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Part 0. Announcements

0. What does the Homological algebra do?

Homological algebra is a general tool useful in various areas of mathematics. One tries
to apply it to constructions that morally should contain more information then meets the
eye. Homological algebra, when it applies, produces “derived” versions of the construction
(“the higher cohomology”), which contain the “hidden” information. In a number of areas,
the fact that that with addition of homological algebra one is not missing the less obvious
information allows a development of superior techniques of calculation.

The goal of this course is to understand the usefulness of homological ideas in applica-
tions. and as usual, to use this process as an excuse to visit various interesting topics in
mathematics.

0.1. Some examples of applications. Some basic applications :

(1) Algebraic topology. It can loosely be described as a “systematic way of counting
holes in manifolds”. While we can agree that a circle has a 1-dimensional hole (in
the sense of “a hole that can be made by a one dimensional object”) and a sphere
has a 2-dimensional hole, algebraic topology finds that the surface of a pretzel has
one 2-dimensional hole and four 1-dimensional holes. These “holes” or “cycles”
turn out to be essential in problems in geometry and analysis.

(2) Cohomology of sheaves. It deals with an omnipresent problem of relating local
and global information on a manifold.

(3) Subtle objects. A classical example is that when one passes from smooth spaces
to singular spaces the correct analogue of some standard objects become certain
complexes of objects, i.e., the homological algebra generalizations of standard
objects. Examples: dualizing sheaves in algebraic geometry and perverse sheaves
in topology, are not really sheaves but complexes of sheaves. So, in general calcu-
lations on singular spaces usually require homological algebra just to start.

(4) Subtle spaces. In order to organize interesting objects such as all curves or
all vector bundles on a given curve, into a mathematically meaningful space, one
requires an extension of a notion of a space. In contemporary physics the basic
objects of string theory – the D-branes – are expected to be highly sophisticated
constructs of homological algebra.

Some special examples:

• Dual of a module over a ring. The dual V ∗ of a real vector space V is the
space of linear maps from V to real numbers. If one tries to do the same for a
module M over a ring k (say the ring of integers), it does not work as well since
M∗ can often be zero. However in the “derived” world the construction works as
well as for vector spaces.
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• Algebraic analysis of linear differential equations is based on the obser-
vation that any map between two spaces allows you to move a system of linear
equations on one of the spaces to the other. These operations become most useful
after passing to their derived versions.
• Group cohomology, Galois cohomology, Lie algebra cohomology,...
• Deformation theory.
• etc.

0.2. Topics.

• Algebraic topology.
• Duality of abelian groups.
• Derived functors, Ext and Tor.
• Solutions of linear differential equations with singularities.
• Sheaves and cohomology of sheaves.
• Derived categories.

Possible advanced topics: (1) Differential graded algebras, (2) n-categories. (3) Ex-
tended notions of a space: stacks and dg-schemes. (4) Homotopical algebra.

0.3. The texts.

(1) Weibel, Charles A., An introduction to homological algebra, Cambridge Univer-
sity Press, Cambridge [England] ; New York : Cambridge studies in advanced
mathematics 38; ISBN/ISSN 0521435005.

(2) Gelfand, S. I., Manin Y. I., Methods of homological algebra, Springer, Berlin ; New
York : ISBN/ISSN 3540547460 (Berlin) 0387547460 (New York).

These are very different books. Weibel’s book deals with a more restricted subject, so
it is less exciting but seems fairly pleasant to read once one knows what one wants from
homological algebra.

Manin and Gelfand Jr. are top mathematicians and their book is full of exciting material
from various areas, and it points towards hot developments. For that reason (and a laconic
style of Russian mathematics), it is also more difficult.
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Part 1. Intro

This part is an announcement for ideas that we will revisit in more detail.

1. Algebraic topology: Homology from triangulations

The subject of algebraic topology is measuring properties of shapes i.e., of topological
spaces. In a simple example of a circle our “measurements” give the following observations:
(0) it is connected, and (1) it has a hole. We will find a systematic approach (the homology
of topological spaces) to finding such properties for more complicated topological spaces.
This involves the following steps:

• In order to extract information about a topological space X we make a choice
of additional data – a triangulation T , i.e., we break X into oriented simplices
(points, intervals, triangles,...).
• Some information on a triangulated space (X, T ) is then encoded into an algebraic

construct, a complex C•(X, T ; k) of modules over a ring k (such as Z, Z/n, Q, R, C).
Here,
(1) modules Ci simply count the simplices of dimension i in the triangulation and
(2) the boundary maps between them encode the way the simplices are attached

to form X.
• The modules Ci are not really interesting, they are large because they involve not

only the interesting space X but also an auxiliary choice of a triangulation T of X.
Now one distills is the interesting information. This is the homology H•(X, T ; k)
of the complex C•(X, T ; k).
• It turns out that the homology is an invariant of the topological space X – though

it was calculated using the extra information of a triangulation T it does not
depend on the choice of T but only on the space X. So we may drop T from the
notation and call it the

Homology H•(X; k). of the topological space X with coefficients in k

One obvious application of invariants I such as homology is that they may be used to
distinguish objects, If for two topological spaces X, Y the invariants I(X) and I(Y ) are
different then the spaces are different, i.e., there is no homeomorphism between them.
However, the use of invariants is much deeper. For instance one can integrate differential
forms over homology classes.

We will start with the basic atoms of the theory, very simple topological spaces called
simplices. We will see how to describe topological spaces in terms of simplices and then
we will use such descriptions to calculate (co)homology of simplices. This will involve an
algebraic idea of complexes of abelian groups.

1.1. Linear Simplices. The idea of a combinatorial topology is to describe a given topo-
logical space as being glued from very simple topological spaces, appropriately called
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simplices. The gluing rules are combinatorial objects and so one can study the original
topological space in terms of the gluing combinatorics.

Simplices are familiar objects: there is one in each dimension and 0-simplex is a point,
1-simplex is a closed interval, 2-simplex is a triangle, 3-simplex is a pyramid, etc. A
systematic approach is given by the construction of

1.1.1. Standard and linear simplices. The standard n-simplex is σn⊆ Rn+1, the convex
closure σn = conv{e0, ..., en} of the standard basis of Rn+1. So, σn is in the first “quad-
rant” xi ≥ 0, and there it is given by the hyperplane

∑
xi = 1.

More generally, we say that a linear i-simplex in a real vector space is the convex closure
conv(v0, ..., vi) of a set V = {v0, ..., vi} of i + 1 vectors which lie in an i-dimensional affine
subspace but do not lie in any (i− 1)-dimensional affine subspace.(1) We say that V is the

set of vertices of the simplex conv(V) and we often denote by σV
def
= conv(V) the simplex

with vertices V. So, an i-simplex has (i + 1) vertices.

1.1.2. Barycentric coordinates on a linear simplex σV . These are defined through the
following lemma

Lemma. (a) Any point x in the simplex can be written as x =
∑

xivi with xi ≥ 0 and∑
xi = 1. Barycentric coordinates xi are unique.

(b) One can recover vertices from a linear simplex σV as the the points with all but one
coordinate zero.

(c) A bijection between vertices of two linear simplices extends canonically to a homeo-
morphism. For instance, an ordering of V gives a canonical identification σV ∼= σ|V|−1.

Proof. (a) In general, we can always translate a simplex into another one with v0 = 0.

Now, if v0 = 0 then v1, ..., vi have to be independent. So x =
∑i

0 xpvp =
∑i

1 xpvp hence

xp, p > 0 are determined by x, and then so is x0 = 1−
∑i

1 xp.

(b) is clear. The homeomorphism in (c) is specified by requiring that the coordinates are
the same (for the given bijection of vertices).

1.1.3. Facets, faces, interior. The facets of the simplex conv(V) are the simplices associ-
ated to subsets of the set of vertices – any subset W⊆V defines a facet of conv(V) which is
the simplex conv(W ). The facets are closed under intersections: conv(W ′)∩ conv(W ′′) =
conv(W ′ ∩W ′′).

The facets of codimension 1 are called faces. The interior σo
V of a linear simplex conv(V)

consists of the points with all xi > 0.

1For instance e0, ..., en lie in the n-dimensional hyperplane
∑

xi = 1 but not in any (n−1)-dimensional
affine subspace.
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1.1.4. Orientations of simplices. We say that an ordering of the set of vertices V of a
simplex σV gives an orientation of the simplex; and that two orderings give the same
orientation if they differ by an even permutation of vertices. So, an orientation of a
simplex is an orbit of the group of even permutation of vertices in the set of all orderings
of vertices. We denote the set of orientations of an i-simplex σ by orσ. Notice it has two
elements for i > 0 and one for i = 0. We denote by α 7→α the operation of the change of
triangulation of oriented simplices (for i = 0 it does not do anything).

