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10. Bicomplexes and the extension of resolutions and derived functors to
complexes

For a right exact functor F : A −→B we have defined its left derived functor LF : A −→
K−(B) (ifA has enough projectives) by replacing objects with their projective resolutions.
However, it is necessary to extend this construction to LF : K−(A) −→K−(B). For one
thing, for calculational reasons we need the property L(F◦G)A = LF (LG(A)), but this
means that we have to apply LF to a complex.

We will need the notion of bicomplexes (roughly “complexes that stretch in a plane rather
then on a line”), as a tool for finding projective resolutions of complexes.

10.1. Filtered and graded objects. A graded object A of A is a sequence of objects
An ∈ A, n ∈ Z. We think of it as a sum A = ⊕Z A

n (and this is precise if the sum exists
in A).

An increasing (resp. decreasing) filtration on an object a ∈ A is an increasing (resp.
decreasing) sequence of subobjects an↪→a, n ∈ Z. When we talk of a filtration F we
denote an by Fna.

A filtration defines a graded object Gr(a) with Grn(a)
def
= an/an−1 (resp.

Grn(a)
def
= an/an+1). Also, a graded object A = ⊕ An has a canonical increas-

ing filtration An = ⊕i≤n A
i (if the sums exist), and a canonical decreasing filtration

An = ⊕i≥n A
i. (However, these grading and filtering are far from being inverse to each

other.)

We will be interesting in decreasing filtrations F of complexes (A = ⊕ Ai, d). This is a
sequence of subcomplexes FnA = ⊕ Fn(A

i), i.e.,

(1) · · ·F−1(A
i)⊆ F0(A

i)⊆ F1(A
i)⊇· · ·⊆Ai is a filtration of Ai and

(2) d(FnA
i)⊆ Fn(A

i+1).

A filtration F of a complex (A = ⊕ Ai, d) gives a filtration F of its cohomology groups
by

Fn[H
i(A)]

def
= Im[Hi(FnA) −→Hi(A)].

10.2. Bicomplexes.

10.2.1. Bicomplexes. A bicomplex is a bigraded object B = ⊕p.q∈Z B
p,q with differentials

Bp,q d′

−→ Bp+1,q and Bp,q d′′

−→ Bp,q+1, such that d = d′ + d′′ is also a differential. So we ask
that i.e.,

0 = d2 = (d′ + d′′)2 = (d′)2 + d′d′′ + d′′d′ + (d′′)2 = d′d′′ + d′′d′.
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We draw a bicomplex as a two dimensional object:

· · ·
d′

−−−→
...

d′

−−−→
...

d′

−−−→
...

d′

−−−→
...

d′

−−−→
...

d′

−−−→ · · ·

d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x

· · ·
d′

−−−→ B−1,2 d′

−−−→ B0,2 d′

−−−→ B1,2 d′

−−−→ B2,2 d′

−−−→ B3,2 d′

−−−→ · · ·

d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x

· · ·
d′

−−−→ B−1,1 d′

−−−→ B0,1 d′

−−−→ B1,1 d′

−−−→ B2,1 d′

−−−→ B3,1 d′

−−−→ · · ·

d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x

· · ·
d′

−−−→ B−1,0 d′

−−−→ B0,0 d′

−−−→ B1,0 d′

−−−→ B2,0 d′

−−−→ B3,0 d′

−−−→ · · ·

d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x

· · ·
d′

−−−→ B−1,−1 d′

−−−→ B0,−1 d′

−−−→ B1,−1 d′

−−−→ B2,−1 d′

−−−→ B3,−1 d′

−−−→ · · ·

d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x

· · ·
d′

−−−→
...

d′

−−−→
...

d′

−−−→
...

d′

−−−→
...

d′

−−−→
...

d′

−−−→ · · · .

So, Bpq has horizontal position p and height q, and d′ is a horizontal differential while d′′

is a vertical differential.

10.2.2. Remarks. (1) Anti-commutativity relation d′d′′ + d′′d′ = 0 can be interpreted as
commutativity in the correct framework: the super-mathematics.

(2) If d′ and d′′ would happen to commute, we would have to correct one of these (say

replace d′′ by (ď′′)p,q
def
= (−1)p(d′′)p,q).

10.2.3. The total complex Tot(B) of a bicomplex and the cohomology of a bicomplex. The

total complex of a bicomplex is the complex (Tot(B), d) with Tot(B)n
def
= ⊕p+q=n B

p,q.
The cohomology of B is by definition the cohomology of the complex Tot(B).

10.2.4. Decreasing filtrations ′F and ′′F on a bicomplex and on the total complex. The
fact that the complex Tot(B) has come from a bicomplex will be used to produce two
decreasing filtrations on the complex Tot(B). Actually, any complex A has a stupid
decreasing filtration F where the subcomplex FnA is obtained by erasing all terms Ak

with k < n:

FnA
def
= (· · · −→0 −→0 −→An −→An+1 −→An+2 −→· · ·).

In turn, any bicomplex B has two decreasing filtrations ′F and ′′F . The sub-bicomplex
′FiB of a bicomplex B is obtained by erasing the part of B which is on the left from the
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ith column, and symmetrically, ′′FjB is obtained by erasing beneath the jth row. Say, the
subbicomplex ′FiB is given by

· · ·
d′

−−−→
...

d′

−−−→
...

d′

−−−→
...

d′

−−−→
...

d′

−−−→
...

d′

−−−→ · · ·

d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x

· · ·
d′

−−−→ 0
d′

−−−→ Bi,2 d′

−−−→ Bi+1,2 d′

−−−→ Bi+2,2 d′

−−−→ Bi+3,2 d′

−−−→ · · ·

d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x

· · ·
d′

−−−→ 0
d′

−−−→ Bi,1 d′

−−−→ Bi+1,1 d′

−−−→ Bi+2,1 d′

−−−→ Bi+3,1 d′

−−−→ · · ·

d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x

· · ·
d′

−−−→ 0
d′

−−−→ Bi,0 d′

−−−→ Bi+1,0 d′

−−−→ Bi+2,0 d′

−−−→ Bi+3,0 d′

−−−→ · · ·

d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x

· · ·
d′

−−−→ 0
d′

−−−→ Bi,−1 d′

−−−→ Bi+1,−1 d′

−−−→ Bi+2,−1 d′

−−−→ Bi+3,−1 d′

−−−→ · · ·

d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x

· · ·
d′

−−−→
...

d′

−−−→
...

d′

−−−→
...

d′

−−−→
...

d′

−−−→
...

d′

−−−→ · · ·.

This then induces filtrations on the total complex, say

[′FiTot(B)]n
def
= Tot(′FiB)n = ⊕p+q=n, p≥i B

p,q ⊆ Tot(B)n ⊇⊕p+q=n, q≥j B
p,q = ′′Fj[Tot(B)n].

Finally, ‘F and ′′F induce filtrations on the cohomology

′FiH
n(Tot B)

def
= Im[Hn(Tot ′FiB) −→Hn(Tot ′FiB)],

so the cohomology groups are extensions of pieces

′Gri[H
n(Tot B)]

def
=

′FiH
n(Tot B)

′Fi+1H
n(Tot B)

.

These pieces can be calculated by the method of spectral sequences (see 11).

10.3. Partial cohomologies. By taking the “horizontal” cohomology we obtain a bi-
graded object ′H(B) with

′H(B)p.q
def
= Hp(B•,q) =

Ker(Bp,q d′

−→ Bp+1.q)

Im(Bp−1,q d′
−→ Bp.q)

.

The vertical differential d′′ on B factors to a differential on ′H(B) which we denote again
by d′′:

′H(B)p,q
d′′

−→ ′H(B)p,q+1.
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Next, we take the “vertical” cohomology of ′H(B) (i.e., with respect to the new d′′), and
get a bigraded object ′′H(′H(B)) with

′′(′H(B))p,q
def
= Hq(′H(B)p,•) =

Ker[′H(B)p,q
d′′

−→ ′H(B)p.q+1]

Im[′H(B)p,q−1 d′′
−→ ′H(B)p.q]

.

One defines ′′H(B) and ′H(′′H(B)) by switching the roles of the first and second coordi-
nates.

10.3.1. Remark. Constructions ′H(B) and ′′H(B) are upper bounds on the cohomology of
the bicomplex, and ′H(′′H(B)) and ′′H(′H(B)) are even better upper bounds. The precise
relation is given via the notion of spectral sequences (see 11).

10.4. Resolutions of complexes. An injective resolution of a complex A ∈ C ∗ A) is
a quasi-isomorphism A −→I such that all In are injective objects of the abelian category
A. The next two theorems will state that injective resolutions of complexes exist and and
are can be chosen compatible with short exact sequences of complexes.

10.4.1. Theorem. If A has enough injectives any A ∈ C+(A) has an injective resolution.
More precisely,

(a) There is a bicomplex

· · ·
d′

−−−→
...

d′

−−−→
...

d′

−−−→
...

d′

−−−→
...

d′

−−−→
...

d′

−−−→ · · ·

d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x

· · ·
d′

−−−→ I−1,2 d′

−−−→ I0,2 d′

−−−→ I1,2 d′

−−−→ I2,2 d′

−−−→ I3,2 d′

−−−→ · · ·

d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x

· · ·
d′

−−−→ I−1,1 d′

−−−→ I0,1 d′

−−−→ I1,1 d′

−−−→ I2,1 d′

−−−→ I3,1 d′

−−−→ · · ·

d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x

· · ·
d′

−−−→ I−1,0 d′

−−−→ I0,0 d′

−−−→ I1,0 d′

−−−→ I2,0 d′

−−−→ I3,0 d′

−−−→ · · ·

d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x

· · ·
d′

−−−→ A−1 d′

−−−→ A0 d′

−−−→ A1 d′

−−−→ A2 d′

−−−→ A3 d′

−−−→ · · ·

d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x d′′

x

· · ·
d′

−−−→ 0
d′

−−−→ 0
d′

−−−→ 0
d′

−−−→ 0
d′

−−−→ 0
d′

−−−→ · · ·

such that the columns are injective resolutions of terms in the complex A.

(b) For any such bicomplex the canonical map A −→Tot(I) is an injective resolution of A.
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10.4.2. Theorem. Let P and R be projective resolutions of objects A and C that appear
in an exact sequence 0A −→ B −→ C −→ 0. Then Q = P⊕R appears in a short exact
sequence of projective resolutions

We start with the baby case of the theorem 10.4.2.

