I is a final subset, i.e., for any i ∈ I there is some j ∈ J with i ≤ j
then there is a canonical isomorphism lim

→ j∈J
aj −→∼=

lim
→ i∈I

ai. In particular, if j ∈ I is the

largest element of I then aj −→∼=
lim
→ i∈I

ai. �

3.5. Limits II: formulas. We say that a category C has inductive limits if any inductive
system in C has a limit. Having countable or finite inductive limits means the same
statement where the posets I are only allowed to be countable or finite.

3.5.1. Limits in sets. Next we will see that in the category Set one has inductive and
projective limits (i.e., each inductive or projective system has a limit):

Lemma. Set has inductive and projective limits and they are given by

(a) For any inductive system of sets lim
→

Ai is the quotient [⊔i∈I Ai]/ ∼ of the disjoint

union by the equivalence relation generated by a ∼ αjia for any a ∈ Ai and j ≥ i.(12)

(b) For any projective system of sets lim
←

Ai is the subset Σ⊆
∏

i∈I Ai consisting of all

families a = (ai)i∈I in the product, such that αjiaj = ai for i ≤ j.

Proof. (a) For any set B, a map [⊔i∈I Ai]/ ∼
f
−→ B is the same as a map ⊔i∈I Ai

F
−→ B

such that a ∼ b implies F (a) = F (b). Notice that this condition is equivalent to i ≤ j
implies that for a ∈ Ai one has F (a) = F (αjia).

However, a map ⊔i∈I Ai
F
−→ B is the same as a family of maps Ai

βi−→ B for i ∈ I where βi
is the restriction of F to Ai. In terms of the maps βi the condition on F is that for i ≤ j
and any a ∈ Ai one has βi(a) = βj(αjia), i.e., that βj◦αji = βi.

12 The relation ∼ is described by a ∈ AI is equivalent to b ∈ Aj iff there is k ≥ i, j such that
αkia = αkjb.
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So, we see that the maps from [⊔i∈I Ai]/ ∼ to a set B are the same as an extension
structure β on B. This is precisely the condition for [⊔i∈I Ai]/ ∼ to be the limit of the
inductive system.

(b) For any set B, a map B → Σ is the same as a map B
F
−→

∏
i∈I Ai such that for i ≤ j

pri◦F = αji◦prjF . Again, a map B
F
−→

∏
i∈I Ai is the same as a family of maps B

βi−→ Ai

for i ∈ I, where βi = pri◦F . Then, in terms of the maps βi the condition on F is that for
i ≤ j and any a ∈ Ai one has βi = αji◦βj . �

Remark. lim
→

Ai can be described in English:

• for i ∈ I, any a ∈ Ai defines an element a of lim
→

Ai,

• all elements of lim
→

Ai arise in this way, and

• for a ∈ Ai and b ∈ Aj one has a = b iff for some k ∈ I with i ≤ k ≥ j one has
“a = b in Ak”.

(13)

3.5.2. Basic examples.

Corollary. (a) If poset (I,≤) is discrete (i.e., i ≤ j ⇔ i = j then lim
→

Ai = ⊔i∈I Ai and

lim
←

Ai =
∏

i∈I Ai.

Proof. For discrete I an I-inductive system or and I-projective system are both just a
family Ai, i ∈ I. Then our formulas are a case of the lemma 3.5.1. �

Remarks. (0) Actually, the same is true in any category: the discrete projective limits are
the same as products. Proof is obvious.

(1) In general, limits of system need not exist in C. For instance, we have already noticed
that the special cases of sums and products need not exist in a category given by a poset
(in this setting a sum=infimum and product=supremum).(14) �

Now we consider a simple non-discrete example. Let I be given by i, j ≤ k. Then a

projective I-system in C is given by a diagram a
p
−→ c

q
←− b. Its projective limit is called

the fibered product of a and b above c and denoted a×c b.