Notice the parallel with the notion of orientation in a vector space given by a basis ordered
up to even permutation or by a top form dx1∧· · ·∧dxn given by an ordering of coordinates
up to even permutations. We will write an oriented simplex as σv0 ···vn

indicating that the
orientation is given by the ordering v0 < · · · < vn. So σabc = σbca 6= σbac. In lower
dimensions this notion of orientation of simplices agrees with our intuition of orientation,
say oriented simplex σab means a segment with vertices a, b and an arrow from a to b, etc.

Standard simplices σn (and their facets) have standard orientation given by the ordering
e0 < · · · < en, we write this ordering from the right to the left as (en, ..., e0).

1.2. Topological simplices. A topological i-simplex is a pair (S, φ) of a topological space
S and a homeomorphism φ : σV → S with a linear i-simplex. For simplicity we usually
omit φ from notation. Notice that the above notions of vertices, facets, coordinates,
interior, orientation are defined for topological simplices via φ. For instance, facets of
topological simplices are again topological simplices.

We sometimes denote the faces of a topological n-simplex S by S i, i ∈ V, where Si is
obtained by throwing out the vertex i.

1.3. Triangulations. The idea of triangulation is to present a given topological space
as a combination of simple spaces – the simplices. Then we will extract the information
on X from the way the simplices are patched together.

There is a number of versions of the idea of a triangulation:

• simplicial triangulation is a notion of a triangulation with certain properties SC1-

3 below that make it very easy to describe how simplices fit together to form the
space X - everything is stated in terms of the set of vertices. The information
about simplices and how they glue is encoded in a combinatorial object called the
simplicial complex However, the price for the properties SC1-3 is that in practice
one needs a large number of simplices.
• A more loose notion of a CW-complex allows using few simplices, but makes the

description of how they fit together more subtle. It is stated in terms i-cells in X,

i.e., maps σi
φ
−→ X such that the restriction to the interior is a homeomorphism

onto the image.

σo
i

∼=
−→ φ(σo

i ) ⊆ X.
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1.3.1. Simplicial triangulations. A triangulation T of a topological space X is a covering
T of X by topological simplices α ∈ T , such that

• (ST1) facet of simplices in T are again simplices in T ,
• (ST2) if α, β ∈ T and α⊆β then α is a facet of β,
• (ST3) for any α, β ∈ T the intersection α ∩ β is ∅ or a simplex in T .

We will denote by Ti the subset of i-simplices in T .

Now observe that

Lemma. (a) A non-empty intersection of simplices α, β is a facet of both α, β.

(b) A simplex in T is determined by its vertices.

Proof. (a) follows from (ST3) and (ST2). (b) If two simplices α and β have the same set
of vertices V. Then α ∩ β is 6= ∅ so it is a simplex Y ∈ T which is a facet of α and of β.
However a facet that contains all vertices has to be the simplex itself.

1.3.2. The idea of simplicial complexes. This means that the way the simplices are at-
tached will be completely described in terms of the combinatorics of the set of vertices T 0.
For that reason one can encode a simplicial triangulation as a combinatorial structure: a
set V (set of all vertices in T ), endowed by a family K of subsets of V – the family of
sets of vertices of all simplices in T . We saw that for each simplex Y ∈ T the set of its
vertices is a subset of V, and the mutual position of two simplices in T is recorded in the
intersection of the sets of their vertices).

This leads to an abstraction:

1.4. Combinatorial Topology of Simplicial Complexes. We will see how to describe
some topological spaces in combinatorial terms. This will then be used to calculate their
invariants purely algebraically using the combinatorics of the space rather then the space
itself.

1.4.1. Simplicial Complexes. A simplicial complex is a set V together with a family K of
finite non-empty subsets of V such that with any element A ∈ K, family K also contains
all subsets of A.

Lemma. (a) Any simplicial triangulation T defines a simplicial complex K(T ).

(b) To any simplicial complex K we can associate a topological space |K| called its re-
alization. It comes with a triangulation T such that K(T ) is naturally identified with
K.

Proof. Procedure (a) has been described above. In (b) we start by associating to each
finite set A ∈ K a topological simplex σA with vertices A (i.e., with vertices parameterized

by A). This gives a topological space K̃
def
= tA∈K σA, the disjoint union of all simplices
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σA. Then the topological space |K| is obtained as a quotient K̃/ ∼ of K by the equivalence
relation ∼ on X given by x ∈ σA and y ∈ σB are equivalent if (i) x lies in the facet σA,A∩B

of σA given by the subset A ∩ B⊆A, (i) y lies in σB,A∩B⊆ σB and (iii) the coordinates of
x and y with respect to the set of vertices A∩B are the same (i.e., x and y are identified
by the canonical identification of topological simplices σA,A∩B and σB,A∩B given by the
obvious identification of the sets of vertices of these two simplices).

Notice that the canonical map π : K̃�|K| is injective on each simplex σA⊆K̃ and gives a
homeomorphism πA : σA → π(σA). So, one can identify the image with σA and then σA’s
cover |K| and one can check that they form a triangulation T of K.

Theorem. If we start with a triangulated topological space (X, T ) then the realization
|K(T )| of the corresponding simplicial complex K(T ) is canonically homeomorphic to X.

Proof. It is easy to construct a continuous map π : |K → X for K = K(T ). Since |K|

has a quotient topology from K̃ such map is the same as a continuous map π̃ : K̃ → X
such that x ∼ y ⇒ π̃(x) = π̃(y). Now, for any simplex α ∈ T I will denote by Vα its set

of vertices. Then the simplices σVα
⊆K̃ and α⊆X can be canonically identified since the

sets of vertices are the same. This gives a map π̃ : K̃ → X – subsets A ∈ K are of the

form Vα for some α ∈ T and then σA = σVα

∼=
−→α⊆X. Since π̃ is continuous on each σA it

is continuous on the disjoint union K̃.

1.4.2. Triangulations of spheres. To describe a triangulation of S1 we choose an orien-
tation of S1 and n distinct points A1, ..., An that go in the direction of the orienta-
tion. The triangulation is given by 0-simplices T0 = {A1, ..., An} and and 1-simplices
T1 = {σA1A2

, ..., σAnA1} (I denote by σAB or just AB the segment from A to B).

If n = 1 this is not a simplicial complex since A1A1 is not really a 1-simplex by our
definition – it is a circle hence not homeomorphic to σ1.

(2) n = 2 still does not give a
simplicial complex since the intersection σA2A1 ∩ σA1A2

consists of two points so it is not
a simplex. For n ≥ 3 we do get a simplicial complex. The associated simplicial complex
has vertices V = {A1, ..., An} and K = {A1, ..., An; {A1A2}, ..., {An, A1} }.

For any finite set V with n elements K = {A⊆V; A 6= ∅} is a simplicial complex. Its
realization |K| is the simplex σV of dimension |V|. However, if we remove the largest
simplex: L = {A⊆V; V 6= A 6= ∅} the realization is the boundary of σV , i.e., a sphere
of dimension |V| − 1.

For instance an obvious triangulation of S2 is given by four points a, b, c, d on the sphere,
six segments between pairs of points and four triangles in vertices in 3 out of 4 points, so
K = {a, b, c, d, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}.

2However, it is a 1-cell and T = {A1, A1A1} is an efficient CW-complex.
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1.5. Complex C∗(X, T ; k). Our first goal is to encode a triangulation T algebraically.
In order to pass from topological spaces to linear algebra we make a choice of a coefficient
ring k so that we calculate in the linear algebra of k-modules. The set of simplices will
be encoded as a basis of a k-module C•(X, T ; k) of k-valued chains in X. The boundary
operator ∂ : C•(X, T ; k) → C•(X, T ; k) will encode the way the simplices in T are glued
in X,

1.5.1. Coefficients. In order to pass from topological spaces to algebra we make a choice
of a coefficient ring k. k can be any abelian group but we usually choose it to be a
commutative ring. The most interesting case is k = Z but for now we will be happy with
k a field such as Q, R, C.

1.5.2. Oriented triangulations. An oriented triangulation Σ on a topological space X is
a pair (T , o) of a triangulation T of X and a choice oα of an orientation of each simplex
α ∈ T . So one can say that Σ is a family of oriented simplices which give a triangulation
once orientation is forgotten.

1.5.3. Chains. We will define the space of i-chains Ci(X, T ; k) for any triangulation T of
a space X. A choice of an orientation o for the triangulation T will then give a simpler
way of thinking of groups Ci.

The space of i-chains for an oriented triangulation (X, Σ) is the free k-module

Ci = Ci(X, Σ; k)
def
= ⊕α∈Σi kα

with the basis given by the set of i-simplices Σi in the oriented triangulation Σ.