10.4.3. Lemma. Assume that A has enough injectives. A short exact sequence in A can
always be lifted to a short exact sequence of injective resolutions. More precisely,

(a) Let I and K be injective resolutions of objects A and C that appear in an exact
sequence 0 −→A −→B −→C −→0. Then all Jn = In⊕Kn appear in a short exact sequence
of injective resolutions

... −−−→
... −−−→

... −−−→
... −−−→

...x d2I

x d2J

x d2K

x
x

0 −−−→ I2 α2

−−−→ J2 β2

−−−→ K2 −−−→ 0x d1I

x d1J

x d1K

x
x

0 −−−→ I1 α1

−−−→ J1 β1

−−−→ K1 −−−→ 0x d0I

x d0J

x d0K

x
x

0 −−−→ I0 α0

−−−→ J0 β0

−−−→ K0 −−−→ 0x ιA

x ιB

x ιC

x
x

0 −−−→ A
α

−−−→ B
β

−−−→ C −−−→ 0x
x

x
x

x
0 −−−→ 0 −−−→ 0 −−−→ 0 −−−→ 0

with αn the inclusion of the first summand and βnthe projection to the second summand.

(b) Any short exact sequence of injective resolutions

0 −−−→ I −−−→ J −−−→ K −−−→ 0x ιA

x ιB

x ιC

x
x

0 −−−→ A
α

−−−→ B
β

−−−→ C −−−→ 0

necessarily splits on each level, i.e., Jn ∼= In⊕Kn. (However, complex J is not a sum of
I and K.)

Proof. (a) We need to define ιB so that the middle column is a resolution and the diagram
commutes. Define ιB : B −→J0 = I0⊕K0 by

ιB(b)
def
= ι̃A(b)⊕ιC(βb)
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where ι̃A : B −→ I0 is any extension of ιA : A −→ I0 (it exists since I0 is injective). This
choice ensures that the two squares that contain ιB commute. Moreover, ιB is injective
since the kernel of the second component ιC◦β is Ker(β) = A and on A⊆B ιB is ιA.

To continue in this way, we denote B̃ = Coker(ιB) = (I0⊕K0)/ιB(B) and notice that the

second projection gives a surjection from B̃ to C̃
def
= K0/ιC(C). Its kernel is the inverse of

ιC(C)⊆K0 under the second projection, taken modulo ιB(B), i.e., (I0⊕ιC(C))/ιB(B) ∼=

I0/ιA(A)
def
=Ã. So we have a commutative diagram

0 −−−→ I1 α1

−−−→ I1⊕K1 β1

−−−→ K1 −−−→ 0x d0
I

x d0
K

x
x

0 −−−→ Ã
α1

−−−→ B̃
β1

−−−→ C̃ −−−→ 0x q′

x q

x q′′

x
x

0 −−−→ I0 α0

−−−→ I0⊕K0 β0

−−−→ K0 −−−→ 0x ιA

x ιB

x ιC

x
x

0 −−−→ A
α

−−−→ B
β

−−−→ C −−−→ 0

in which d1
I and d1

K are factorizations of d1
I and d1

K through the the canonical quotient

maps q′ and q′′. Maps d1
I and d1

K are embeddings, and we need to supply an embedding

B̃
d1

J−→ I1⊕K1 which would give two more commuting squares, then d1
J is defined as a

composition of d1
J and the quotient map q. However, this is precisely the problem we

solved in the first step.

(b) Since In is injective, one can extend the identity map on In to Jn
φn

−→ In, and gives a
splitting i.e., a complement Ker(φn) to In in Jn.

10.4.4. Existence of injective resolutions of complexes: proof of the theorem 10.4.2. .
(0) About the proof. We choose injective resolutions of coboundaries and cohomologies
of A: Bn(A) −→ Jn = J•,n, Hn(A) −→Kn = K•,n. Then the nth column of I is Iν, n =
Jn⊕Kn⊕Jn+1 and the horizontal differentials are the compositions

Ip,q = Jp,q⊕Kp,q⊕Jp,q+1
�Jp,q+1⊆ Jp,q+1⊕Kp,q+1⊕Jp,q+2 = Ip,q+1.

The vertical differential make the nth column into a complex I•,n such that

• J•,n⊆ I•,n is a subcomplex, and
• K•,n⊆ I•,n/J•,n is a subcomplex.
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The fist task is to choose suitable injective resolutions of everything in site. We start by
choosing injective resolutions of coboundaries and cohomologies

Bn(A) −→Bn = Bn,•, Hn(A) −→Hn = Hn,•.

Now, cocycles are an extension of cohomologies and coboundaries, i.e., there is an exact
sequence, and then An is an extension of Zn(A) and Bn+1, i.e., there are exact sequences

0 −→Bn(A) −→Zn(A) −→Hn(A) −→0 and 0 −→Zn(A) −→An −→Bn+1(A) −→0.

By the preceding lemma 10.4.3 we can combine H and B to get injective resolutions of
these short exact sequences

0 −−−→ Bn −−−→ Zn −−−→ Hn −−−→ 0x ι

x ι

x ι

x
x

0 −−−→ Bn(A) −−−→ Zn(A) −−−→ Hn(A) −−−→ 0

and
0 −−−→ Zn −−−→ An −−−→ Bn+1 −−−→ 0x ι

x ι

x ι

x
x

0 −−−→ Zn(A) −−−→ An −−−→ Bn+1(A) −−−→ 0

Since An is an injective resolution of An, we can use them to build a bicomplex as in
the the part (a) of the theorem, with the vertical differentials d′′ the differentials in An’s.

Now we need the horizontal differentials An
d′

n

−→ An+1), these are the compositions

(An
d′n

−→ An+1)
def
= [An −→Bn+1 ⊆

−→ Zn+1 ⊆
−→ An+1].

Since these are morphisms of complexes vertical and horizontal differentials commute,
however this is easily corrected to d′d′′ + d′′d′ = 0 by 10.2.2(2).

(b) Let I be a bicomplex from the part (a). A canonical map A
ιA−→ Tot(I) comes from

An
ιAn

−−→ In,0⊆ Tort(I)n. Moreover, ιA is a quasi isomorphism since all maps are quasi
isomorphisms. This is easy to see directly and there is an elegant tool for such problems
– the concept of spectral sequences (see 11).

10.4.5. Existence of injective resolutions of exact sequences of complexes: proof of the

theorem 10.4.2. This is a combination of ideas in proofs of the lemma 10.4.3 and the
theorem 10.4.1.

10.4.6. Corollary. If A has enough injectives any short exact sequence in C+(A) defines
a distinguished triangle in K(A).

Proof. By the theorem any short exact sequence in C+(A) is isomorphic in K(A) to a
short exact sequence of complexes with injective objects. Since such sequence splits on
each level it defines a distinguished triangle in K(A).
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11. Spectral sequences

In general, spectral sequences(1) are associated to filtered complexes but we will be happy
with the special case of spectral sequences associated to bicomplexes. The idea of a
spectral sequence is to relate the cohomology of a complex with the cohomology of a
simplified complex which may be more accessible.

11.1. The notion of a spectral sequence. A spectral sequence in an abelian category
A is a sequence (Er, dr, ιr), r ≥ 0. such that

(1) Er is bigraded family of objects of A, Er = (Ep,q
r )r≥0

(2) dr : Rr → Er is a “differential”, i.e., d2
r = 0, and it has type (r, 1− r), i.e.,

dr : Ep,q
r −→Ep+r,q+1−r

r .

(3) ιr is an isomorphism Er+1

∼=
−→H(Er, dr), i.e.,

Ep,q
r+1

∼=
−→Ker(Ep,q

r

dr−→ Ep+r,q+1−r
r )/Im(Ep−r,q+r−1

r

dr−→ Ep,q
r ).

Remark. When dealing wilth spectral sequences one usually draws the Z2-grid in the plane
and then one draws the directions of differentials: d0 goes vertically by one, d1 horizontaly
by one, then d2 goes two right and one down, etc.

11.1.1. The limit of a spectral sequence. The limit E∞ = lim E)r can be defined for any
spectral sequence but the most interesting case is when the spectral sequence stabilizes.
We will say that the (p, q)-term stabilizes in the rth term if for s ≥ r the differentials ds
from the (p, q)-term and into the (p, q)-term are zero. Then clearly

Ep,q
r
∼= Ep,q

r+1
∼= Ep,q

r+2
∼= · · ·.

Then we say that

Ep,q
∞

def
= Ep,q

r .

We will say that the spectral sequence stabilizes (degenerates) in the rth term if ds =
0, s ≥ r. Then E∞ is by definition Er.

11.1.2. Stabilization criteria.

1An approximate second hand quote:
“Those were great times when only three of us(2) knew spectral sequences. We could prove everything and

no one else could prove anything.”
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Lemma. (a) If there exists some r0 ≥ 0 and some a, b ∈ Z such that Er0 is supported in
the quadrant {(p, q) ∈ Z2; p ≥ a and q ≥ b} then for each pair (p, q) the terms Epq

r

stabilize.

(b) If for some r all p+ q with Epq
r 6= 0 are of the same parity, then 0 = dr = dr+1 = · · ·,

i.e., sequence stabilizes at Er.

Proof. First notice that if Epq
r = for some p, q, r then for s ≥ r one also has Epq

s = 0 since
Epq
s is a subquotient of Epq

r .

(a) dr : Epq
r → Ep+r,q+1−r

r is zero when r ≥ r0 and q+1− r < b, i.e., r > q+1− b. Also,
dr : Ep−r,q−1+r

r → Ep,q
r is zero when r ≥ r0 and p− r < a, i.e., r > p− a.

(b) Since ds is of type (s, 1 − s) it changes the total parity p + q. So. always either the
source or the target of ds is zero.

Remarks. (0) The simplest way to prove that a spectral sequence degenerates at Er is if
one can see that for s ≥ r and any p, q one of objects Ep,q

r or Ep+s,q+1−s
r is zero.

(1) However, sometimes one needs to really study particular differential dr to see that it
is zero.

11.2. Spectral sequence of a filtered complex. Consider a complex K ∈ C(A) with a
decreasing filtration F•, so FpK

n⊆Kn and the differential d = dK takes FpK
n to FpK

n+1.