Corollary. (b) For sets A
p
−→C

q
←−B. the fibered product A×C B is the set of all pairs

(a, b) ∈ A×B such that p(a) = q(b). �

13 Here a denotes the image of a ∈ Ai in the quotient [⊔i∈I Ai]/ ∼ and “a = b in Ak” meansαkia = αkjb.
14 However an inductive system in a subcategory C′⊆C which does not have a limit in C′ still may have

a limit in a larger category C.
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Example. If A
⊆
−→ C

⊇
←− B are inclusions of subsets then the fibered product A×

C
B is just

the intersection A ∩B.

3.5.3. Exercises.

3.5.4. Stalks of a presheaf. We want to restrict a sheaf F on a topological space X to a

point a ∈ X . The restriction F|a is a sheaf on a point, so it just one set Fa
def
= (F|a)({a})

called the stalk of F at a. It will give us one of fundamental intuitions about sheaves.

What should Fa be? It has to be related to all F(U) where U⊆X is is open and contains
a, and F(U) should be closer to Fa when U is a smaller neighborhood. A formal way to
say this is that

• (i) the set Na of neighborhoods of a in X is partially ordered by U ≤ V if V⊆U ,
• (ii) the values of F on neighborhoods (F(U))U∈Na

form an inductive system,

• (iii) we define the stalk by Fa
def
= lim

→
U∈Na

F(U).

The basic examples are given by

Lemma. (a) The stalk of a constant sheaf of sets SRn at any point is canonically identified
with the set S.

(b) The stalk of a the sheaf HC of holomorphic functions at the origin is canonically
identified with the ring of convergent power series. (“Convergent” means that the series
converges on some disc around the origin.)

3.5.5. Limits in related categories. Here is how functors act on inductive systems. For an
inductive system a : (I,≤)→ A in A, any functor F : A → B moves a (which is a system
of ai’s and αji’s), to an inductive system F (a) in B which is the system of F (ai)’s and
F (αji)’s.

Lemma. If lim
→

Aai exists in A and If lim
→

BF (ai) exists in B then there is a canonical

(“comparison”) map in B

lim
→

B F (ai)
ζ
−→ F (lim

→

A ai) �.

If this is an isomorphism we say that F is compatible with the limit.

Remark. This need not happen. We have already noticed that the forgetful functor F :
m(k)→ Set does not preserve sums. �
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Lemma. (a) The category T op has projective and inductive limits and these are compat-
ible with the ones in sets.

(b) The projective limits in m(k) are compatible with the ones in sets. �

Proof. (a) We have the forgetful functor F : T op → Set. The claim is that say, for
a projective system of topological spaces (Xi, τi) (where τi is the topology on Xi), The
projective limit lim

←

T op (Xi, τi) is as a set the projective limit in sets X = lim
←

Set Xi with

some topology τ .

From the formula for X as a subset of
∏

i∈I Xi one can make the guess that the topology
τ is the restriction of the product topology on

∏
i∈I Xi to the subset X .

So, now it remains to check that for this choice of τ , (X, τ) really is the projective limit
of (Xi, τi) in T op. �

Remark. This is an indication of how one constructs limits in complicated categories by
using limits in simpler settings.

3.5.6. Limits in arbitrary categories: Existence and Construction. Now we extend the
formulas for limits from lemma 3.5.1 to arbitrary categories. We know that products and
disjoint unions in sets have analogues in arbitrary category: products and coproducts.
However, in set theoretic formulas 3.5.1 we also had to impose some equalities and this
has been done in two ways – by taking a subset or a quotient set. The categorical version
of these operations are equalizers and coequalizers.

Once we introduce these, the construction and proof proof in a general category will be
“the same” as in sets.

• The equalizer Eq(α, β) of a pair of maps a
α,β
−−→ b from a to b is the final object among

all maps e
i
−→a such that α◦i = β◦i.

• The coequalizer Coeq(α, β) is the initial object among all maps b
q
−→c such that q◦α =

q◦β.

Example. (a) In Set the equalizer of maps α, β : A → B is the subset {a ∈ A; α(a) =
β(a)} of A. The coequalizer is the quotient B/ ∼ by the equivalence relation on B
generated by α(a) ∼ β(a) for all a ∈ A.