To define the space of i-chains for a triangulation (X, T ) we start with the free k-module

C̃i(X, T ; k) = ⊕α∈T i, oα∈orα
kα with the basis given by all i-simplices α with all possible

choices of orientations oα. Then Ci(X, T ; k) is the quotient of C̃i(X, T ; k) obtained by
imposing σ = (−1)·σ for oriented i-simplices σ = (α, oα) with i > 0.

We see that a choice of an orientation o for a triangulation T identifies group Ci(X, T ; k)
with the same construction Ci(X, T , o; k) for the oriented triangulation (T , o) since the

composition Ci(X, T , o; k)⊆C̃i(X, T ; k)�Ci(X, T ; k) is an isomorphism.

1.5.4. Boundary operator ∂ : Ci → Ci−1. We start with some examples of what a bound-
ary should be for oriented simplices in lower dimension. A point has no boundary ∂σa = 0.
For an oriented segment σab the boundary is “target-source”, i.e., ∂σab

= σb − σa (as

in the fundamental theorem of calculus
∫ b

a
f ′ = f(b) − f(a)). For a triangle σabc with

vertices a, b, c and the orientation given by ordering abc the boundary is a triangle with
the induced orientation, i.e., σab +σbc +σac. If we rewrite it as ∂σabc = σab−σcb +σac we
get an idea of how to define the boundary for any oriented simplex by algebraic formula

∂iσv0 ···vi
=

∑

0≤p≤i

(−1)i σv0 ···bvi···vi
,
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where v̂i means that we omit vi. This is indeed a sum of all faces of σv0···vi
with orientations

given by the ordering v0· · ·v̂i· · ·vi and the sign (−1)i.

Lemma. (a) The above formula for ∂i gives a well defined k-map ∂i : Ci(X, T ; k) →
Ci−1(X, T ; k).

Proof.

(1) First one checks that the formula only depends on the orientation. For instance
for two orderings xyz and zxy which give the same orientation one has ∂σzxy =
σxy − σzy + σzx and ∂σxyz = σyz − σxz + σxy coincide.

Now we have defined a map from the the basis of C̃i to Ci−1, i.e., a k-linear

map C̃i → Ci−1.
(2) Next one needs to check hat the map descends to Ci → Ci−1, i.e., that opposite

orientations produce opposite results. For instance for two orderings xyz and yxz
which give opposite orientations one has ∂σyxz = σxz − σyz + σyx which is the
opposite of ∂σxyz = σyz − σxz + σxy.

The two requirements together say that for any permutation τ of 0, ..., i one has
∂σvτ0 ···vτi

= ετ ·σv0 ···vi
where ετ is the sign of the permutation τ . This statement it suffices

to check when τ is one of the transpositions τp which exchange p− 1 and p, 1 ≤ p ≤ i.

1.5.5. Remark. The above formula for ∂ is for the complex associated to a triangulation
T . If one uses an oriented triangulation Σ = (T , o) then one can adjust the formula so then
one needs no extra orientations of simplices in T . The boundary operator ∂i : Ci −→Ci−1

sends an oriented i-simplex Y ∈ Σ to the sum of its faces, with certain orientation and a
certain sign. For a given face Z if the orientation from ∂iY agrees with orientation on Z
from Σ we do not need any adjustments, otherwise we change the orientation from ∂iY
to the one from Σ and change the sign.

1.5.6. ∂2 = 0. A simplex σ of dimension i > 0 has a boundary (in the topological sense)
which is a sphere of dimension i − 1. Now this sphere has no boundary points! So, our
topological intuition says that del◦∂ should “kill” simplices and therefore also everything
that is glued from simplices. This agrees with algebra:

Lemma. ∂i∂i−1 = 0.

Remark. This observation is the origin of homological algebra. The above lemma was the
inspiration to define the
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1.5.7. Algebraic notion of a complex. A complex of cochains is a sequence of k-modules
and maps

· · ·
∂−2

−−→ C−1 ∂−1

−−→ C0· · ·
∂0

−→ C1 −→· · ·,

such that the compositions of coboundary operators ∂ i are zero: ∂i+1∂i = 0, i ∈ Z.
We often omit the index on the coboundary operator, so we can write the preceding
requirement as ∂2 = 0.

From a complex of cochains we get three sequences of k-modules

• i-cocycles Z idef
=Ker(∂i)⊆Ci,

• i-coboundaries Bidef
=Im(∂i−1) = Im(∂i−1)⊆Ci,

• i-cohomologies H idef
=Zi/Bi,

Here we used Bi⊆Zi which follows from ∂∂ = 0.

A complex of chains is the same thing but with maps going down

· · ·
∂−1

←−− C−1
∂0←− C0· · ·

∂0←− C1 −→· · ·.

In this case we lower the indices and we talk of i-cycles Zi⊆Ci, i-boundaries Bi⊆Ci, and

i-homologies Hi
def
=Zi/Bi.

The difference off two notions is only in terminology and notation. One can pass from

a complex of cochains (C•, dbu) to a complex of chains (C•, d•) by Ci
def
= C−i and then

di : Ci → Ci−1 is defined as d−i : C−i → C−i+1. When we just say “complex” we usually
mean “complex of cochains”.

1.5.8. Corollary. C∗(X, T ; k) is a complex (of chains).

Proof. This is the above lemma 1.5.6.

1.5.9. Homology groups of a topological space. We have seen that any triangulation T of
X associates to a topological space X the homology groups

Hi(X, T ; k)
def
= Hi[

(
C•(X, T ; k), ∂

)
].

However, by the next theorem these groups are really invariants of X itself so we call
them the homology groups of X and denote them by Hi(X, k).

Theorem. The homology groups Hi(X, T ; k) do not depend on the choice of a triangula-
tion T , in the sense that for any two triangulations of X there is a canonical isomorphism

φT ′′,T ′ : Hi(X, T ′; k)
∼=
−→ Hi(X, T ′′; k).

Proof. We say that a triangulation S is a refinement of a triangulation T if for each α ∈ T
the subset Sα = {σ ∈ S; σ⊆α} is a triangulation of α. Now the theorem follows from
the following lemma
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Lemma. (a) For a refinement S of T there is a canonical isomorphism

Hi(X, T ; k)
∼=
−→ Hi(X,S; k) obtained by sending α ∈ Ti with orientation u to∑

σ∈Sα∩Si
(σ, o|σ) where o|σ is the orientation o restricted to σ.

(b) Any two triangulations T ′, T ′′ of X have a common refinement T .

1.6. Examples.

1.6.1. Sn for n = 1 or 2.

1.6.2. Torus T 2. We can view T 2 as a quotient of a rectangle, this makes the drawing of
triangles easier. There is a simple CW-triangulation where one divides the rectangle by
a diagonal into two triangles. It gives a fast calculation of homology.

One can get a simplicial complex, for instance by dividing the rectangle into nine rectan-
gles and each of these into two triangles. Then H0 and H2 are easy and the dimension of
H1 can be computed from the invariance of Euler characteristic under taking homology
(Homework 2.2).

Of a particular interest is a basis of H1 – one can see that it corresponds to two “main”
circles on the torus. Classically such basis controls the indeterminacy of elliptic integrals.
In the modern algebraic geometry one says that such basis produces the so called periods,
the basic invariants of elliptic curves.

1.6.3. Dependence on coefficients. Integers are the universal coefficient ring, i.e., integral
homology (with integer coefficients) has the most information. Passing to Q or Z/nZ in
general kills some information and therefore – if we view on the positive side – it leads to
simpler computations giving some (partial) information.

1.6.4. Example. S3 is the unit sphere S⊆R4 which we can think of as C2. Then S = {x ∈
R4; (x1)2 + (x2)2 + (x3)2 + (x4)2 = 1} can be written as S = {z ∈ C2; |z1|2 + |z2|2 = 1}.
This point of view makes it obvious that the group T ∼= S1 of unit complex numbers acts
on S by z·(z1, z2) = (zz1, zz2). This is a free action (i.e., there are no stabilizers), and the
quotient is homeomorphic to S2. The quotient map S → S2 is called Hopf map. This is
one basic example of a nontrivial fibration: all fibers are homeomorphic (to S1) but the
map is still quite nontrivial. We will revisit the Hopf map once we acquire the machinery
of spectral sequences.

However let us consider the quotients S/µn where µn⊆T is the group of all nth roots of
unity in C. Then H∗(S/µn; R) is naturally identified with H∗(S; R) and the same is true
for homology with coefficients in Z/mZ as long as m is prime to n. However when m
is not prime to n then H∗(S/µn; Z/mZ) is more complicated then H∗(S; R). All such
complications (for all m’s) are already stored in H∗(S/µn; Z).
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One can check the above statements using simplicial triangulations, however it will be
much easier to do it with the machinery of sheaves. It provides a systematic use of maps
in calculating homology.