Then one can grade and obtain complexes GrnK = FpK/Fp+1K which one can think of
as building blocks for K itself since K is an extension of these graded pieces. We will use
a filtration of K to get information about cohomology H∗K. First observe that

11.2.1. A filtration F of a complex K induces a filtration F on the cohomology. Inclusion
FpK⊆K is a map of complexes so it gives maps Hn(FpK) → Hn(K), and therefore it
defines subgroups

Fp
(
Hn(K)

) def
= Im[Hn(FpK)→ Hn(K)]⊆ Hn(K), p ∈ Z.

Notice that

Hn(K) =
Zn(K)

Bn(K)
=
{a ∈ Kn; da = 0}

dKn−1
⊇
{a ∈ FpK

n; da = 0}+ dKn−1

dKn−1
= Fp

(
Hn(K)

)
.

Therefore the graded pieces are

Grp
(
Hn(K)

)
= .

11.2.2. Theorem. A decreasing filtration F of a complex K defines a spectral sequence E
with

(1) Ep,q
0 = GrpH

n(K)
(2) Ep,q

1 = Hp+q[Grp(K)]
(3) Ep,q

∞ = Grp[H
p+q(K)]
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In general,

Ep,q
r

def
=
{a ∈ FpK

p+q; da ∈ Fp+rK
p+q+1}

d Fp+1−rKp+q−1 + Fp+1Kp+q
,

and each dr is a factorization to Er of the differential d on K.

11.2.3. Remark. (Usefulness of this formalism.) The idea is that passing fromK toH ∗(K)
kills some less important information. The decrease of information is clear since Hn(K)
is a subquotient of Kn so it is in some sense lesser then Kn.

Now, if we have a filtration of K it provides a way of killing information in many smaller
and simpler steps. One first passes from K to Gr(K) = E0 by grading and then from
Er to Er+1 by taking cohomology. This process converges to E∞ which is not quite the
cohomology H∗(K) but it is close since Hn(K) is a an extension of pieces Grp[H

n(K)] =
Ep,n−p
∞ , p ∈ Z.

11.2.4. Remark. The basic information we get from here is that the “size” of Hn(K) has
an upper bound ⊕p∈ZH

p+q[Grp(K)]. The precise version is that: Hn(K) is an extension
of pieces Epq

∞ which are subquotients of groups Epq
1 = Hp+q[Grp(K)].

Of course we get better information (a finer upper bound) if we can calculate more terms
Er, beyond E1; and ideally we would like to calculate all Er’s in a given situation. This
is actually “often” possible and usually in the situation when sequence stabilizes early. A
number of deep theorems in mathematics takes form of degeneration of a spectral sequence
in E2 or E3 term.

11.2.5. Remark. (The origin of this formalism.) One constructs the spectral sequence by
starting with the idea of replacing K by its simplified version E0 = Gr(K). This is clearly
a bigraded object since two indices appear in Grp(K

n). so all computations will be in the
realm of bigraded objects. It is very clear Ep•

0 is a complex since it is ta quoteint of a
complex FpK by a subcomplex, in other words, the differential on K defines a differential
d0 on the subquotient E0 = Gr(K) of K. Therefore one can define E1 as cohomology of
(E0, d0). However, we again notice that E1 is a suquotient of K and the differential on K
defines a new differential d1 on E1. So, one can define E2. After repeating this process a
few times we start to expect that it will continue forever and we get a feeling for what any
Er, dr will look like (this is the above formula for Er). Then we verify this expectation
by straightforward algebra. Finally, once we have the formulas for Er’s it is easy to we
notice that Er’s converge to the graded cohomology of K.

11.2.6. Proof. The idea is that Er is the “rth apprximation” of cohomology of K : Here
the meanining of “rth apprximation” is that we take those a’s in Fp that the differential
moves to Fp+r, now, we expect that for large r the filtered piece Fp+r will be much smaller
then Fp; so we are really asking that da be “r-smaller” then a; and this is an approximation
to da = 0.
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(A. E0) When r = 0 we get

Ep,q
0

def
=
{a ∈ FpK

p+q; da ∈ FpK
p+q+1}

dFp+1Kp+q−1 + Fp+1Kp+q
=

FpK
p+q

Fp+1Kp+q
= Grp(K

p+q),

since dFpK
p+q ⊆ FpK

p+q+1 and dFp+1K
p+q−1 ⊆ Fp+K

p+q.

(B. Differential dr) Now define the differentials dr : Epq
r → Ep+r,p+1−r

r by sending the
class

[a]
def
= a + d Fp+1−rK

p+q−1 + Fp+1K
p+q ∈ Epq

r

to the class

[da] + d F(p+r)+1−rK
(p+r)+(q+1−r)−1 + F(p+r)+1K

(p+r)+(q+1−r)

= da + d Fp+1K
p+q + Fp+r+1K

p+q+1.

To see that this is well defined first recall that classes [a] ∈ Epq
r are represented by

elements a ∈ FpK
p+q such that da ∈ Fp+rK

p+q+1. The second condition, together with
d(da) = 0 ∈ F(p+r)+rK

p+q+1+1 implies that da really defines a class [da] in Ep+r,q+1−r
r .

Next, the class [da] ∈ Ep+r,q+1−r
r depend only on the class [a ∈ Epq

r ] (and not on the choice
of a), since the differential d in K to sends the denominator d(Fp+1−rK

p+q−1)+ Fp+1K
p+q

in Epq
r to the denominator d(Fp+1K

p+q) + Fp+r+1K
p+q+1.

(C. H∗(Er) = Er+1)

(D. E1) The description of Epq
1 as Hp+q[Grp(K)] now follows since

• (i) We have identified bigraded objects Epq
0 = (GrpK)p,q, (ii) this is really an

identification of complexes since the differentials on both Epq
0 and (GrpK)p,q are

induced from the differential d on K.
• (iii) So, the cohomology H∗(GrpK) of Grp(K) gets identified with the cohomology
E1 of (E0, d0).

To see this also directly,

Ep,q
1

def
=
{a ∈ FpK

p+q; da ∈ Fp+1K
p+q+1}

d FpKp+q−1 + Fp+1Kp+q

The condition on a ∈ FpK
p+q = (FpK)p+q to define a class in Epq

1 is that da lies in
Fp+1K

p+q+1 = (Fp+1K)p+q+1, i.e., that for the class

[a] = a+ Fp+1K
p+q ∈ FpK

p+q/Fp+1K
p+q = (GrpK)p+q),

the differential d[a]
def
= [da] ∈ (GrpK)p+q+1) = FpK

p+q+1/Fp+1K
p+q+1 is zero, i.e., that

[a] defines a cohomology class in Hp+q(GrpK).

(E. E∞)

11.3. Spectral sequences of bicomplexes.
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11.3.1. Theorem. To any bicomplex B one associates two (“symmetric”) spectral se-
quences ′E and ′′E. The first one satisfies

(1) ′Ep,q
0 = Bp,q

(2) ′Ep,q
1 = ′′Hp,q(B)

(3) ′Ep,q
2 = ′Hp[′′H•,q(B)

(4) ′Ep,q
∞ = ′Grp[H

p+q(Tot B)]

11.3.2. Remark. The basic consequence is that the piece ′Grp[H
n(Tot B)] of Hn(Tot B) is

a subquotient of ′Hn−p[′′H•,q(B)], hence in particular, of ′′Hp,n−p(B) (since Ei,j
r+1 is always

a subquotient of Ei,j
r ). This gives upper bounds on the dimension of Hn(Tot B).

11.3.3. Remark. We are fond of bicomplexes such that the first spectral sequence degen-
erates at E2, then we recover the constituents of Hn(Tot B) from partial cohomology

Gr•[H
n(Tot B)] ∼= ⊕p+q=n

′Hp[′′H•,n−p(B).

12. Derived categories of abelian categories

Historically the notion of triangulated categories has been discovered independently in

• Algebra: derived category of an abelian category A is a convenient setting for
doing homological algebra – i.e., the calculus of complexes in A (and much more).
• Topology: the stable homotopy theory deals with the category whose objects are

topological spaces (rather then complexes!), but the total structure is the same
as for a derived category D(A) (shift is giving by the operation of suspension of
topological spaces, exact triangles come from the topological construction of the
mapping cone Cf corresponding to a continuous map f : X −→ Y of topological
spaces ...)(3)

Here we will only be concerned with the (more popular) appearance of derived categories
in algebra.

12.1. Derived category D(A) of an abelian category A. The objects of D(A) are
again the complexes in A, however HomD(A)(A,B) is an equivalence class of diagrams in
K(A):

(1) Let H̃omD(A)(A,B) be the class of all diagrams in K(A) of the form

A
φ
−→X

s
←−B, with s a quasi-isomorphism.

3Topologists did not notice the Octahedron axiom. Also, here is still no published/readable presenta-
tion of the construction of derived category of topological spaces.

On the other hand it is still not known whether the Octahedron axiom is a consequence of other axioms.
It requires existence of an exact triangle such that five squares commute. Existence of the traingle and
commutativity of 4 squares is a consequence of the remaining axioms.
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(2) Two diagrams A
φi
−→ Xi

si←− B, i = 1, 2; are equivalent iff they are quasi-isomorphic

to a third diagram, in the sense that there are quasi-isomorphisms Xi
ui−→ X, i =

1, 2; such that

u1◦φ1 = u2◦φ2

u1◦s1 = u2◦s2
, i.e.,

A
φ1
−−−→ X1

s1←−−− B

=

y u1

y =

y

A
φ

−−−→ X
s

←−−− B

=

x u2

x =

x

A
φ2
−−−→ X2

s2←−−− B.

12.1.1. Symmetry. It follows from the next lemma that one can equivalently represent

morphisms by diagrams A
s
←−C

φ
−→B with s a quasi-isomorphism.

12.1.2. Lemma. If s is a quasi-isomorphism a diagram A
s
←−B in K(A) can be canonically

completed to a commutative diagram

Y
ψ

−−−→ B

u

y s

y

A
φ

−−−→ X

with u a quasi-isomorphism. (Conversely, one can also complete u, ψ to s, φ.)

12.1.3. Remarks. (0) We can denote the map represented by the diagram A
φ
−→X

s
←−B by

[s, φ], its intuitive meaning is that it the morphism s−1◦φ once s is inverted. Identifications
of diagrams should correspond to equalities s1

−1◦φ1 = s2
−1◦φ2, to compare it with the

requirement (2) rewrite it as first as (u1◦s1)
−1◦(u1◦φ1) = (u2◦s2)

−1◦(u2◦φ2), and then as
(u1◦φ1)◦(u2◦φ2)

−1 = (u1◦s1)◦(u2◦s2)
−1; then (2) actually says that both sides are equal

to the identity 1X .