(b) In m(k) for α, β : M → N we have Eq(α, β) = Ker(β − α) and Coeq(α, β) =

Coker(β − α)
def
= N/Im(β − α). �

3.5.7. Lemma. (a) If a category C has products (of families of objects) and equalizers then
C has projective limits, and these can be described in terms of products and equalizers.

(b) Dually, if a category C has sums and coequalizers then C has inductive limits, and
these can be described in terms of sums and coequalizers.
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Corollary. For instance Ab and T op have both kinds of limits.

3.5.8. More general kind of limits. For a category I an inductiveI-system in a category
C means a functor a : I −→C. Now one can again formulate the notion of a limit. This
time we use the extensions of I to a larger category I+ = I⊔∞ which is defined by asking
that ∞ is the final object in I+.

Example. The equalizer of maps α, β : a → b is a projective limit over the category I
given by objects 1, 2 and two arrows from 1 to 2. (This is not a poset!)

3.5.9. Exercises. (1) Let (I,≤) be {1, 2, 3, ...} with the order i ≤ j if i|j, i.e., i divides j.
In Ab let Ai = Q/Z for all i ∈ I, and let φji be the multiplication by j/i when i divides
j. This is an inductive system and lim

→
Ai =?.(15)

(2) Let (I,≤) be N = {0, 1, ...} with the standard order. In Ring let kn = C[x]/xn+1 and
for i ≤ j let φij be the obvious quotient map. This is a projective system and lim

←
kn =?.

(3) (a) For N = {0, 1, ...} with the standard order, for a positive integer p consider the
projective system of rings An = Z/pnZ (under the natural quotient maps). Its limit is
denoted Zp and called the ring of p-padic integers. Show that Zp can be identified as a
set with the set of all symbols of the form

∑∞
i=0 aip

i with ai ∈ {0, .., p− 1}. What is the
ring structure on these symbols?

(b) For I = {1, 2, 3, ...} with the order i|j the rings An = Z/nZ again form a projective

system under the natural quotient maps. Show that the ring Ẑ
def
= lim

←
Z/nZ is isomorphic

to the product over the set P of primes
∏

p∈P Zp.

3.6. Functors II :. We start with the standard categorical versions of basic set theoretic
notions (3.6.1.

3.6.1. A categorification of notions of set theory. We consider categorical versions of being
a subset, injection, surjection and bijection. In the more subtle world of categories, some
notions have multiple generalizations.

(1) [Subsets A⊆B.] A subcategory C′ of a category C is given by a subclass Ob(C′)⊆Ob(C)
and for any a, b ∈ Ob(C′) a subclass HomC′(a, b)⊆HomC(a, b) such that HomC′(a, a) ∋
1a, a ∈ C

′, and the sets HomC′(a, b), a, b ∈ C
′ are closed under the composition in C.

A full subcategory C′ of a category C is a subcategory C′ such that for any a, b ∈ C′ one
has HomC′(a, b) = HomC(a, b). Notice that choosing a full subcategory C′ of C is the same
as choosing a subclass Ob(C′)⊆Ob(C).

15 rem In our basic example of an inductive system of increasing sets A2⊆A)2⊆· · · the limit is the
really the union. However, the present example shows that lim

→

does not always mean growth.
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Examples. (1) The free modules Free(k) naturally form a full subcategory of the category
m(k) of all modules. (2) Category C defines subcategory C∗ where objects are the same
and morphisms are the isomorphisms from C (not full!).

(1’) [Injections A
f
→֒B.] A functor F : A→֒B is

• faithful (also called an embedding of categories), if all maps HomA(a
′, a′′) −→

HomB(Fa
′, Fa′′), a′, a′′ ∈ A are injective.

• fully faithful (or a full embedding) if all HomA(a
′, a′′) −→HomB(Fa

′, Fa′′) are bi-
jections.