15

2. Duality for modules over rings

2.1. Capturing a class of objects in terms of a smaller and better behaved

subclass. This is the basic idea of homological algebra. We will describe it here on the
example of constructing a reasonable notion of a dual for modules over a given ring k.

2.1.1. The problem. The construction of a dual vector space over a field equally makes
sense for modules over any ring.(3) However this “naive” notion of duality is not very
useful since it does not have the standard properties of the duality for vector spaces.

2.1.2. The idea. The resolution of the problem starts with the easy observation that the
naive duality still works well on some modules – the free modules. The nontrivial idea is
that any module can be captured (described) in terms of finitely generated free modules.
This is achieved by the notion of a resolution. Now the correct notion of duality is obtained
by applying the naive duality not directly to the module, but to its resolution, i.e., a
description in terms of free modules. The effect is that all computations are done with
free modules and therefore the new duality has all good properties that the naive duality
had on free modules.

2.1.3. Machinery involved in realizing the above program. Replacing modules by resolu-
tions is done by passing from modules to complexes of modules. It is in this larger world
that we find the hidden parts of “naive” constructions. There are two steps:

(1) thinking of abelian groups as complexes in degree 0,
(2) “Identifying” some complexes, in particular a module should be identified with its

resolution.

These steps mean that we change twice the realms (categories) in which calculate :

m(k)
(1)
−→ C∗(m(k))

(2)
−→ D(m(k)).

We start in the category of k-modules m(k) and expand to the category of complexes
of k-modules C∗(m(k)), and then we pass to a more subtle derived category D(m(k)) of
k-modules. (Objects are still complexes but there are more morphisms.)

Step (1) allows one to think of any k-module in terms of particularly nice modules (say, the
free modules). Step (2) introduces the optimal setting D(m(k)), which makes it precise
what I mean by “identifying some complexes”.

2.2. Rings. Some of the classes of interesting rings k

• fields such as Q, R, C or the finite fields Fq with q elements,
• Z (related to number theory, i.e., to everything),
• smooth functions C∞(M) on a manifold M (related to differential geometry),

3One just has to pay attention to the difference between left and right modules.



16

• polynomial functions O(An) = C[x1, ..., xn] (related to algebraic geometry),
• Differential operators DM on M (related to linear differential equations).

By a module we mean a left module unless specified differently. Let m(k) = m
l(k) be the

category of left k-modules and m
r(k) the right k-modules.

2.3. Duality and biduality of k-modules. We start with some linear algebra over a
ring k – the properties of the “naive” duality d.

We will denote by kk the set k viewed as a left k-module via the left multiplication, by
kk the set k viewed as aright k-module via the right multiplication, and by by kkk the set
k viewed as a (k, k)-bimodule.

We will usually state and prove claims for left modules m(k) = m
l(k), the analogous

statements for right k-modules are then obvious since m
r(k) = m

l(ko) for the opposite
ring ko.

2.3.1. dl and dr. The dual of a left k-module M is the space d(M) = M ∗ of linear
functionals

M∗def
=Homk(M, k)

def
= {f : M −→k; f(c·m) = c·f(m) & f(m′+m′′) = f(m′)+f(m′′), c ∈ k, m, m′, m′′ ∈M}.

Duality operation d is defined similarly for right module N , here one asks that f(n·c) =
f(n)·n. When we deal with left and right modules we may denote by dl and dr the duality
operations on left and right modules.

The duality construction is a functor, i.e., it is defined not only on k-modules but also on
maps of k-modules; the dual of f : M1 −→M2 is the adjoint map d(f) = f ∗ : M∗

2 −→M∗
1 ,

f ∗(ν) m = 〈ν, fm〉, m ∈M1, ν ∈M∗
2 .

Lemma. m
l(k)

dl

−→ m
r(k) and m

r(k)
dr

−→ m
l(k).

2.3.2. Biduality maps ιM .

Lemma. (a) For M ∈ m
l(k), the canonical map ιM : M −→ (M∗)∗ is well defined by

ιM(m) (λ) = 〈λ, m〉, m ∈M, λ ∈M ∗.

(b) If k is a field and M ∈ mfd(k) (i.e., M is a finite dimensional vector space over k),
the biduality map ιM is an isomorphism.

Remarks. We call ιM the biduality map for M . Claim (b) is an essential part of our
experience with duality. Our main goal in this section is to force this to be true for
modules over any ring k.

2.3.3. Duality for free modules. Biduality is not always isomorphism (see 2.4), and now
we distinguish a class of modules for which this is true. We start with M = k :
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Lemma. For the module kk ∈ m
l(k):

(a) The map that assigns to a ∈ kk the operator of right multiplication Ra : kk →k

k, x
def
=x·a, gives an isomorphism of right k-modules kk

R
−→ (kk)∗.

(b) ι
kk is an isomorphism.

When this is pushed a little further, we get a nice class of modules for which M
∼=
−→(M∗)∗

:

Proposition. ιM is an isomorphism for any finitely generated free k-module.

Proof. It follows from the lemma 2.3.3b, and from

2.3.4. Sublemma. For two k- modules P, Q;

• (a) (P⊕Q)∗ ∼= P ∗⊕Q∗,
• (b) map ιP⊕Q is an isomorphism iff both ιP and ιQ are isomorphisms.

2.4. What is the dual of the abelian group Zn? We start by noticing that the duality
operation M 7→M ∗ is not very good for arbitrary modules M of any ring k. Even when
k is a field, biduality is an isomorphism only for the finite dimensional vector spaces.
Therefore, for general k the duality can have “best” properties only on the subcategory
mfg(k) of finitely generated k-modules.

A more serious problem is encountered in the example when k = Z the ring of integers
and M = Zn is a torsion module. For k = Z, category of Z-modules is just the category
of abelian groups: m(Z) = Ab. So we have the notion of a dual of an abelian group

M∗def
=HomAb(M, Z). However, for M = Zn

def
=Z/nZ one has M ∗ = 0, so duality loses all

information.

On this example we will develop our strategy of describing modules in terms of a subclass
of free modul;es which behaves well under duality.

2.4.1. The passage from Zn to its resolution P •. We know that biduality works for the
abelian group M = Z (by 2.3.3), and Zn is clearly intimately related to Z. The quotient

map Z
q
−→ Zn relates Zn to Z, however it does not tell the whole story – the difference

between Zn and Z is in the kernel Ker(q) = nZ. However, the inclusion nZ⊆Z captures
the definition of Zn as Z/nZ, and since the abelian group nZ is isomorphic to Z by
Z 3 x7→nx ∈ nZ, we will replace nZ by Z in this map. Then it becomes the multiplication
map Z

n
−→Z.

Now we can think of Zn as encoded in the map Z
n
−→Z. For a more complicated k-module

such encoding will be more complicated, the proper setting will turn out to require to
think of Z

n
−→ Z as a complex P • = (· · · −→0 −→Z

n
−→ Z −→0 −→· · ·), with Z′s in degrees

−1 and 0.
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So we have passed from Zn to a complex P•. Now we need to know how to dualize it.

2.4.2. Duality operation on complexes. The dual of a complex of k-modules C• = (· · · −→
C−1 −→ C0 −→ C1 −→ · · ·) is the complex dC• obtained by applying d to modules and
maps. Since d is contravariant (i.e., it changes directions), we will also have to change

the indexing. So, (dC•)ndef
= d(C−n) and dn

dC• is the adjoint of d−n−1
C• .

In order to calculate dP • we will need

2.4.3. Sublemma. (a) k-linear maps between left modules kr and ks can be described in
terms of right multiplication by matrices. Precisely, if we denote for A ∈Mr,s(k) by RA the

right multiplication operator kr 3 x7→xA ∈ ks on row-vectors, then Mrs
R
−→ Homk(k

r, ks)
is an isomorphism.

(b) The adjoint of RA is the left multiplication LAtr with the transpose of A (acting on
column-vectors).

2.4.4. Biduality is an isomorphism on complexes over the subcategory of complexes over

mfg,free(k)⊆m(k). Let P
def
= mfg,free(k) be the category of all free finitely generated k-

modules.

Lemma. The biduality map ιC• is an isomorphism for any complex C• in C∗(P).

Proof. Observe that (ddC•)n = dd(Cn), and define the map ιC• : C• −→ ddC• as the
collection of maps ιCn : Cn −→ddCn. If all Cn are in P then all maps ιCn are isomorphisms
and hence so is ιC•.