(1) The composition of (equivalence classes of) diagrams is based on lemma 12.1.2.

Putting together two diagrams [s, φ] and [u, ψ] gives A
φ
−→ X

s
←− B

ψ
−→ Y

u
←− C. Now

lemma 12.1.2 allows us to replace the inner part X
s
←−B

ψ
−→ Y by X

ψ′

←− Z
s′

−→ Y with s′

a quasi-isomorphism. This gives a diagram A
φ
−→X

ψ′

←− Z
s′

−→ Y
u
←−C and we define

def
=[u, ψ]◦[s, φ]◦[s′◦u, ψ′◦φ].

(2) The above procedure inverts quasi-isomorphisms in K(A). We can actually invert
quasi-isomorphisms directly in C(A), however lemma 12.1.2 does not hold in C(A), so
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one is forced to take a more complicated definition of maps as coming from long diagrams

A
φ0
−→ X0

s0←− B0
φ1
−→ X0

s1←− B1
φ2
−→ X2

s2←− · · ·
φn−1

−−−→ Xn−1
sn−1

←−− Bn−1
φn
−→ Xn

sn←− Bn = B

which are composed in the obvious way.

12.1.4. Theorem. D(A) is a triangulated category if we define the exact triangles as im-
ages of exact triangles in K(A).

One can also define triangulated subcategories D?(A) for ? ∈ {+, b,−}, these are full
subcategories of all complexes A such that H•(A) ∈ C?(A) (with zero differential). For
Z⊆Z one can also define a full subcategory DZ(A) by again requiring a condition on
cohomology: that H•(A) ∈ CZ(A).

12.1.5. The origin of exact triangles in D(A). They can be associated to either of the
following:

(1) a map of complexes,
(2) a short exact sequence of complexes that splits on each level,
(3) if A has enough injectives, any short exact sequence of complexes in C+(A), and

if A has enough projectives, any short exact sequence of complexes in C−(A).

12.1.6. Cohomology functors Hi : D(A) −→A. Hi is clearly defined on objects, on mor-

phisms it is well defined by Hi([s, φ])
def
= Hi(s)−1◦Hi(φ).

12.2. Truncations. These are functors

D≤n(A)
τ≤n

←−− D(A)
τ≤n

−−→ D≥n,

they come with canonical maps τ≤nA −→A −→τ≥nA defined by

· · · −−−→ An−2 −−−→ An−1 −−−→ Zn(A) −−−→ 0 −−−→ 0 −−−→ · · · (τ≤n(A))y
y

y
y

y
y

y
y

y
y
y

· · · −−−→ An−2 −−−→ An−1 −−−→ An −−−→ An+1 −−−→ An+2 −−−→ · · · (τ≤n(A))x
x

x
x

x
x

x
x

x
x
x

· · · −−−→ 0 −−−→ 0 −−−→ An/Bn(A) −−−→ An+1 −−−→ An+2 −−−→ · · · (τ≥n(A))

12.2.1. Lemma. (a) τ≤n is the left adjoint to the inclusion D≤n(A)⊆D(A), and τ≥n is the
right adjoint to the inclusion D≥n(A)⊆D(A).

(b) Hi(τ≤nA) =
{

Hi(A) i≤n
0 i>n

}
, and Hi(τ≥nA) =

{
Hi(A) i≥n

0 i<n

}
.

12.3. Inclusion A↪→ D(A).
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Lemma. (a) By interpreting each A ∈ A as a complex concentrated in degree zero, one
identifies A with a full subcategory of C(A), K(A) or D(A).

(b) The inclusion of A into the full subcategory D0(A) (all complexes A with H i(A) = 0
for i 6= 0) is an equivalence of categories. (The difference is that D0(A) is closed in D(A)
under isomorphisms and A is not).

Proof. In (a) we need to see that for A,B in A the canonical map HomA(A,B) −→
HomX (A,B is an isomorphism:

• when X = C(A) since any homotopy between two complexes concentrated in
degree zero is clearly 0 (recall that hn : AN −→Bn−1),
• when X = D(A) one shows that

(1) any diagram in K(A) of the form A
φ
−→X

s
←−B with s a quasi-isomorphism, is

equivalent to a diagram in A A
H0(φ)
−−−→ H0(X)

H0(s)
←−−− B, hence to A

H0(s)−1H0(φ)
−−−−−−−−→

B
1B←− B, hence it comes from a map A

H0(s)−1H0(φ)
−−−−−−−−→ B in A,

(2) Two diagrams of the form A
αi−→ B

1B←− B, are equivalent iff α1 = α2.

Remark. Part (b) of the lemma describes A inside D(A) (up to equivalence) by only using
the functors H i on D(A).

12.4. Homotopy description of the derived category. The following provides a down
to earth description of the derived category and gives us a way to calculate in the derived
category.

12.4.1. Theorem. Let IA be the full subcategory of A consisting of all injective objects.

(a) IA is an abelian subcategory.

(b) If A has enough injectives the canonical functors

K+(IA)
σ
−→D+(IA)

τ
−→D+(A)

are equivalences of categories.

Proof. (A sketch.) One first observes that

• Quasi-isomorphism between complexes in C+(I) are always homotopical equiva-
lences.

This tells us that quasi-isomorphisms inK+(I) are actually isomorphisms inK+(I). Since
quasi-isomorphisms in K+(A) are already invertible the passage to D+(I) obviously gives
an equivalence K+(I) −→D+(I).

We know that any complex A in C+(A) is quasi-isomorphic to its injective resolution I,
and also any map A′ −→A′′ is quasi-isomorphic to a map of injective resolutions I ′ −→I ′′.
This is the surjectivity of τ on objects and morphisms.
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The remaining observation is that

• For I, J ∈ D+(I) map HomD(I)(I, J) −→HomD(A)(I, J) is injective.

13. Derived functors

Let F : A −→B be an additive functor between abelian categories.

13.1. Derived functors RpF : A −→A. Suppose that A has enough injectives and set

RpF (A) = Hp(FI) for any injective resolution I of A.

We call these the (right) derived functors of F .

13.1.1. Theorem. (a) Functors Rp are well defined.

(b) R0F ∼= F .

(c) Any short exact sequence 0 −→A′
α
−→ A

β
−→A′′ −→0 in A defines a long exact sequence

of derived functors

0 −→R0F (A′)
R0F (α)
−−−−→ R0F (A)

RFn(β)
−−−−→ R0F (A′′)

∂0

−→ · · ·
∂n−1

−−→ RnF (A′)
RnF (α)
−−−−→ RnF (A)

RFn(β)
−−−−→ RnF (A′′)

∂n

−→ Rn+1F (A′)
Rn+1F (α)
−−−−−→ · · ·

Proof. (a) and (b) follow from ??. (c) follows from the lemma 10.4.3. First we can choose

an injective resolution 0 −→I ′
α
−→ I

β
−→ I ′′ −→0 of the short exact sequence 0 −→A′

α
−→A

β
−→

A′′ −→ 0, and then we apply F to it. The sequence of complexes 0 −→F (I ′)
α
−→ F (I)

β
−→

F (I ′′) −→0 is exact since the short exact sequence of resolutions splits levelwise (lemma
10.4.3b), and F is additive.

13.1.2. Remark. , even if F is not left exact the above construction produces a left exact
functor RF .

13.2. Derived functors RF : D+(A) −→D+(B). We start with the definition of its right

derived functor RF as the universal one among all extensions of A
F
−→ B to D+(A) −→

D+(B). Then we see that the “replacement by injective resolution” construction satisfies
the universality property.

13.2.1. Notion of the derived functor of F . A functor between two triangulated categories
is said to be a morphism of triangulated categories (a triangulated or ∂-functor) if it
preserves all structure of these categories:

(1) it is additive,
(2) it preserves shifts
(3) it preserves exact triangles



19

The right derived functor of an additive functor F : A −→B is the universal one among
all extensions of F to D+(A) −→D+(B). Precisely, it consists of the following data

• A triangulated functor RF : D+(A) −→D+(B),

• a morphism of functors iB◦F
ξ
−→RF◦iA ;

and these data should satisfy the universality property:

• for any other such pair (R̃F , ξ̃), morphism ξ̃ factors uniquely through ξ, i.e., there

is a unique morphism of functors RF
µ
−→ R̃F such that ξ̃ = µ◦ξ, i.e., iB◦F

eξ
−→

R̃F◦iA is the composition iB◦F
ξ
−→RF◦iA

µ◦1A−−−→ R̃F◦iA.

13.2.2. Remark. (0) For A ∈ A, iAA is A viewed as a complex, and ξA relates objects

that should be the same if RF extends F : RF (iAA)
ξA−→ iB(FA). So, intuitively ξ is the

“commutativity constraint” for the diagram,

A
F
−−−→ B

iA

y iB

y

D+(A)
RF
−−−→ D+(B)

, it takes care of the

fact that the functors iB◦F and RF◦iA are not literally the same but only canonically
isomorphic (though the universality property does not require ξ to be an isomorphism, in
practice it will be an isomorphism).

(1) The problem is when does the universal extension exist? The simplest case is when
F is exact, then then one can define RF simply as F acting on complexes. In general the
most useful criterion is

13.2.3. Theorem. Suppose that A has enough injectives. Then for any additive functor

A
F
−→ B :

(a) RF : D+(A) −→D(B) exists.

(b) For any complex A ∈ D+(A), there is a canonical isomorphism (RF )A ∼= F (I) for
any injective resolution I of A.

(c) In particular, for A ∈ A the cohomologies of (RF )A are the derived functors (RiF )A
introduced above.

Proof. Recall from 12.4.1 that one has equivalences K+(IA)
σ
−→ D+(IA)

τ
−→ D+(A),

and from recall that an additive functor FI
def
= (IA⊆A

F
−→ B) has a canonical extension

K(FI) : K(A) −→K(B). So we can define RF as a composition

RF
def
= [D+(A)

(τ◦σ)−1

−−−−→ K+(IA)
K(FI)
−−−→ K+(B) −→D+(B)].
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Our construction satisfies the description of RF in (b). We have (τσ)−1I = I and a quasi-

isomorphism A −→I. Therefore, RF (A)
def
= [K(FI)◦(τ◦σ)−1] A = K(FI) I = F (I). (c)

follows from (b).