(2) [Surjections A
f
։B.] Functor F : A → B is said to be essentially surjective, if it is

surjective on isomorphism classes of objects, i.e., any b ∈ B is isomorphic to Fa for some
a ∈ A.

(3) [Bijections A
f

−→
∼=
B.] Functor F : A → B is said to be an equivalence of categories if it

is essentially surjective and fully faithful.

Remark. It turns out that injectivity has been transplanted on morphisms and surjectivity
on objects, and we have used “bijective=injective+surjective.

Examples. (3) The forgetful functor T op
F
−→ Set is faithful and essentially surjective.

(4) For a map of rings φ : A −→B the functor φ∗ : m(B) −→m(A) is always faithful(16) but
it need not be fully faithful (for R⊆R[x]) nor essentially surjective (for R⊆C).

(5) [Equivalent approaches to linear algebra.] Let k be a field and Vk the category such
that Ob(Vk) = N and Hom(n,m) =Mmn, the matrices with m rows and n columns (the

composition is matrix multiplication). Let Vecfdk be the category of finite dimensional

vector spaces. Consider the functor Vk
ι
−→Vecfdk given by ι(n) = kn while for a matrix

α ∈Mmn, ια : km −→kn is the operator of multiplication by α.

This is an equivalence of categories. Notice that the categories Vk and Vecfdk have very
different objects (only the first one is small)., However, their content is the same – linear
algebra. One of these categories is more convenient for computation and the other for
thinking. Historically, equivalence ι is roughly the observation that one can do linear
algebra without always choosing coordinates (i.e., a basis of a vector space).

3.6.2. Natural transformations of functors (“morphisms of functors”). A way to relate
two functors F,G : A −→B is to relate their values. A natural transformation from F to
G consists of “comparison” morphisms in B ηa ∈ HomB(Fa,Ga) of values on arbitrary

16 So, “faithful” is a useful but not very strong property.
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a ∈ A, which is compatible with maps in the sense that for any map α : a′ −→a′′ in A the
following diagram commutes

F (a′)
F (α)
−−−→ F (a′′)

ηa′

y ηa′′

y

G(a′)
G(α)
−−−→ G(a′′)

, i.e., ηa′′◦F (α) = G(α)◦ηa′ .

So, η relates values of functors on objects in a way compatible with the values of functors
on maps.

Remark. The compatibility property is often called “naturality”. In practice, any “natu-
ral” choice of maps ηa will have automatically have the compatibility property.

3.6.3. Example. For the functors φ∗M = l⊗kM and φ∗N = N from 3.2.1(1), there are
canonical morphisms of functors

α : φ∗◦φ
∗ −→1m(l), φ∗◦φ

∗(N) = l⊗kN
αN−→ N = 1m(l)(N)

is the action of l on N and

β : 1m(k) −→φ∗◦φ∗, φ∗◦φ∗(M) = l⊗kM
βM←−M = 1m(M)(M)

is the map m7→1l⊗m.

3.6.4. Lemma. For two categories A,B, the functors from A to B form a category
Fun(A,B).

Proof. For F,G : A → B one defines HomFun(A,B)(F,G) as the set of natural transforms
from F to G. The remaining e structure is routine: any functor F : A −→B has 1F : F −→F
(with (1F )a = 1Fa : Fa −→Fa) and for three functors F,G,H fromA to B one can compose
morphisms µ : F −→G and ν : G −→H to ν◦µ : F −→H . �

Remarks. (0) This is an improvement over functions from a set A to a set B – functors
can be compared (related). (1) The lemma indicates that the reasonable relation between
two functors is not equality but a canonical isomorphism of functors!

3.7. Adjoint functors. This is often the most useful categorical idea. A pair of functions

in opposite directions A
f
−→ B

g
−→A may have a property that g◦f = id or f◦g = id or

both. The relation between a pair of functors is much richer, in particular it involves an
extra structure (not just a property).



18

3.7.1. Adjoint pairs. An adjointness structure on pair of functors (F,G) where A
F
−→ B

G
−→

A is an isomorphism of two functors from Ao×B to Set

ζ : HomB(F−,−)−→∼=
HomA(−, G−).