2.4.5. The derived dual Ld. On k-modules we define the left derived duality operation Ld
by

Ld(M)
def
= dP •

for any resolution P • of M by free modules.

Let us see what this means for k = Z and M = Zn. When we identify dZ with Z then
the adjoint of the map Z

n
−→ Z is again Z

n
−→ Z (see 2.4.3). From the point of view of

complexes this says that dP • is the complex · · · −→0 −→Z
n
−→Z −→0 −→· · ·, but this time

Z’s are in degrees 0 and 1 ! So dP • ∼= P •[−1] where one denotes by C•[n] the shift of
the complex C• by n places to the left.

Now observe hat it is natural to identify any module N with a complex (again denoted N),
which has N in degree 0 and all other terms zero (hence all maps are zero). So, since we

have also identified Zn with P •, we should identify the smart dual Ld(Zn)
def
= dP • ∼= P •[−1]

with Zn[−1]. So,

Ld(Zn) = Zn[−1] = the shift of Zn by one to the right .
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This is the complex which has Zn in degree 1 and all other terms zero.

2.4.6. Conclusion. The smart dual of Zn is not a module but a complex in degrees ≥ 0.
The fact that H0[Ld(Zn)] = 0 corresponds to the fact that the naive definition of the dual
gives d(Zn) = 0. So, the naive definition does not see the hidden part of the dual which
is H1[Ld(Zn)] = Zn.

Observe that since the computation of the derived dual is in the setting of complexes
of free finitely generated modules, the biduality works (by 2.4.4), so the canonical map

Zn

LιZn−−→ (Ld)(Ld)(Zn) is an isomorphism.

In 2.5 and 2.7 we will make precise some ideas used in the calculation of Ld(Zn). We will
concentrate on formulations which will allow us to apply these ideas in many situations.

2.5. Resolutions. Here we repeat for any module M what we have been able to do for
Zn. The precise, formal, solution of our wish to describe a module M in terms of maps
between some (hopefully nicer) modules P n. is the notion of a resolution of M .

2.5.1. Exact complexes and short exact sequence. A complex of k-modules C• = (· · · −→
C−1 −→C0 −→C1 −→· · ·) is said to be exact if all of its cohomologies vanish, i.e., inclusion
Bn⊆Zn is equality. (Exact complexes are also called exact sequences.)

Examples. Consider the meaning of exactness for complexes with few terms :

(1) If in the complex C• all terms Cn, n 6= 0 are zero. Then C• is exact iff C0 = 0.
(2) If Cn = 0 for n 6= −1, 0, then C• is exact iff d−1 : C−1 −→C0 is an isomorphism.
(3) If Cn = 0 for n 6= −1, 0, 1, then C• is exact iff d−1 : C−1 −→ C0 is injective,

d0 : C0 −→ C1 is surjective, and in C0 one has Ker(d0) = Im(d−1). So all ex-
act complexes with three terms (and such complexes are also called short exact
sequences), are of the following form: module C0 has a submodule C−1 and the
quotient C1 = C0/C−1.

2.5.2. Resolutions. A left resolution of a module M is an exact complex

· · · −→P−2

−2
−→P−1

−1
−→P 0

0

q
−→M

1
−→0 −→· · ·

(the numbers beneath are the positions in the complex). For example · · · −→ 0 −→ Z
−1

n
−→

Z
0

q
−→Zn

1
−→0 −→· · · is a resolution of Zn.

The notion of a resolution has a nice meaning in the world of complexes. For this we will
think of both the module M and of its resolution as complexes. We start by finishing the
construction of the world of complexes:
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2.5.3. Category of complexes. A morphisms of complexes f : A• −→ B• is a system of
maps fn of the corresponding terms in complexes, which “preserves” the differential in
the sense that in the diagram

· · · −−−→ A−2 −−−→ A−1 −−−→ A0 −−−→ A1 −−−→ · · ·y f−2

y f−1

y f0

y f1

y
y

· · · −−−→ B−2 −−−→ B−1 −−−→ B0 −−−→ B1 −−−→ · · ·

all squares commute in the sense that two possible ways of following arrows give the same
result: fn◦dn−1

A = dn−1
B ◦fn−1, for all n; i.e., f◦d = d◦f .

Now we have a category of complexes of k-modules C•[m(k)]: objects are complexes and
morphisms are maps of complexes.

Lemma. (a) This is a category.

(b) Constructions Zn, Bn, Hn are functors from C•(m(k)) to m(k).

2.5.4. Modules as complexes. To each module M we can associate a very simple complex
M# which is M in degree zero and 0 in other degrees (so all maps are zero). (However,
we will usually denote M# just by M again.)

Lemma. This gives a functor

m(k) −→ C∗(m(k)), M 7→ M#

which is fully-faithful, i.e., m(k) is a full subcategory of C∗(m(k)).

2.5.5. Resolutions as maps of complexes. We will also use the terminology resolution for
the equivalent data of a complex P • = (· · · −→P−2 −→P−1 −→P 0 −→ 0 −→· · ·), together
with the map q : P0 →M .

However, we can now think of resolutions completely in terms of complexes by viewing
the map q as a morphism of complexes

· · · −−−→ P−2 −−−→ P−1 −−−→ P 0 −−−→ 0 −−−→ · · ·y
y

y q

y
y

· · · −−−→ 0 −−−→ 0 −−−→ M −−−→ 0 −−−→ · · ·

It remains to encode the exactness of · · · → P−1 → P 0 → M → 0 → · · · in terms of
complexes. For this we introduce the notion of

2.5.6. Quasi-isomorphisms. We say that a map of complexes f : A• −→ B• is a quasi-
isomorphism (“qis”) if the induced maps of cohomology groups Hn(f) : Hn(A•) −→
Hn(B•), n ∈ Z, are all isomorphisms.
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Lemma. A left resolution of M is the same as a quasi-isomorphism of complexes P • →M#

such that P i = 0 for i > 0.

Proof. If (P •, q) is a resolution of M then the only non-zero cohomology group of P • is
H0(P •) ∼= M , the same is true for M#. Moreover, the morphism of complexes P • −→M#

is given by q : P 0 → M which induces isomorphism of H0(P •) = P 0/dP−1 onto M =
H0(M#).

Remark. Now it is clear how to define a right resolution – as a quasi-isomorphism of
complexes M# → I• such that I i = 0 for i < 0.

2.6. Free resolutions. We consider subcategories of k-modules P = P l def
= mfg,free(k)⊆m

l
fg(k)⊆m

l(k)
consisting of free modules and of finitely generated modules. The intersection is
Freefg

l(k). Now we can say that a free resolution of M is a resolution P • such that all
P i are free k-modules, etc.

Lemma. Any module M has a free resolution.

Proof. (1) There is a free module F and a surjective map F�M (“a free cover of M”).
For this we choose any set G⊆M of generators of M (for instance G = M), and let F be
the free k-module with the basis G.

(2) Let P 0 q
−→M be the map F −→M from (1). If q has no kernel, we are done – we

choose P k = 0, k < 0. Otherwise we use again (1) to choose a free cover P −1 −→Ker(q),
then ∂−1 is the composition P−1 −→Ker(q)⊆ P 0. Etc.

Lemma. If the ring k is noetherian any finitely generated module M has a resolution by
free finitely generated modules.

Proof. (1) If k-module M is finitely generated a free finitely generated module F and a
surjective map F�M . This is as before, except that we can now choose a set G⊆M of
generators of M , to be a finite set.

To repeat the step (2), we need the new modules to be covered, such as
Ker(q)⊆ P 0, Ker(∂−1)⊆ P−1, ... are finitely generated. That’s what the noe-
therian assumption means: we say that a ring k is noetherian if any submodule of a
finitely generated module is finitely generated.

2.6.1. Projective modules. We say that a k-module P is projective if it is a summand of a
free k-module. So, free modules are projective and we get a larger class Proj(k)⊇Free(k).
However it has the same good properties of free modules (so projective resolutions are as
good as free resolutions!).

For instance: if P is a summand of a finitely generated free k-module then the biduality
map ιP is again an isomorphism by sublemma 2.3.4.
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2.6.2. Homological dimension of a ring and finiteness of resolutions. The homological
dimension of k is the infimum of all n such that any k-module has a projective resolution
of length ≤ n (i.e., P i = 0, i < −n).

Examples. Any field has dimension 0, Z has dimension one and C[x1, ..., xn] has dimension
n. However the ringO(Y ) = C⊕xyC[x, y]⊆ C[x, y] of functions on the crossing Y = {xy =
0}⊆A2 has infinite dimension (because Y has a singularity).

2.7. Derived category of k-modules. Making the definition of the derived version of
duality:

Ld(M)
def
= d(P •) for any free resolution P • of M ;

completely correct, depends on resolving two problems:

(1) existence of a free resolution P
•

of M ,
(2) independence of the choice of a free resolution P •.