It remains to check that our RF is the universal extension.

RF preserves shifts by its definition. Any exact triangle in D(A) is isomorphic to a

triangle A
α
−→ B

β
−→ C

γ
−→A[1] that comes from an exact sequence 0

α
−→ A

β
−→B

γ
−→C −→0

in C(A) that splits on each level. Moreover, we can replace the exact sequence 0
α
−→A′

β
−→

A
γ
−→A′′ −→0 with an isomorphic (in D(A)) short exact sequence of injective resolutions

0 −→ I ′
a
−→ I

b
−→ I ′′ −→ 0. Since it also splits on each level its F -image 0 −→ F (I ′)

F (a)
−−→

F (I)
F (b)
−−→ F (I ′′) −→0 is an exact sequence in C(B). Therefore it defines an exact triangle

F (I ′)
F (a)
−−→ F (I)

F (b)
−−→ F (I ′′)

eγ
−→ F (I ′)[1] in D(A). To see that this is the triangle we

observe that by definition F (I ′) = RF (A′) F (I) = RF (A) F (I ′′) = RF (A′′), and also
F (a) = RF (α) and F (b) = RF (β). It remains to see that γ̃ = RF (γ). For this recall
that γ and γ̃ are defined using splittings of the first and second row of

0
α

−−−→ A′
β

−−−→ A
γ

−−−→ A′′ −−−→ 0

ι′

y ι

y ι′′

y

0 −−−→ I ′
a

−−−→ I
b

−−−→ I ′′ −−−→ 0.

So, we need to be able to choose the splitting of the second row compatible with the one
in the first row. However, this is clearly possible by the construction of the second row.

13.3. Usefulness of the derived category. We list a few more reasons to rejoice in
derived categories.

13.3.1. Some historical reasons for the introduction of derived categories. For a left exact
functor F we have derived functors RiF and and then concept of derived category allows
us to glue them into one functor RF . Does this gluing make a difference?

(1) When we calculate cohomology from a complex A we loose some information.
This is not a problem if our end goal is the calculation of this cohomology H∗(A),
however if this is just the first step, the next step may not be doable becuasu of
the lost information. For this reason it is better not to discard the complex A
but to keep all relevant information it contains. This is achieved by the setting of
derived categories.

(2) The first example where loss of information is kept is the relation between derived
functors of F , G and the composition G◦F . It is easy to check from definitions
that for two left exact functors F and G one has R(G◦F ) ∼= RG◦RF . If we
instead work with RiF , RjG and Rn(G◦F ) the above formula degenerates to a
relation which is weak (some information gets lost) and complicated (uses language
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of spectral sequences). So, seemingly more complicated construction RF is more
natural and has better properties then a bunch of functors RiF .

If G : B −→C is right exact and B has enough projectives then one similarly has
functors LiG : B −→C and they glue to LG : D−(B) −→D−(C).

However, if one has a combination of two functors A
F
−→ B

G
−→ C and F is left

exact while G is right exact, we have a functor Db(A)
LG◦RF
−−−−→ Db(C) which is often

very useful but has no obvious analogue as a family of functors from A to C since
the composition G◦F need not be neither left nor right exact.(4)

(3) Some of essential objects and tools exist only on the level of derived categories:
the dualizing sheaves in topology and algebraic geometry, the perverse sheaves in
topology (and more recently also in algebraic geometry).

13.3.2. Some unexpected gains. It turns out that in practice many deep relations between
abelian categories A and B become understandable only on the level of derived categories,
for instance D(A) and D(B) are sometimes equivalent though the abelian categories A
and B are very different.

This observation has revolutionarized several areas of mathematics and physics.

4One of the famous EGA books (Elements de Geometrie algebrique, the foundations of the contem-
porary language of algebraic geometry) deals just with the construction of the derived functor of the
bifunctor Γ(X,A⊗OX

B) which (there were no derived categories at the time), they had to do in a very
explicit and involved way since Γ is left exact and tensoring is right.
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Appendix A. Manifolds

Appendix A on manifolds contains some basic definitions and reformulation of manifolds
in terms of structure sheaves. Out of all of this we will only need the notion of vector
bundles.

A.1. Real manifolds.

A.1.1. Charts, atlases, manifolds. A homeomorphism U
φ
−→ V with M

open

⊇ U and V
open

⊆ Rn

for some n, is called a local chart on the topological space M . Two charts (Uk
φ
−→ Vk) on

M (k ∈ {i, j}), are said to be compatible if (for Uij = Ui ∩ Uj), the comparison function

(or transition function),

Vj⊇ φj(Uij)
φij

def
= φ◦φj

−1

−−−−−−−−→ φi(Uij) ⊆Vi

is a C∞-map between two open subsets of Rn. An atlas on M is a family of compatible
charts on M that cover M .

We say that any atlas defines on M a structure of a manifold, and two atlases define the
same manifold structure if they are compatible, i.e., if their union is again an atlas.

So, “compatible” is an equivalence relation on atlases, and a structure of a manifold on a
topological space M is precisely an equivalence class of compatible atlases on M . On the

other hand, if A is an atlas on M the set Ã of all charts on M that are compatible with
the charts in A is a maximal atlas on M . So, any equivalence class of atlases contains the
largest element and we can think of manifold structures on M as maximal atlases on M .5

A.1.2. Once again. A real manifold M of dimension n is a topological space M which is
locally isomorphic to Rn in a smooth way and without contradictions. Here,

• Locally isomorphic to Rn means that we are given an open cover Ui, i ∈ I, of M ,

and for each i ∈ I a topological identification (homeomorphism), φ : Ui
∼=
−→Vi with

Vi open in Rn.
• Smooth way without contradictions means that for any i, j ∈ I (and Uij = Ui∩Uj),

the transition function

Vj⊇ φj(Uij)
φij

def
= φ◦φj

−1

−−−−−−−−→ φi(Uij) ⊆Vi

is a C∞-map between two open subsets of Rn.

5Later, we will find a nicer way to describe the manifold structure in terms of ringed spaces.
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A.1.3. The sheaf C∞
M of smooth functions on a manifold M . For any open U⊆M we define

C∞(U,R) to consist of all functions f : U → R such that for any chart (Ui
φ
−→ Vi) the

function f◦φ−1 : φi(U ∩ Ui)→ R is C∞ on the open subset φi(U ∩ Ui)⊆Vi⊆Rn.

Because of the no-contradiction policy one does not have to check all charts, but only
sufficiently many to cover U .

Lemma. (a) Though the definition of C∞
M is complicated, locally we get just the usual

smooth functions on Rn. If U lies in some chart (Ui, φ, Vi) (i.e., in U⊆Ui), then φi gives
identification C∞(U) ∼= C∞(φi(U)) of smooth fonctions on U with smooth functions on
an open part of Rn.

(b) C∞
M is a sheaf of R-algebras on M ,, i.e.,

• (0) for each open U⊆X C∞(U) is an R-algebra,

• (1) for each inclusion of open subsets V⊆U⊆X the restriction map C∞(U)
ρU

V−→
C∞(V ) is map of R-algebras

and these data satisfy

• (Sh0) ρUU = id
• (Sh1) (Transitivity of restriction) ρUV ◦ρ

U
V = ρUW for W⊆V⊆U

• (Sh2) (Gluing) If (Wj)j∈J is an open cover of an open U⊆M 6, we ask that any
family of compatible fj ∈ C∞(Wj), j ∈ J , glues uniquely. This means that if

all fj agree on intersections in the sense that ρWi

Wij
fi = ρWi

Wij
fj in C∞(Wij) for any

i, j ∈ J ; then there is a unique f ∈ C∞(U) such that ρUWj
f = fj in C∞(Wj), j ∈ J .

• (Sh3) C∞(∅) is {0}.

Proof. (a) is clear from definitions. The notion of F is a sheaf”, that appears in (b), is
really a shorthand for “F is of local nature”, i.e., “F is defined by some local property”.
Now C∞

M is a sheaf because to check that a function f on U is smooth, one only has to
check locally, i.e., one has to consider f on a small neighborhood of each point.

A.1.4. Examples. The following are real manifolds

(1) M = Rn

(2) M an open subset of Rn

(3) M = S1 or M = Sn.
(4) M = RP1 or M = RPn.

A.1.5. Category of real manifolds. For two real manifolds M ′,M ′′ we define the set
Hom(M ′,M ′′) = Map(M ′,M ′′) of smooth maps or morphisms of manifolds , to consist
of all maps F : M ′ →M ′′ which are smooth when checked in local charts.

6We denote Wij = Wi ∩Wj etc.!



24

This means that for each x ∈ M ′ there are charts M ′⊇Ui
φ
−→ Vi⊆Rm′ and M ′′⊇U ′′

j

φ
−→

V ′′
j ⊆Rm′′ , such that x ∈ U ′

i and F (x) ∈ U ′′
j , and the map

U ′
i ∩ F

−1U ′′
j

F
−−−→ U ′′

j

φ′i

y φ′′j

y

V ′
i ⊇ φ′i(U

′
i ∩ F

−1U ′′
j )

Fij
−−−→ φ′′j (U

′′
j ) ⊆ V ′′

j

is a smooth map between open subsets of Rm′ and Rm′′.

Again, no-contradiction policy implies that if the above is true for one pair of charts at x
and F (x), it is true for any pair of charts.

A.1.6. Examples.

(1) For any manifold M , Hom(M,Rn) = C∞(M,R)n.
(2) A smooth map F ∈ Hom(M,N) defines for any pair of open subsets U⊆M and

V⊆N the pull-back map C∞
N (V )

F ∗

−→ C∞
M (U), g 7→F ∗g = g◦F |U .

A.2. Vector bundles. The notion of a vector bundle is the relative version of the notion
of a vector space, i.e., a “vector bundle on a space M” will mean a “vector space spread
over M” with the certain “continuity” property. The basic examples will be the tangent
bundle TM → M which organize all tangent spaces TaM, a ∈ M , into one manifold
TM . The appropriate level of organization (structure) on the union TM = ∪a∈M TaM
is described in the following notion:

A.2.1. Vector bundles.