This means that for any a ∈ A, b ∈ B we have a “natural identification”

ζa,b : HomB(Fa, b)−→∼=
HomA(a,Gb), .

Here, “naturality” means compatibility with morphisms (a, b)
(α,β)
−−−→ (a′, b′) in Ao×B, i.e.,

compatibility with morphisms a′
α
−→ a in A and b

β
−→ b′ in B.(17)

We say that F is the left adjoint of G and that that G is right adjoint of F (in the above
Hom’s F appears on the left side and G on the right).

Lemma. An adjointness structure ζ for (F,G) gives canonical maps of functors

u : idA −→GF and c : FG −→idB,

called the unit and the counit of adjunction.

Proof. The special case when b = Fa gives ζa,Fa : HomB(Fa, Fa)−→∼=
HomA(a,GFA),

hence
ua

def
= ζa,Fa(1Fa) : a→ GFa.

Similarly, a = Gb gives ζGb,b : HomB(FGb, b)−→∼=
HomA(Gb,Gb), hence

cb
def
= ζGb,b

−1(1Gb) : FGb→ b.

�

Remark. One can restate the notion of adjoints completely in terms of units and counits.

3.7.2. Example: functoriality of modules for rings. For a map of rings φ : A → B there
is a canonical adjoint triple (φ∗, φ

∗, φ⋆) of functors between A and B modules where for
M ∈ m(A) and N ∈ m(B), the pull-back φ∗N is N viewed as an A-module via φ, while

φ∗M
def
= B⊗AM and φ⋆M

def
= HomA(AB,M).

Here, b ∈ B takes φ ∈ HomA(AB,M) to bφ such that on y ∈ B one has (bφ)(y)
def
= φ(yb)

(see also 3.2.1). The adjoint structure on (φ∗, φ
∗, φ⋆) First, the adjoint structure for

(φ∗, φ
∗) is the canonical identification

Homm(B)(B⊗AM,N)
ηM,N

−−−→ Homm(A)(M,N)

such that for two maps B⊗AM
σ
−→N and M

τ
−→N in the LHS and RHS sets one has

[η(σ)](m)
def
= σ(1⊗m) and η−1(τ)(b⊗m) = bτ(m), m ∈M, b ∈ B.

17 Here, α gives maps between Hom-sets F (α)∗ and α∗ and β gives maps β∗ and G(β)∗.
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Then, the adjointness for (φ∗, φ⋆) is the identification

Homm(A)(N,M)
ζN,M

−−−→ Homm(B)[N,HomA(B,M)]

is given on maps N
τ
−→M and HomA(B,M)

ρ
−→N in the LHS and RHS sets by

[
[ζ(τ)](n)

]
(b)

def
= τ(bn) and [ζ−1(ρ)](n)

def
= [ρ(n)](1B), n ∈ N, b ∈ B.

Remark. As in this example, often an adjoint pair appears in the following way: there
is an obvious functor F (so obvious that we usually do not pay it any attention), but
it has an adjoint G which is an interesting construction. The fact that this “interesting
construction” G is intimately tied to the original “stupid” construction F allows one to
deduce properties of G from the properties of the simpler construction F .

3.8. Description of objects as representable functors. The Yoneda lemma below
says that passing from an object a ∈ A to the corresponding functor HomA(−, a) does
not loose any information – a can be recovered from the functor HomA(−, a). This has
the following applications:

(1) One can describe an object a by describing the corresponding functor HomA(−, a).
This turns out to be the most natural description of a.

(2) One can start with a functor F : Ao −→Set and ask whether it comes from some
objects of a. (Then we say that a represents F and that F is representable).

(3) Functors F : Ao −→Set behave somewhat alike the objects of A, and we can think
of their totality as a natural enlargement of A (as one completes Q to R).

3.8.1. Category Â. To a category A one can associate a category

Â
def
= Fun(Ao,Set)

of contravariant functors from A to sets.