The first one has already been dealt with. For the second one recall that a resolution is a
quasi-isomorphism P • → M#. Our problem would disappear if this quasi-isomorphism
were an isomorphism since we would be replacing M# with an isomorphic object. So
our problem will be resolved if we can find a setting in which all quasi-isomorphisms in
C•(m(K)) become isomorphisms. Such setting exists, the so called derived category of
k-modules D(m(k)).

The passage from C•(m(k)) to D(m(k)) requires inverting all quasi-isomorphisms in
C•(m(k)). This can be done either by (i) universal abstract construction of inverting
morphisms in a category, or (ii) using some convenient subcategory of m(k). We will
eventually do both since both ideas are useful in applications.

For the approach (i) we will first recall the solution of an analogous problem in rings
rather then categories:

2.7.1. Localization of rings. Localization of a ring A with respect to a subset S⊆A is the
ring AS obtained by inverting all elements of S. More precisely, localization of a ring

A with respect to S⊆A is a pair of a ring AS and a map of rings A
i
−→ AS such that

i(S)⊆ (AS)∗
def
= the set of invertible elements of AS. There may be many such pairs, and

so we have to be still more precise, it is the universal such pair (i.e., the best such pair),

in the sense that for each pair (B, A
k
−→B) such that k(S)⊆B∗, there is a unique map of

rings AS
ι
−→B such that k = ι◦i.

Theorem. At least if A is commutative the localization of S⊆A exists (and can be de-
scribed).
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2.7.2. Localization of categories. The localization of a categoryA with respect to a class of

morphisms S⊆Mor(A) is the (universal!) functor, i.e., morphism of categories, A
i
−→AS

such that the images of all morphisms in S are isomorphisms in AS (i.e., have inverses in
AS). Again, localization exists and can be described under some conditions.

2.7.3. Maps in the localized category. To make this less abstract I will sketch how one
goes about constructing AS . However we will return to this more precisely.

Observe that a map in A, say, α ∈ HomA(a, b) gives a map in AS, the map is i(α) ∈
HomAS

[i(a), i(b)]. Moreover a wrong direction map σ ∈ HomA(b, a) which lies in S will
also give a map from i(a) to i(b) in AS , the map is i(σ)−1 ∈ HomAS

[i(a), i(b)]. Since these
are the only kinds of maps that we are asking to have in AS , it is natural that all maps
in AS should be generated from these two kinds of maps by using composition of maps.

This leads to the following idea: we will have Ob(AS) = Ob(A) and i will be identity on
objects. For a, b ∈ Ob(A) the morphisms from a to b in AS will come from diagrams in A

a −→x←−p −→· · ·q −→y ←−b,

where all backwards maps are in S. The precise meaning of this is that HomAS
(a, b)

will consists of equivalence classes of diagrams as above for a certain equivalence relation
(which we still need to describe!).

2.7.4. Derived category of modules and complexes of free modules. According to the above
definition D(m(k)) is a very abstract construction. Fortunately it will turn out that there
is a simple description of D(m(k)) in terms of homotopy in the category of complexes over
the subcategory of free modules. (This is the the approach (ii) above.)

2.7.5. Do we really want the derived category? The historical origin of the idea is as we
have introduced it: it is a good setting for doing calculations with complexes. However,
the derived category D(A) of a category A (say A = m(k) as above), may be more “real”
than the simple category A we started with. One indication is that there are pairs of
very different categories A and B such that their derived categories D(A) and D(B) are
canonically equivalent. For instance A and B could be the categories of graded modules

for the symmetric algebra S(V ) and the exterior algebra
•
∧V ∗ for dual vector spaces V and

V ∗. This turns out to be important, but there are more exciting examples: the relation
between linear differential equations and their solutions, mirror symmetry.

2.7.6. Bounded categories of complexes. We say that a complex C• is bounded from above
if Cn = 0, n >> 0. The categories of such complexes is denoted C−(A) and D−(A)
(meaning that the complexes are allowed to stretch in the negative direction) Similarly
one has C+(A) and D+(A). We say that a complex C• is bounded (or finite) if Cn = 0
for all but a finitely many n ∈ Z, this gives Cb(A) and Db(A).
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2.8. Derived versions of constructions. After introducing the heroes of the story we
again explain, somewhat more precisely, how passage to complexes produces a derived
version Ld of a ‘naive’ construction d.

2.8.1. Improving objects M ∈ A. Let A = m(k) and M ∈ A. We improve M by replacing
it with a complex P • of free (or say, projective) modules. This can be schematically
described as

A
α

−−−→
Projective

resolutions

β

y δ

y

C•(A)
α
′

−−−→ C•(Proj(A));

M
α

−−−→ (· · ·→P−1→P 0 q
→M→0→· · ·)

β

y δ

y

(· · ·→0→M
0
→0→· · ·)

γ
−−−→ (· · ·→P−1→P 0→0→· · ·).

Notice that vertical arrows a natural constructions (i.e., functors), while horizontal arrows
require some choices.

The composition of α and δ is a description of M in terms of complexes of projective
modules. The other route α

′◦β indicates a more formal formulation of the same idea –
we first view modules as complexes via β and then α′ means describing complexes in A
in terms of quasi-isomorphic complexes in Proj(A).

2.8.2. Any (additive) functor D : A −→ B extends to complexes. Let A = m(k) and
B = m(k′) be categories of modules over two rings, and let D be a way to construct
from a module for k a module for k′, i.e., a functor D : A −→B. It extends to a functor
from A-complexes to B-complexes D• : C•(A) −→C•(B), that assigns to each A-complex

A• = (· · · −→A−1 d−1

−−→ A0 d0

−→ A1 d1

−→ · · ·) a B-complex

D•(A•) = (· · · −→D(A−1)
D(d−1)
−−−−→ D(A0)

D(d0)
−−−→ D(A1)

D(d1)
−−−→ · · ·).

(As we know, if D is contravariant – for instance if D is the duality Dk – the formula for
D•A• would involve switching n and −n).

The main point is that D•A• really is a complex: since D is a functor it preserves com-
positions of morphisms, hence D(dn)◦D(dn−1) = D(dn◦dn−1) = D(0) = 0. Asking that
D is additive i.e., D(A′⊕A′′) = D(A′)⊕D(A′′), A′, A′′ ∈ A, is needed for the last step:
D(0) = 0.

2.8.3. Left derived version LD of D. It really means that we do not apply D directly to
M but to its improved version P •:

M
∈

−−−→ A
α

−−−→ Projective
resolutions

β

y δ

y

C•(A)
γ

−−−→ C•(Proj(A))
D•

−−−→ C•(B)
3

←−−− D•(P•)
def
= LD(M).
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2.8.4. Left and right derived functors. In order to say that LD is really an improvement
of D, we need to know that H0[LD(M)] = D(M), then LD(M) contains the information
on D(M) and also a “hidden part” given by higher cohomologies H i[LD(M)], i > 0.

This is going to be true precisely if D has a property called right exactness (duality D is
right exact!). There are important functors which are not right exact but have a “dual”
property of left exactness, they will require a “dual” strategy: a right resolution of M :

· · · −→M −→I0 −→I1 −→· · ·

by injective modules. We’ll be back to that.

2.9. A geometric example: duality for the ring of polynomials. The commutative

ring k = C[x1, ..., xn] is the algebra of functions on the n-dimensional affine space Andef
=Cn.

Natural examples of k-modules have geometric meaning.

2.9.1. Affine algebraic varieties. We say that an affine algebraic variety is a subset Y of
some An which is given by polynomial conditions: Y = {z = (z1, ..., zn) ∈ Cn; f1(z) =
· · · = fc(z) = 0}. The set IY of functions that vanish on Y is an ideal in k (i.e., a
k-submodule of the k-module k). We define the ring O(Y ) of polynomial functions on Y
as the all restrictions f |Y of polynomials f ∈ k to Y . So O(Y ) = k/IY is also a module
for k = O(An).

2.9.2. Duality. We will consider the k-module O(Y ) where Y is the origin in An. Then
IY =

∑
xi·k and therefore O(Y ) = k/

∑
xi·k is isomorphic to C as a ring (C-valued

functions on a point!). However it is more interesting as a k-module.

2.9.3. n = 1. Here C[x] and IY = xC[x], so we have a resolution · · · −→ 0 −→ C[x]
x
−→

C[x]
q
−→O(Y ) −→0 −→· · · and the computation of the dual of O(Y ) is the same as in the

case of Zn. One finds that D[O(Y )] ∼= O(Y )[−1].