(1) (Sets.) If M is a set a vector bundle V over M consists of a map V
p
−→M and a

structure of a vector space on each fiber Vm = p−1(m), m ∈M .
(2) (T op.) If M is a topological space, we also ask that V is a topological space, the

map V
p
−→M is continuous and the vector space structure of the fibers does not

change wildly in the sense that

each m ∈ M has a neighborhood U such that

there exists a homeomorphism φ : V |U → U×Rn such that

(a) φ maps each fiber to a fiber, i.e., the diagram

V |U
φ

−−−→ U×Rn

p

y
yprU

U
=
−−−→ U

commutes,
(b) The restriction of φ to fibers is an isomorphism of vector spaces.
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(3) (Manifolds.) If M is a manifold,(7) we ask that V is a manifold, the map V
p
−→M

is a map of manifolds and the vector space structure on fibers changes smoothly
in the sense that

each m ∈ M has a neighborhood U such that

there exists an isomorphism of manifolds φ : V |U → U×Rn, which preserves

fibers and the restrictions of φ to fibers are isomorphisms of vector spaces.

A.2.2. Lemma. For a vector bundle V on M , any map of manifolds f : N → M can be
used to pull-back the vector bundle V to a vector bundle

f ∗V
def
= ∪n∈N Vf(n)

on N . So, by definition (f ∗V )n = Vf(n), i.e., the fiber of f ∗V at n ∈ N is the same as
the fiber of V at f(n) ∈M .

A.3. The (co)tangent bundles.

A.3.1. Cotangent spaces T ∗a (M). The cotangent space at a point m ∈M is defined by

T ∗m(M)
def
= ma/m

2
a for ma

def
= {g ∈ C∞(M); g(a) = 0}.

For any open U⊆M and f ∈ C∞(U), the differential at a of f is defined as the image

daf
def
= (f − f(a)) + m

2
a ∈ T ∗a (M)

of f − f(a) in T ∗aM .

A.3.2. Tangent spaces Ta(M). The tangent vectors at a ∈ M are the “derivatives at a”,
i.e., all linear functionals in the tangent space

Tm(M)
def
= {ξ ∈ HomR[C∞(M),R]; ξ(fg) = ξ(f)·g(a) + f(a)·ξ(g)}.

The vector fields on M are all “derivatives on M”, i.e., all linear operators in

X(M)
def
= {Ξ ∈ HomR[C∞(M), C∞(M)]; Ξ(fg) = Ξ(f)·g + f ·Ξ(g)}.

A vector field Ξ defines a tangent vector Ξa ∈ Ta(M) at each point a ∈M

Ξa(f)
def
= (Ξf)(a), f ∈ C∞(M).

A.3.3. Local coordinates. For any open U⊆M , we say that functions x1, ..., xn ∈ C
∞(U)

form a coordinate system on U if φ = (x1, ..., xn) : U → Rn gives a chart, i.e.,

• φ(U) is open in Rn,
• φ : U → φ(U) is a bijection, and
• the inverse function is a map of manifolds.

7Smooth or holomorphic.
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Lemma. The last condition is equivalent to

For each a ∈ U , the differentials daxi form a basis of T ∗aM .

Proof. Implicit Function Theorem.

A.3.4. Lemma. For any manifold M ,

TM
def
= ∪a∈M TaM and T ∗M

def
= ∪a∈M T ∗aM

are naturally vector bundles over the manifold M .

A.4. Constructions of manifolds.

A.4.1. The differential of manifold maps. A map of manifolds f : M → N , produces for
any open V⊆N and U = ⊆M such that f(U)⊆V , the pull-back of functions

f ∗ : C∞
N (V )→ C∞

M (U), φ7→f ∗φ
def
= φ◦f |U.

For each a ∈M , f ∗INf(a)⊆I
M
a , so we get a linear map

d∗af : T ∗f(a)(N) = INf(a)/(I
N
f(a))

2 → IMa /(I
M
a )2 = T ∗a (M), daf(df(a)φ)

def
= da(φ◦f).

In other words,

daf( [φ− φ(f(a))] + (INf(a))
2 ) = [φ◦f − (φ◦f)(a))] + (IMa )2.

In the opposite (covariant) direction one has the map called the differential of f

daf : Ta(M)→ Tf(a)(N), (dafξ)φ
def
= ξ(f ∗φ) = ξ(φ◦f)

which is the adjoint of dfa. In terms of the local coordinates xi around a ∈ M and yj
around f(a) ∈ N ,

(daf)∂i,a =
∑

j

∂i,a(yj◦f)·∂j,f(a)

and the matrix (∂i,a(yj◦f))i,j of daf in the bases ∂i,a, ∂j,f(a) is called the Jacobian of f at
a.

A.4.2. Theorem. Let f : M → N be a map of manifolds which is of constant rank

(i.e., all differentials daf : Ta(M) → Tf(a)(N) have the same rank). Then the fibers

Mb
def
= f−1b, b ∈ N , are naturally manifolds.

This is again a consequence of the Implicit Function Theorem.

A.4.3. Examples. Let f ∈ C∞(M) and b ∈ R be such that daf 6= 0 for any a ∈Mb. Then
Mb is a submanifold.

Proof. daf 6= 0 for any a ∈ Mb, so the same is true for a in some neighborhood U of Mb.
Now, Mb = f−1b = (f |U)−1b and on U the rank is 1.
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A.5. Complex manifolds. A complex manifold M of dimension n is a topological space
M which is locally isomorphic to Cn in a holomorphic way and without contradictions.
Here,

• Locally isomorphic to Cn means that we are given an open cover Ui, i ∈ I, of M ,

and for each i ∈ I a topological identification (homeomorphism), φ : Ui
∼=
−→Vi with

Vi open in Cn.
• In a holomorphic way means that for any i, j ∈ I, the transition function φij is a

holomorphic map between two open subsets of Cn.8

• No contradictions means that for any i, j, k ∈ I, the two identifications of
φk(Uijk)⊆Vk and φi(Uijk)⊆Vi, are the same: φij◦φjk = φik.

We call each (Ui
φ
−→Vi) a local chart on the manifold. A collection (Ui

φ
−→Vi)i∈I , of charts

on a topological space is said to be compatible if it satisfies the conditions smooth way

and no-contradictions. A collection of compatible charts that cover M is called an atlas

on M . We say that any atlas defines on M a structure of a manifold, and two atlases
define the same manifold structure if they are compatible, i.e., if their union is again an
atlas.

So a structure of a manifold on a topological space M can be viewed is an equivalence

class of compatible atlases on M . On the other hand, if A is an atlas on M the set Ã of
all charts on M that are compatible with the charts in A is a maximal atlas on M . So,
any equivalence class of atlases contains the largest element.

A.5.1. The sheaf Oan
M of holomorphic functions on a manifold M . For any open U⊆M we

define Oan(U,R) to consist of all functions f : U → R such that for any chart (Ui
φ
−→ Vi)

the function f◦φ−1 : φi(U ∩ Ui)→ R is Oan on the open subset φi(U ∩ Ui)⊆Vi⊆Rn.

Because of the no-contradiction policy one does not have to check all charts, but only
sufficiently many to cover U .

Lemma. (a) If U lies in some chart Ui then φ gives identification Oan(U) ∼= Oan(φi(U))
of holomorphic fonctions on U with holomorphic functions on an open part of Cn.

(b) OanM is a sheaf of C-algebras on M ,, i.e.,

• (0) for each open U⊆X Oan(U) is a C-algebra,

• for each inclusion of open subsets V⊆U⊆X the restriction map Oan(U)
ρU

V−→
Oan(V ) is map of C-algebras

and these data satisfy

• (Sh0) ρUU = id

8...
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• (Sh1) (Transitivity of restriction) ρUV ◦ρ
U
V = ρUW for W⊆V⊆U

• (Sh2) (Gluing) If (Wj)j∈J is an open cover of an open U⊆M we ask that any
family of compatible fj ∈ O

an(Wj), j ∈ J , glues uniquely.
• (Sh3) Oan(∅) is {0}.

A.5.2. Examples.

(1) M = Cn

(2) M an open subset of Cn

(3) M = CP1 or M = CPn.

A.5.3. Category of complex manifolds. For two complex manifolds M ′,M ′′ we define the
set Hom(M ′,M ′′) = Map(M ′,M ′′) of holomorphic maps or morphisms of complex man-

ifolds to consist of all maps F : M ′ →M ′′ which are holomorphic when checked in local
charts.

A.5.4. Examples.

(1) For any manifold M , Hom(M,Cn) = Oan(M,C)n.
(2) A holomorphic map F ∈ Hom(M,N) defines for any pair of open subsets U⊆M

and V⊆N the pull-back map Oan
N (V )

F ∗

−→ OanM (U), g 7→F ∗g = g◦F |U .

A.6. Manifolds as ringed spaces. We will see that a geometric space (for instance a
manifold of a certain type) can naturally be thought of as a topological space with a sheaf
of rings.

A.6.1. Ringed spaces. A ringed space consists of a topological space X and a sheaf of
rings O on X. Usually we call O the structure sheaf of X and we denote it OX .

A.6.2. Real manifolds as ringed spaces. As we have seen, any real manifold M defines a
ringed space (M,C∞

M ). Actually,

Lemma. (a) For a manifold M one can recover the manifold structure on M from the
sheaf of rings C∞

M
9

(b) Manifolds are the same as ringed spaces (X,OX) that are locally isomorphic to
(Rn, C∞

Rn).10

9The largest atlas for the manifold M consists of all data M
open

⊇ U
φ

−−−−−−−−−−−→
homeomorphism

V
open

⊆ Rn, such that

for any g ∈ C∞(V ) the pull-back g◦φ is in C∞M (U).
10This means that X can be covered by open sets U such that

(1) there is a homeomorphism φ : U
∼=
−→V with V open in some Rn, with the property that

(2) for any U ′ open in U , the restriction of φ to U ′ → π(U ′) = V ′ identifies OX(U ′) and C∞
Rn(V ′).
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A.6.3. Complex manifolds as ringed spaces. The story is the same. Any complex manifold
M defines a locally ringed space (M,Oan

M ). Actually, complex manifolds are the same as
ringed spaces (X,OX) that are locally isomorphic to (Cn,Oan

Cn).

A.6.4. Terminology. We will speak of a k-manifold (M,OM) where k is either R or C,
and we will mean the above notion of a real manifold with OM = C∞

M if k = R, or the
above notion of a complex manifold with OM = OanM if k = C.

A.6.5. Use of sheaves. Sheaves are more fundamental for C-manifolds then for
R-manifolds because for an R-manifold M , all information is contained in one ring
C∞(M), while for a C-manifold the global functions need not contain enough information
– for instance Oan(CPn) = C. This forces one to control all local function rather then
just the global functions (i.e., the sheaf OM rather then just OM(M)).