Theorem. (Yoneda lemma)

(a) Construction ι is a functor ι : A −→Â.

(b) For any functor F ∈ Â = Fun(Ao,Set) and any a ∈ A there is a canonical identifi-
cation

HomÂ(ιa, F )
∼= F (a).

Proof. (b) A map of functors η : ιa → F gives η ∈ F (a) simply by evaluating at a
and then at 1a. First, the evaluation of η at a gives ηa : ιa(a) → F (a). Now, since

ιa(a) = HomA(a, a) contains 1a, we get an element η
def
= ηa(1a) of F (a).

In the opposite direction, a choice of f ∈ F (a), gives for any x ∈ A the composition of
functions where the last step is the evaluation on f

f̃x
def
= [ιa(x) = HomA(x, a) = HomAo(a, x)

F
−→ HomSet[F (a), F (x)]

evf
−→ F (x)].
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Now one checks that

• (i) f̃ is a map of functors ιa → F , and

• (ii) procedures η 7→η and f 7→f̃ are inverse functions between HomÃ(ιa, F ) and
F (a).

�

Corollary. (a) Yoneda functor ι : A → Â is a full embedding of categories, i.e., for any
a, b ∈ A the map

ι : HomA(a, b) → HomÂ(ιa, ιb),

given by the functoriality of ι, is an isomorphism.

(b) Functor HomA(−, a) = ιa determines a up to a unique isomorphism, i.e., an isomor-

phism of functors φ : ιa−→∼=
ιb in Â gives an isomorphism a−→

∼=
b in A.

Proof. (a) follows the part (b) of the Yoneda lemma (take F = ιb).

Then (b) follows from (a) since φ : ιa−→∼=
ιb is of the form ιφ = (φ)∗ for a unique φ : a→ b.

(To see that φ is an isomorphism we construct φ−1 in the same way and show that it is
the inverse of φ,) �

3.8.2. Examples of “Categorical Thinking” (“Interaction Principle”). Let us describe Cat-
egorical Thinking as the approach where objects are described by how they interact with
others.

This is different from the set theory which describes objects by what they are (i.e., certain
systems of sets). It works in settings where we do not know what is the exact nature of
objects but one can measure their interactions.

This includes the physics of elementary particles where one measures the scattering am-
plitudes of collisions of particles – the probability that the collision will will have certain
outcome.

A classical mathematical example are the distributions. Among functions one can not
find beauties like the very useful δ-functions δa (a ∈ R), however one knows how δa

interacts with functions – the interaction with f ∈ C∞c (R) is 〈δa, f〉 =
∫
R
fδa

def
= f(a).

So, one extends the notion of of functions by adding distributions as (continuous) linear
functionals on the vector space of of (nice) functions: C∞c (R).

The categorical example is Yoneda’s lemma. In a category A the interactions of a ∈ A
with all objects are encoded in the functor HomA(−, a). So, Yoneda says that if you know
the interactions of a you know a.
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3.8.3. Representable functors. A functor F ∈ Â, i.e., F : Ao −→Set, is representable if
there is some a ∈ A and an isomorphism of functors

η : HomA(−, a)−→∼=
F.

Then we say that a represents F .

Example. In the category of schemes, the double point scheme Spec(Z[x]/x2) is repre-
sented by the functor on the category CRing

A7→ {a ∈ A; a2 = 0}.

3.8.4. Non-representable functors. What is new in Â that may not be in A? One can

describe the completion of A to Â as adding to A all limits of inductive systems in A.
(Just as one constructs R from Q by adding limits of sequences.)

Lemma. Any inductive system in A has a limit in the larger category Â

Proof. Any inductive system a = (ai)I in A always defines a functor ã in Â, by

ã(c)
def
= lim

→ I
ιai(c) = lim

→ I
HomA(c, ai) ∈ Set.

The reason why this works is that in the category Set all inductive limits exist!