2.9.4. n = 2. Then O(A2) = C[x, y] and O(Y ) = C[x, y]/〈x, y〉 = C[x, y]/(xC[x, y] +

yC[x, y]) = k/(xk + yk). The kernel of the covering P 0 = k
q
−→O(Y ) is xk + yk. We

can cover it turn with P 0 = k⊕k
α
−→ xk + yk, α(f, g) = xα + yβ. This covering still

contains surplus: Ker(α) = {(−yh, xh); h ∈ k}. However, this is a free module so the

next covering P−2 = k
β
−→Ker(α)⊆P−1, β(h)(−yh, xh). This gives a resolution

· · · −→0 −→C[x, y]
β
−→C[x, y]⊕C[x, y]

α
−→C[x, y]

q
−→O(Y ) −→0 −→· · ·.

As a complex this resolution is

P • = [· · · −→0 −→C[x, y]
−2

β=(−y,x)
−−−−−→ C[x, y]⊕C[x, y]

−1

α=(x,y)
−−−−→ C[x, y]

0

−→0 −→· · ·].



26

Therefore, computing the adjoints by lemma 2.4.3 gives

LD[O(Y )] = DP • = [· · · −→0 −→C[x, y]
0

α∗=(x,y)
−−−−−→ C[x, y]⊕C[x, y]

1

β∗=(−y,x)
−−−−−−→ C[x, y]

2

−→0 −→· · ·].

The cohomology of this complex is easy to compute (nothing new!), it gives

Lemma. LD[O(Y )] ∼= O(Y )[−2].

2.9.5. The general n. The resolutions above for n = 1, 2 are example of the Koszul com-
plex which we will meet later.

For the ring C[x1, ..., xn] = O(An) of functions on the n-dimensional affine space, the
derived dual of the C[x1, ..., xn]-module O(origin) is the same module O(origin) shifted
to the degree n. So the shift is clearly the codimension of the origin in An, and it is equal
to n because dim(An) = n.

2.9.6. Geometric nature of integers. In view of the similarity of computations forO(A1) =
C[x] and for Z, we may expect that Z is also a ring of functions on some geometric object,
and that its dimension is one. So Z should correspond to some geometric object which
we will denote Spec(Z), and Spec(Z) is some sort of a curve.

2.10. Comments.

2.10.1. The parallel of resolutions and triangulations. The idea is the same – explain
complicated objects in terms of combining simple ones. As this can be done in several
ways, in the end one has to check that whatever we produced is independent of choices.
(This we leave for later.)
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3. Sheaves

Sheaves are a machinery which addresses an essential problem – the relation between local
and global information – so they appear throughout mathematics.

3.1. Definition. We start with a familiar example:

3.1.1. Smooth functions on R. Let X be R or any smooth manifold. The notion of smooth
functions on X gives the following data:

• for each open U⊆X an algebra C∞(U) (the smooth functions on U),

• for each inclusion of open subsets V⊆U⊆X a map of algebras C∞(U)
ρU

V−→ C∞(V )
(the restriction map);

and these data have the following properties

(1) (transitivity of restriction) ρU
V ◦ρ

U
V = ρU

W for W⊆V⊆U ,
(2) (gluing) if the functions fi ∈ C∞(Ui) on open subsets Ui⊆X, i ∈ I, are compatible

in the sense that fi = fj on the intersections Uij
def
= Ui ∩ Uj, then they glue into a

unique smooth function f on U = ∪i∈I Ui.

So, smooth functions can be restricted and glued from compatible pieces. We formalize
the idea of objects which can be restricted and glued together, into the notion of

3.1.2. Sheaves on a topological space. A sheaf of sets S on a topological space (X, T )
consists of the following data:

• for each open U⊆X a set S(U),

• for each inclusion of open subsets V⊆U⊆X a map S(U)
ρU

V−→ S(V ) (called the
restriction map);

and these data are required to satisfy the following properties

(1) (transitivity of restriction) ρU
V ◦ρ

U
V = ρU

W for W⊆V⊆U ,
(2) (gluing) Let U = (Ui)i∈I be an open cover of an open U⊆X. For a family of

elements fi ∈ S(Ui), i ∈ I, compatible in the sense that ρUi

Uij
fi = ρUi

Uij
fj in S(Uij)

for i, j ∈ I; there is a unique f ∈ S(U) such that on the intersections ρUi

Uij
f = fi

in S(Ui), i ∈ I.
(3) S(U) = ∅.

We can equally define sheaves of abelian groups, rings, modules, etc – only the last, and
least interesting requirement has to be modified, say in abelian groups we would ask that
S(U) is the trivial group {0}.
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3.1.3. Examples. (1) Structure sheaves. On a topological space X one has a sheaf of
continuous functions CX . If X is a smooth manifold there is a sheaf C∞

X of smooth
functions, etc., there are holomorphic functions HX on a complex manifold, “polynomial”
functions OX on an algebraic variety. What is important is that in each of these cases
the topology on X and the sheaf contain all information on the structure of X.

(2) To a set S one can associated the constant sheaf SX on any topological space X:

SX(U) is the set of locally constant functions from U to X.

(3) Constant functions do not form a sheaf, and neither do the functions with compact
support. A given class C of objects forms a sheaf if it is defined by local conditions. For
instance, being a (i) function with values in S, (ii) non-vanishing (i.e., invertible) function,
(iii) solution of a given system (∗) of differential equations; these are all local conditions:
they can be checked in a neighborhood of each point.

3.2. Global sections functor Γ : Sheaves(X) −→Sets. Elements of S(U) are called the
sections of a sheaf S on U⊆X (this terminology is from classical geometry). By Γ(X,S)
we denote the set S(X) of global sections.

The construction S7→Γ(S) means that we are looking at global objects in a given class
S of objects. We will see that that the construction Γ comes with a hidden part, the
cohomology S7→H•(X,S) of sheaves on X.

Γ acquires different meaning when applied to different classes of sheaves. For instance
for the constant sheaf ptX , Γ(X, ptX) is the set of connected components of X. On any
smooth manifold X, Γ(C∞) = C∞(X) is “huge” and there are no higher cohomologies
(“nothing hidden”). The holomorphic setting is more subtle in this sense, on a compact
connected complex manifold Γ(X,HH) consists of only the constant functions and a lot
of information may be stored in higher cohomology groups.

3.2.1. Solutions of differential equations. Solutions of a system (∗) of differential equation
on X form a sheaf Sol(∗). If X is an interval I in R and (∗) is one equation of the form

y(n) + a1(t)y
(n−1) + · · ·+ a0(t) = 0 with ai ∈ C∞(I) then any point c ∈ I gives evaluation

isomorphism of vector spaces Sol(∗)(I)
Ec−→ Cn by Ec(y) = (y(c), ..., y(n−1)(c)) (solutions

correspond to initial conditions!). The sheaf theoretic encoding of this property of the
initial value problem is :

Lemma. Sol(∗) is a constant sheaf on X.

On the other hand let (∗) be the equation zy′ = λy considered as equation in holomorphic
functions on X = C∗. The solutions are multiples of functions zλ defined using a branch of

logarithm. On any disc D⊆X, evaluation at a point c ∈ D still gives Sol(∗)(D)
∼=
−→C, so the

local behavior of the is simple – it is a locally constant sheaf. However, Γ(X,Sol(∗)) = 0
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if λ 6∈ Z (any global solution would change by a factor of e2πiλ as we move once around
the origin). So locally there is the expected amount but nothing globally.

3.3. Projective line P1 over C. P1 = C ∪ ∞ can be covered by U1 = U = C and
U2 = V = P1 − {0}. We think of X = P1 as a complex manifold by identifying U and V
with C using coordinates u, v such that on U ∩ V one has uv = 1.

Lemma. Γ(P1,OP1) = C.

Proof. (1) Proof using a cover. A holomorphic function f on X restricts to f |U =∑
n≥0 αnun and to f |V =

∑
n≥0 βnvn. On U ∩ V = C∗,

∑
n≥0 αnun =

∑
n≥0 βnu−n, and

therefore αn = βn = 0 for n 6= 0.

(2) Proof using maximum modulus principle. The restriction of a holomorphic function
f on X to U = C is a bounded holomorphic function (since X is compact), hence a
constant.

3.4. Čech cohomology of a sheaf A with respect to a cover U . Let U = (Ui)i∈I be

an open cover of X. We will use finite intersections Ui0,...,ip

def
= Ui0 ∩ · · · ∩ Uip .

3.4.1. Calculations of global sections using a cover. Motivated by the calculation of global
sections in 3.3, to a sheaf A on X we associate

• Set C0(U ,A)
def
=

∏
i∈I A(Ui) whose elements are systems f = (fi)i∈I with one

section fi ∈ A(Ui) for each open set Ui,

• C1(U ,A)
def
=

∏
(i,j)∈I2 A(Uij) whose elements are systems g = (gij)I2 of sections gij

on all intersections Uij.