However, the general role of sheaves is that they control the relation between local and
global objects, and this make them useful in many a context.

A.7. Manifolds as locally ringed spaces. We saw that geometric space can naturally
be thought of as a ringed spaces, actually their geometric nature will be reflected in a
special property of the corresponding ringed spaces – these are the locally ringed spaces.

A.7.1. Stalks. The stalk of the sheaf O at a ∈ X is intuitively O(U) for a “very small
neighborhood U of a”. More precisely, if a ∈ V⊆U then O(U) and O(V ) are related

by the restriction map O(U)
ρU

V−→ O(V ), and the stalk at a is a certain limit of these
restriction maps (called inductive limit or colimit), i.e.,

Oa
def
= lim

→
U3a

O(U)

of O(U) over smaller and smaller neighborhoods U of a in X.

The elements of Oa are called the germs of O-functions at a, and Oa can be described in
en elementary way

(1) For any neighborhood U of a point a any f ∈ O(U) defines a germ f
a

= (U, f)
a
∈

Oa, and any germ is obtained in this way.
(2) Two germs (U, f)

a
and (V, g)

a
at a, are the same if there is neighborhood W⊆U∩V

such that f = g on W .

Then one defines the structure of a ring on Oa by

(U, f)
a
+ (V, g)

a

def
= (U ∩ V, f + g)

a
and (U, f)

a
·(V, g)

a

def
= (U ∩ V, f ·g)

a
.

A.7.2. Local rings. A commutative ring A is said to be a local ring if it has the largest

proper ideal.
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Examples.

(1) Any field is local, the largest ideal is 0.
(2) The ring of formal power series k[[X1, ..., Xn]] over a field k is local, the largest

ideal m consists of series that vanish at 0 (i.e, the constant term is 0).
(3) C[x] is not at all local.

A commutative ring is local iff it has precisely one maximal ideal (then this is the largest
ideal). Remember that maximal ideals correspond to the naive notion of “ordinary” points
of a space. So, uniqueness of a maximal ideal in a ring A intuitively means that this ring
corresponds to a space with one ordinary point.

A.7.3. Locally ringed spaces. We say that a ringed space (X,O) is locally ringed if all
O(U) are commutative rings and each stalk Oa, a ∈ X, is a local ring, i.e., it has the
largest proper ideal. This ideal is then denoted ma⊆Oa.

Example. The stalk of the sheaf of analytic functions Oan
Cn,0 consists of all formal series

in n variables f(Z1, ..., Zn) = sumI fI ·Z
I which converge on some ball around 0 ∈ Cn

(think of (U, f)0 as the expansion of f at 0). This is a local ring, and the largest ideal is

ma
def
= Oa ∩

∑
Zi·C[[Z1, ..., Zn]] = all germs at a of functions that vanish at a.

Remark. Remember that a local ring intuitively corresponds to a space with one ordinary
point. Therefore, it makes sense that the stalk OX,a should be a local ring since OX,a
should only see one ordinary point – the point a.

A.7.4. Manifolds as locally ringed spaces. As we have seen, any manifold M (real or
complex) defines a ringed space. Actually,

Lemma. The ringed space of any manifold M is a locally ringed space. The largest ideal
ma of the stalk at a consists of germs of functions that vanish at a.

Proof. Let O be the structure sheaf (i.e., C∞
M or OanM ) and let φ ∈ Oa be the germ

φ = (U, f)
a

of a function at a. If φ/∈ma, i.e., f(a) 6= 0 then the restriction of f to the

neighborhood V = f−1k∗ (for k = R or C) of a, is invertible. Therefore φ is invertible (so
φ can not lie in a proper ideal!).

Appendix B. Categories: more

Appendix B on categories, contains additional material which will not be needed in this
course.
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B.1. Construction (description) of objects via representable functors. Yoneda
lemma bellow says that passing from an object a ∈ A to the corresponding functor
HomA(−, a) does not loose any information – a can be recovered from the functor
HomA(−, a).11 This has the following applications:

(1) One can describe an object a by describing the corresponding functor HomA(−, a).
This turns out to be the most natural description of a.

(2) One can start with a functor F : Ao −→Sets and ask whether it comes from some
objects of a. (Then we say that a represents F and that F is representable).

(3) Functors F : Ao −→ Sets behave somewhat alike the objects of A, and we can
think of their totality as a natural enlargement of A (like one completes Q to R).

B.1.1. Category Â. To a category A one can associate a category

Â
def
= Funct(Ao,Sets)

of contravariant functors from A to sets. Observe that each object a ∈ A defines a functor

ιa = HomA(−, a) ∈ Â.

The following statement essentially says that one can recover a form the functor
HomA(−, a), i.e., that this functor contains all information about a.

B.1.2. Theorem. (Yoneda lemma)

(a) Construction ι is a functor ι : A −→Â.

(b) For any functor F ∈ Â = Funct(Ao,Sets) and any a ∈ A there is a canonical
identification

Hom bA
(ιa, F ) ∼= F (a).

Proof. (b) Recall that a map of functors η : ιa → F (functors from Ao to Sets), means
for each x ∈ A one map of sets ηx : ιa(x) = HomA(x, a)→ F (x), and this system of maps

should be such that for each morphism y
α
−→ x in A (i.e., x

α
−→ y in Ao), the following

diagram commutes

F (x)
F (α)
−−−→ F (y)

ηx

x ηy

x

ιa(x)
ιa(α)
−−−→ ιa(y)

, i.e., F (α)◦ηx = ηy◦ιa(α).

Such η in particular gives ηa : ιa → F (a), and since ιa = HomA(a, a) 3 1a we get an

element η
def
= ηa(1a) of F (a).

11This is the precise form of the Interaction Principle on the level of categories that we used to pass
from varieties to spaces and stacks. The interactions of a with all objects of the same kind are encoded
in the functor HomA(−, a), so Yoneda says that if you know the interactions of a you know a.
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In the opposite direction, a choice of f ∈ F (a), gives for any x ∈ A the composition of
functions

f̃x
def
= [ιa(x) = HomA(x, a) = HomAo(a, x)

F
−→= HomSets[F (a), F (x)]

evf
−→ F (x)].

Now one checks that

• (i) f̃ is a map of functors ιa → F , and

• (ii) procedures η 7→η and f 7→f̃ are inverse functions between Hom eA
(ιa, F ) and

F (a).

Corollary. (a) Yoneda functor ι : A → Â is a full embedding of categories, i.e., for any
a, b ∈ A the map

ι : HomA(a, b) → Hom bA
(ιa, ιb),

given by the functoriality of ι, is an isomorphism.

(b) Functor HomA(−, a) = ιa determines a up to a unique isomorphism, i.e., if ιa ∼= ιb
in Â then a ∼= b in A.

Proof. (a) follows the part (b) of the Yoneda lemma (take F = ιb). (b) follows from (a).

Remark. We say that a functor F : B → C is a full embedding of categories if for any

a, b ∈ B the map HomA(a, b)
Fa,b
−−→ Hom bA

(ιa, ιb) given by the functoriality of F , is an
isomorphism. The meaning of this is we put B into a larger category which has objects
from B and maybe also some new objects, but the old objects (from B) relate to each other
in C the same as they used to in B. We also say that F makes B into a full subcategory
of C.

B.2. Yoneda completion Â of a category A. Yoneda lemma says that A lies in a

larger category Â. The hope is that the category Â may contain many beauties that
should morally be in A (but are not). One example will be a way of treating inductive

systems in Â. In particular we will see inductive systems of infinitesimal geometric objects
that underlie the differential calculus.

B.2.1. Distributions. This Yoneda completion is a categorical analogue of one of the basic
tricks in analysis:

since among functions one can not find beauties like the δ-functions, we extend the

notion of of functions by adding distributions.

Remember that the distributions on an open U⊆Rn are the (nice) linear functionals on
the vector space of of (nice) functions: D(U,C)⊆ C∞

c (U,C)∗ = HomC[C∞
c (U),C].
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B.2.2. Representable functors. First we get a feeling for how objects of A are viewed

inside Â, i.e., the relation between thinking of a ∈ A and the functor ιa.

We will say that a functor F ∈ Â, i.e., F : Ao −→ Sets, is representable if there is
some a ∈ A and an isomorphism of functors η : HomA(−, a) −→F . Then we say that a
represents F . This is the basic categorical trick for describing an object a up to a canonical

isomorphism: :

instead of describing a directly we describe a functor F isomorphic to HomA(−, a).

B.2.3. Examples. (1) Products. A product of a and b is an object that represents the
functor

A 3 x7→ Hom(x, a)×HomA(x, b) ∈ Sets.

(2) In the category of k-varieties, functor

X 7→ {(f1, ..., fn); fi ∈ O(X)} = O(X)n

represents An.

(3) In the category of schemes,

X 7→ {f ∈ O(X); f 2 = 0}

represents the double point scheme Spec(Z[x]/x2).

(4) If An = ⊕n1 k·ei, then the set

A∞ def
= ∪∞0 An = ⊕∞1 k·ei

is an increasing union of k-varieties. In analogy with (2), we see that the functor corre-
sponding to this construction should be given by all infinite sequences of functions

X 7→ {(f0, f1, ..., fn, ...); fi ∈ O(X)} = Map(N,O(X)).

However, this functor is not representable in k-varieties, i.e., A∞ is not a k-variety. We
may expect that it lives in the larger world of schemes, but even this fails. So, its natural

ambient is the category the Yoneda completion ̂k-V arieties of the category k-V arieties.

B.2.4. Limits. One can describe the completion of A to Â as adding to A all limits of

inductive systems in A, just as one constructs R from Q. The simplest kinds of inductive
systems in A are the diagrams a = (a0 → a1 → · · ·) in A12 The limit lim

→
a is roughly

speaking the object that should naturally appear at the end: (a0 → a1 → · · · → lim
→ n

an).

It need not exist in A at least it is easy to see that if A = Sets then all inductive limits
always exist!

A consequence of this good situation in the category Sets is that:

12Here inductive means that it stretches to the right, while for instance (· · · ←− bn ←− b1 ←− b0) would
be called a projective system.
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even if lim
→ n

an does not exist in A, it always exists in the larger category Â .