Now it is easy to check that the functor ã is indeed the limit of the inductive system

ιa = (ιai)I in the category Â. �

Remark. Inductive systems in A are called ind-objects of A. A precise meaning of that is

that an inductive system a in A gives an object ã in a larger category Â. (18)

3.8.5. Uniqueness and existence of adjoints. As an application of Yoneda lemma we find
that adjoints are unique and we examine when they exist.

Lemma. (a) If functor F has a right adjoint then for each b ∈ B the functor

HomB(F−, b) : A
o −→Set, a7→ HomB(Fa, b)

is representable.

(b) Suppose that for each b ∈ B the functor HomB(F−, b) : A −→Set is representable.
For each b ∈ B choose a representing object Gb ∈ A, then G has a canonical extension
to a functor from B to A and this is the right adjoint of F .

(c) The right adjoint of F , if it exists, is unique up to a canonical isomorphism.

Proof. (a) If G is a right adjoint of F then the functor Ao ∋ a7→ HomB(Fa, b) ∼=
HomA(a,Gb) is represented by Gb.

18 Similarly one calls projective systems pro-objects of A.
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(b) A map β : b′ → b′′ in B gives a map of functors HomB(Fa, b
′)

β∗

−→ HomB(Fa, b
′′), hence

a map of isomorphic functors HomA(−, Gb)
′ β∗

−→ HomA(−, Gb
′′). By Yoneda lemma this

comes from a unique map Gb′ → Gb′′ in A.

(c) Since Gb represents the functor Ao ∋ a7→ HomB(Fa, b), it is unique up to a canonical
isomorphism. �

Of course the symmetric claims hold for left adjoints.

3.8.6. Example: Left adjoints of some forgetful functors. Now that we know that the
adjoint is unique we consider more examples of how interesting functors are found as
adjoints of trivial functors.

We say that a functor F is forgetful if it amounts to dropping a part of the structure.
Bellow we will denote its left adjoint by G. Standard construction (that add to the
structure of an object), are often adjoints of forgetful functors

(1) If F : m(k) −→Set then G sends set S to the the free k-module k[S] = ⊕s∈S k·s
with a basis S.

(2) Let k be a commutative ring. For F : k − ComAlg −→ Set from commutative
k-algebras to sets, G sends a set S to the polynomial ring k[xs, s ∈ S] where
variables are given by all elements of S.

(3) If F : k − ComAlg −→ m(k), then for a k-module M , G(M) is the symmetric
algebra S(M). (To get exterior algebras in the same way one needs the notion of
super algebras.)

(4) For the functor F : k − Alg −→m(k) from k-algebras to k-modules, G(M) is the
tensor algebra S(M).

(5) Forgetful functor F : T opSet has a left adjoint D that sends a set S to S with
the discrete topology, and also the right adjoint C such that C(S) is S with the
topology such that only S and φ are open.

Question. Any (A,B)-bimodule X gives a functor X∗ : m(B) −→ m(A), with

X∗(N)
def
= X⊗BN . What is its right adjoint?

3.8.7. Equivalences of categories and adjoints. The above definition of equivalences of
categories is the categorical upgrade of “bijection=injection+surjection”. Now we will
see that it is also a lift of “f is bijection iff it has inverse function”. This view on
equivalence of categories is manifestly symmetric.

Theorem. (a) A functor F : A → B is an equivalence of categories iff it has a right adjoint
such that the unit and counit of adjunction (see 3.7.1) are isomorphisms.

(b) If a functor F : A → B is (fully) faithful then A is equivalent to a (full) subcategory
of B.
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Proof. (a) If F is an equivalence then for b ∈ B we can choose some b′ ∈ A and an
isomorphism α : F (b′)−→

∼=
b. Then we construct a right adjoint G on objects by G(b) = b′

and on maps via bijections

HomB(b1, b2) ∼= HomB[F (b
′
1), F (b

′
2)]←−∼=

HomA(b
′
1, b
′
2).

Now one checks that G is functor, a right adjoint of F and that the (co)units are isomor-
phisms.

In the opposite direction, for an adjoint pair (F,G) with invertible (co)units, it is easy to
see that F is fully faithful and essentially surjective. �
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