Now, ifA is a sheaf of abelian groups we can reformulate the calculations of global sections
of A in terms of the open cover U

For this we encode the comparison of fi’s on intersections Uij in terms of a map d :

C0(U ,A)
d
−→C1(U ,A) which sends f = (fi)I ∈ C

0 to df ∈ C1 with

(df)ij = ρ
Uj

Uij
fj − ρUi

Uij
fi.

More informally, (df)ij = fj|Uij − fi|Uij.

Lemma. Γ(A)
∼=
−→ Ker[C0(U ,A)

d
−→C1(U ,A)].



30

3.4.2. Čech complex C•(U ,A). Emboldened, we try more of the same and define the
abelian groups

Cn(U ,A)
def
=

∏

(i0,...,in)∈In

A(Ui0,...,in)

of systems of sections on multiple intersections, and relate them by the maps Cn(U ,A)
dn

−→
Cn+1(U ,A) which sends f = (fi0,...,in)In ∈ Cn to dn f ∈ Cn+1 with

(dn f)i0,...,in+1
=

n+1∑

s=0

(−1)sfi0,...,is−1,is+1,...,in+1
.

Lemma. (C•(U ,A), d•) is a complex, i.e., d.◦dn−1 = 0.

3.4.3. Čech cohomology Ȟ•(X,U ;A). It is defined as the cohomology of the Čech complex
C•(U ,A). We have already observed that

Lemma. Ȟ0(X,U ;A) = Γ(A).

3.4.4. The “small Čech complex”. If the set I has a complete ordering, we can choose in

Cn(U ,A)
def
=

∏
(i0,...,in)∈In A(Ui0,...,in) a subgroup Cn(U ,A)

def
=

∏
i0<···<in

A(Ui0,...,in). This
is what we will usually use in computations since it is smaller but it also computes the
Čech cohomology:

Lemma. (a) C•(U ,A)⊆Č•(U ,A) is a subcomplex (i.e., it is invariant under the differen-
tial).

(b) Map of complexes C•(U ,A)⊆C•(U ,A) is a quasi-isomorphism.

Proof. (a) is clear. (b) is intuitively plausible since the extra data in C is a duplication
of data in C•, say C1 contains S(Uii) = S(Ui)⊆C0 and for i < j it contains S(Uij) the
second time under the name S(Uji).

3.5. Vector bundles. We recall the notion of a vector bundle, i.e., a vector space
smeared over a topological space. We will be interested in calculating cohomology of
sheaves associated to vector bundles.

3.5.1. Vector bundle over space X. In general one can extend many notions to the relative
setting over some base X. For instance, a reasonable notion of a “vector space over a set
X” is a collection V = (Vx)x∈X of vector spaces, one for each point of X. Then the total
space V = tx∈X Vx maps to X and the fibers are vector spaces. If X is a topological
space, we want the family of Vx to be “continuous in x”. This leads to the notion of a
vector bundle over a topological space.

Le k = R or C. The data for a k-vector bundle of rank n over a topological space X
consists of a map of topological spaces π : V → X and the vector space structures on
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fibers Vx = π−1x, x ∈ X. These data should locally be isomorphic to to X×kn in the
sense that each point has a neighborhood U such that there exists a homeomorphism

φ : V |U
def
= π−1U

∼=
−→ U×kn such that

V |U
φ

−−−→ U×kn

π

y pr1

y
X

=
−−−→ X

and that the corresponding maps of fibers Vx → kn, x ∈ U , are isomorphisms of vector
bundles.

Similarly one defines vector bundle over manifolds or over complex manifolds by requiring
that π are local trivialization maps φ are smooth or holomorphic.

3.5.2. Examples.

(1) The smallest interesting example is the Moebius strip. Moebius strip is a line
bundle over S1 (it projects to the central curve S1 and the fibers are real lines).

(2) (Co)tangent bundles On each manifold X there are the tangent and cotangent
vector bundles TX, T ∗X. In terms of local coordinates xi at a, the fibers are
TaX = ⊕ R ∂

∂xi
and T ∗

a X = ⊕ Rdxi.

(3) Any vector bundle can be obtained by gluing trivial vector bundles Vi = Ui×kn

on an open cover U = (Ui)i∈I , The gluing data is given by transition functions

φij : Uij −→GLn(k).

The corresponding vector bundle is the quotient

V = [ti∈I Ui×kn]/ ∼

for the equivalence relation given by: (ui, z) ∈ Ui×kn = Vi and (uj, w) ∈ Uj×kn =
Vj are equivalent iff they are related by the corresponding transition function, i.e.,
ui = uj and z = φij(uj)·w.

3.5.3. Sheaf V associated to a vector bundle V . Let V
π
−→M be a vector bundle over M .

Define the sections of the vector bundle V over an open U⊆X, by

V(U)
def
= {s : U → V ; π◦s = idU}.

More precisely,

If V is obtained by gluing trivial vector bundles Vi = Ui×Cn by transition functions φij,
then V(U) consists of all systems of fi ∈ H(Ui ∩ U, Cn) such that on all intersections
Uij ∩ U one has fi = φijfj.

3.6. Čech cohomology of line bundles on P1.
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Lemma. Ȟ•(P1,OP1) = Ȟ0(P1,OP1) = C.

Proof. Since the cover we use U = {U1, U2} has two elements, Cn = 0 for n > 1. We know
Ȟ0 = Γ(OP1) = C, so it remains to understand Ȟ1 = C1/dC0 = O(U ∩V )/[O(U)+O(V ),
i.e., all Laurent series φ =

∑+∞
−∞ γnun that converge on C∗, modulo the series

∑+∞
0 λnun

and
∑+∞

0 βnu−n, that converge on C and on P1 − 0. However, if a Laurent series

φ =
∑+∞

−∞ γnu
n converges on C∗,then Laurent series φ+ =

∑+∞
0 γnu

n converges on C,

and φ− =
∑−1

−∞ γnu
n converge on C∗ ∪∞.

3.6.1. Line bundles Ln on P1. On P1 let Ln be the vector bundle obtained by gluing trivial
vector bundles U×C, V×C over U ∩ V by identifying (u, ξ) ∈ U×C and (v, ζ) ∈ V×C if
uv = 1 and ζ = un·ξ. So for U1 = U and Us = V one has φ12(u) = un, U ∈ U ∩ V⊆U .
Let Ln be the sheaf of holomorphic sections of Ln.

Lemma. (a) Γ(P1,Ln) = 0 for n < 0 and for n ≥ 0 the dimension is n + 1 and

Γ(P1,Ln) ∼= C≤n[u]
def
= the polynomials in u of degree ≤ n

∼= Cn[x, y]
def
= homogeneous polynomials in x, y of degree n.

(b) Ȟ1
U(P1;Ln) = 0 for n ≥ −1 and for d ≥ 1, we have dim[Ȟ1

U(P1;L−d)] = d− 1.

3.6.2. Sheaves of meromorphic functions associated to divisors. For distinct points

P1, ..., Pn on P1, and integers Di, define the sheaf L = O(
∑

DiPi) by L(U)
def
= “all

holomorphic functions f on U − {P1, ..., Pn}, such that ordPi
f ≥ −Di. Then

Lemma. O(
∑

DiPi) ∼= LP
Di

.

3.7. Geometric representation theory. Group SL2(C) acts on C2 and therefore on

• (i) polynomial functions O(C2) = C[x, y],
• (ii) each Cn[x, y];
• (iii) complex manifold P1 (the set of all lines in C2), and less obviously on
• (iv) each Ln, hence also on
• (v) each H i(P1,Ln).

In fact,

Lemma. Cn[x, y] = Γ(P1,Ln), n = 0, 1, 2, .. is the list of

all irreducible finite dimensional holomorphic representations of SL2.

By restricting the action to SU(2)⊆SL(2, C) we find that this is also the list of all irre-
ducible finite dimensional representations of SU(2) on complex vector spaces.
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3.7.1. Borel-Weil-Bott theorem. For each semisimple (reductive) complex group G there
is a space B (the flag variety of G) such that all irreducible finite dimensional holomorphic
representations of G are obtained as global sections of all line bundles on B.

3.8. Relation to topology. Let k be any field. The cohomology of the constant sheaf
kX on a topological space X coincides with the cohomology H•(X, k) of X with coefficients
in k. The cohomology is defined as the dual of homology

H i(X, k)
def
= Hi(X, k)∗.

For instance,

Lemma. For X = S1, Ȟ∗
U(X, kX) is dual to H∗(X, k).