An inductive system a defines an object in A if the limit lim
→

an exists in A, however it

always defines a functor ιa = lim
→

n

ιan
∈ Â, by

ιa(c)
def
= lim

→ n
ιan

(c) = lim
→ n

HomA(c, an) ∈ Sets.

(This definition uses the existence of inductive limits in the category Sets!)

This allows us to think of the functor ιa as the limit of the inductive system a that exists

in the larger category Â. All together, we can think of any inductive system as if it were

an object lim
→

ai in A (since we can identify it with a ∈ Â). For this reason an inductive

system in A is called an ind-object of A (while it really gives an object of Â). 13

Examples. The basic example of inductive system is an increasing union. Some infinite
increasing unions of k-schemes are not k-schemes but they are objects of the category

of k(
def
= ) ̂k-Schemes. The most obvious examples are A∞ (above) which should be a

k-variety but it is not, and the formal neighborhood of a closed subscheme (bellow).

B.3. Category of k-spaces (Yoneda completion of the category of k-schemes).
This will be our main example of a Yoneda completion of a category. For examples of

non-representable functors, i.e., functors which are in Â but not in A.

This is a geometric example. The geometry we use here is the algebraic geometry. Its geo-
metric objects are called schemes and they are obtained by gluing schemes of a somewhat
special type, which are called affine schemes (like manifolds are all obtained by gluing
open pieces of Rn’s). We start with a brief review.

B.3.1. Affine k-schemes. Fix a commutative ring k.

An affine scheme S over k is determined by its algebra of functions O(S), which is a
k-algebra. Moreover, any commutative k-algebra A is the algebra of functions on some
k-scheme – the scheme is called the spectrum of A and denoted Spec(A). So, affine
k-schemes are really the same as commutative k-algebras, except that a map of affine

schemes X
φ
−→ Y defines a map of functions O(Y )

φ∗

−→ O(X) in the opposite direction (the
pull-back φ∗(f) = f◦φ). The statement

information contained in two kinds of objects is the same but the directions reverse when

one passes from geometry to algebra

is stated in categorical terms:

13Similarly one calls projective systems pro-objects of A.
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categories AffSchk and (ComAlgk)
o are equivalent.

14

The basic strategy. Our intuition is often geometric. So, one starts by translating geo-
metric ideas into precise statements in algebra. These are then proved in algebra. Once
sufficiently many geometric statements are verified in algebra, one can build up on these
and do more purely in geometry.

B.3.2. Formal neighborhood of 0 ∈ A1. Consider the contravariant functor on k-Schemes

k-Schemes 3 X 7→ F (X) = {f ∈ O(X); f is nilpotent} ∈ Sets.

It is an increasing union of subfunctors

k-Schemes 3 X 7→ Fn(X) = {f ∈ O(X); fn+1 = 0} ∈ Sets.

Looking for geometric interpretation of these functor we start with the nth infinitesimal
neighborhood INn

A1
k

(0) of the point 0 in the line A1
k

= Spec(k[x]). This is the k-scheme

defined by the algebra

O
(
INn

A1
k

(0)
) def

= k[x]/xn+1, i.e., INn
A1(0)

def
= Spec(k[x]/xn+1).

For instance, IN 0
A1(0) = {0} is a point while IN 1

A1(0) is a double point, etc.

We see that the functor Fn is representable – it is represented by the scheme INn
A1

k

(0).

Therefore, one should think of the functor F as the increasing union of infinitesimal
neighborhoods of 0 ∈ A1. For that reason we call F the formal neighborhood of 0 ∈ A1.

B.3.3. Formal neighborhood of a closed subscheme. In general if Y is a closed subscheme
of a scheme X given by the ideal IY = {f ∈ O(X); f |Y = 0}, one can again define the
nth infinitesimal neighborhood of Y in X as an affine scheme

INn
X(Y )

def
= Spec(O(X)/In+1

Y ),

and then one defines the formal neighborhood FNX(Y ) as a k-space which is the union
of infinitesimal neighborhoods, i.e., as the functor

k-Schemes 3 Z 7→ ∪n Map[Z, INn
X(Y )].

B.4. Groupoids (groupoid categories). We consider a special class of categories, the
groupoid categories . We get a new respect for categories when we notice that this special
case of categories, is a common generalization of both groups and equivalence relations.

B.4.1. A groupoid category is a category such that all morphisms are invertible (i.e.,
isomorphisms).

14One can simplify this kind of thinking and define the category of affine schemes over C as the the
opposite of the category of commutative C-algebras. The part that would be skipped in this approach is
how one develops a geometric point of view on affine schemes defined in this way.
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B.4.2. Example: Group actions and groupoids. An action of a group G on a set X, pro-
duces a category XG with Ob(XG) = X and

HomXG
(a, b)

def
= {(b, g, a); g ∈ G and b = ga}.

Here 1a = (a, 1, a) and the composition is given by multiplication in G:

(c, h, b)◦(b, g, a)
def
= (c, hg, a). This is a groupoid category: (b, g−1, a)◦(b, g, a)

def
= (a, 1, a).

B.4.3. Example: Equivalence relations. Any equivalence relation ∼= on a set X defines a
category X∼= with Ob(X∼=) = X and HomX∼=(a, b) is a point {b, a)} if a ∼= b and otherwise

HomX∼=(a, b) = ∅. The composition is (c, b)◦(b, a)
def
= (c, a) and 1a = (a, a). This is a

groupoid category: (a, b)◦(b, a) = 1a.

B.4.4. Lemma. Let C be a groupoid category.

(a) A groupoid category C gives: a set π0(C) of isomorphism classes of objects of C, and

(b) for each object a ∈ G a group π1(C, a)
def
= HomC(a, a).

(b) If a, b ∈ C are isomorphic then HomC(a, b) is a bitorsor for (HomC(a, a),HomC(b, b)),
i.e., a torsor for each of the groups HomC(a, a) and HomC(a, a), and the actions of the
two groups commute.

(c) A groupoid category on one object is the same as a group.

B.4.5. Examples. (1) For the action groupoid associated to an action of G on X

π0(XG) = X/G and π1(XG, a) = Ga.

(2) If X∼= is the groupoid given by an equivalence relation ∼= on X then

π0(X∼=) = X/ ∼= and π1(X∼=, a) = {1}.

B.4.6. Remarks. Passing from a groupoid category C to the set π0(C) of isomorphism
classes in C, the main information we forget is the automorphism groups HomC(a, a) =
AutC(a) of objects.

To see the importance of this loss, we will blame the formation of singularities in the
invariant theory quotients on passing from a groupoid category to the set of isomorphism
classes. Remember that when G = {±1} acting on X = A2, one can organize the set
theoretic quotient X/G into algebraic variety X//G which has one singular point – the
image of 0 = (0, 0. Recall that 0 is the only point in X which has a non-trivial stabilizer,
i.e., which has a non-trivial automorphism group AutX∼=(0) when we encode the action
of G on X as a category structure X∼= on X.

So, the hint we get from this example is:
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One may be able to remove some singularities in sets of isomorphism classes by

remembering the automorphisms, i.e., remembering the corresponding groupoid

category rather then just the set of isomorphism classes of objects.

This is the principle behind the introduction of stack quotients.

B.5. Categories and sets. Some of the relations:

• All sets form a category Sets which can be viewed as the basic example of a
category.
• Each set S defines a (small) category S with Ob(S) = S and for a, b ∈ S

HomS(a, b) is {1a} if a = b and it is empty otherwise. In the opposite (and
more stupid) direction, each small category C gives a set Ob(C) (we just forget the
morphisms).
• The structure of a category can be viewed as a more advanced version of the

structure of a set.

B.5.1. Question. If all sets form a structure more complicated then a set – a category
Sets, what do all categories form? (All categories form a more complicated structure, a
2-category. Moreover all n-categories form an (n + 1)-category ...)

B.5.2. Operations on categories. The last remark suggests that what we can do with sets,
we should be able to do with categories (though it may get more complicated).

For instance the product of sets lifts to a notion of a product of cate-
gories A and B, The category A×B has Ob(A×B) = Ob(A)×Ob(B) and

HomA×B[(a
′, b′), (a′′, b′′)]

def
=HomA[a′, a′′]×HomB[b

′, b′′].

However, since we are dealing with a finer structure there are operations on categories
that do not have analogues in sets. Say the dual (opposite) category of A is the category
Ao with Ob(Ao) = Ob(A), but

HomAo(a, b)
def
= HomA(b, a).

This is the formal meaning of the observation that reversing the arrows gives a “duality
operation” for constructions in category theory. For instance, a projective system in A
is the same as an inductive system in Ao, a sum in A is the same as a product in Ao,
etc. This is useful: for any statement we prove for projective systems there is a “dual”
statement for inductive systems which is automatically true.

B.6. Higher categories. Notice that

(1) The class Cat of all categories has a category like structure with Ob(Cat)
def
= cat-

egories, and (for any two categories A and B) HomCat(A,B)
def
= Funct(A,B)

def
=
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functors from A to B. However, the class HomCat(A,B) need not be a set unless
the categories A and B are small.

(2) Moreover, for any two categories A and B, HomCat(A,B) = Funct(A,B) is ac-
tually a category with Ob(Funct(A,B)) = functors from A to B, and for F,G ∈

Funct(A,B), the morphisms HomFunct(A,B)(F,G)
def
= natural transforms from F to

G.

The two structures (1) and (2) (together with natural compatibility conditions between
them) make Cat into what is called a 2-category. We leave this notion vague as it is not
central to what we do now. (We will see that complexes and topological spaces are also
2-categories.)

Geometrically, a category A defines a 1-dimensional simplicial complex |A| (the nerve
of A) where vertices=Ob(A) and (directed) edges between vertices a and b are given by
HomC(a, b). A 2-category B defines a 2-dimensional topological object |B| (the nerve of
B). If say, B = Cat then vertices Ob(Cat) = categories, edges between vertices A and B

corresponds to all functors from A to B, and for two functors A
F,G
−−→ B (i.e., two edges

from the point A to the point B), morphisms F
η
−→G correspond to (directed) 2-cells in

|Cat| whose boundary is the union of edges corresponding to F and G. So one dimensional
topology controls the level of our thinking when we use categories, 2-dimensional when we
use 2-categories and in this way one can continue to define more complicated frameworks
for thinking of mathematics, modeled on more complicated topology: the nerve of an
n-category is an n-dimensional topological object for n = 0, 1, 2, ...,∞ (here “1-category”
means just “category” and a 0-category is a set).


