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In the next section, we shall use Riemann sums to rigorously define the double 
integral for a large class of functions of two variables without recourse to the notion 
of volume. Although we shall drop the requirement that /(x, y) > 0, equations (1) 
and (2) will remain valid. Therefore, the iterated integral will again provide the key to 
computing the double integral. In Section 5.3, we treat double integrals over regions 
more general than rectangles.

Finally, we remark that it is common to delete the brackets in iterated integrals 
such as equations (1) and (2) and write

2. Evaluate the integrals in Exercise 1 by integrating with respect to x and then with respect 
to y. [The solution to part (b) only is in the Study Guide to this text.]

3. Use Cavalieri s principle to show that the volumes of two cylinders with the same base 
and height are equal (see Figure 5.1.10).

and

f{x,y)dxdy in place of

EXERCISES
1. Evaluate the following iterated integrals:

(^) /-I /o V + dy dx 
(b) /o (y cos X + 2) cfy dx

(<=) fo fo(xye^^^)dydx 
(d) f-if,^(-xlogy)dydx

Figure 5.1.10 Two cylinders 
with the same base and height 
have the same volume.

4. Using Cavalieri’s principle, compute the volume of the structure shown in Figure 5.1.11; 
each cross section is a rectangle of length 5 and width 3.
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Figure 5.1.11 Compute this volume.

5. A lumbeijack cuts out a wedge-shaped piece IT of a cylindrical tree of radius r obtained 
by making two saw cuts to the tree’s center, one horizontally and one at an angle 6. Compute 
the volume of the wedge W using Cavalieri’s principle. (See Figure 5.1.12.)

6. (a) Show that the volume of the solid of revolution shown in Figure 5.1.13(a) is

n dx.

(b) Show that the volume of the region obtained by rotating the region under the graph 
of the parabola y =-x^ +2x + 3,-I < x < 3, about the r axis is 512:;r/15 [see Figure 
5.1.13(b)].

y y

Figure 5.1.13 The solid of 
revolution (a) has volume 
7T dx. Part (b) shows
the region between the graph of 
y — —x^ +2x +3 and the x 
axis rotated about the x axis.

(a) (b)
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Evaluate the double integrals in Exercises 7 to 9, where R is the rectangle [0, 2] x [—1,0].

10. Find the volume bounded by the graph of f{x,y) = \ + 2x + 3y, the rectangle 
[1,2] X [0, 1], and the four vertical sides of the rectangle R, as in Figure 5.1.1.

We are ready to give a rigorous definition of the double integral as the limit of a 
sequence of sums. This will then be used to define the volume of the region under 
the graph of a function f{x, y). We shall not require that /(;c,;;) > 0; but if f{x, y) 
assumes negative values, we shall interpret the integral as a signed volume, just as for 
the area under the graph of a function of one variable. In addition, we shall discuss 
some of the fundamental algebraic properties of the double integral and prove Fubini’s 
theorem, which states that the double integral can be calculated as an iterated integral. 
To begin, let us establish some notation for partitions and sums.

Consider a closed rectangle /? c that is, R is a Cartesian product of two inter­
vals: R = [a, Z)] X [c, ^/]. By a regular partition of R of order n we mean the two 
ordered collections of n -f- 1 equally spaced points {xj]"^Q and [yk]l=0’ 
points satisfying

(see Figure 5.2.1).
A function f(x,y) is said to be bounded if there is a number M > 0 such that 

—M < f{x,y) < M ior all (x, y) in the domain of /. A continuous function on a 
c/osefi?rectangleisalwaysbounded,but,forexample,/(x,y) = l/xon(0, 1] x [0, 1] 
is continuous but is not bounded, because 1 /x becomes arbitrarily large for x near 0. 
The rectangle (0, 1] x [0, 1] is not closed, because the endpoint 0 is missing in the 
first factor.

7. (x^y^ + x) dy dx
R

11. Repeat Exercise 10 for the function f{x,y) = x* + y^ and the rectangle 
[-l,l]x[-3,-2].

5.2 The Double Integral Over a Rectangle

Definition of the Integral

a — xo < x\ < • ■ ■ < x„ = b, c — yo < y\ < ■ ■ ■ < y„ — d

and

b — a d — c
Xj+x - Xj =

n yk+\ -yk = n
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(called Fourier series), Riemann needed a clear, precise definition of the 
integral, which he presented in a paper in 1854. In this paper he defines his 
integral and gives necessary and sufficient conditions for a bounded function 
/ to be integrable over an interval [a, b].

In 1876, the German mathematician Karl J. Thomae generalized 
Riemann’s integral to apply to functions of several variables, as we do in this 
chapter. We further develop this approach in the Internet supplement.

In the first half of the nineteenth century, Cauchy had observed that for 
continuous function of two variables, Fubini’s theorem was valid. But 
Cauchy also gave an example of an unbounded function of two variables for 
which the iterated integrals were not equal. In 1878, Thomae gave the first 
example of a bounded function of two variables where one iterated integral 
exists and the other does not. In these examples, the functions were not 
“Riemann integrable” in the sense described in this section. Cauchy and 
Thomae’s examples demonstrated that one must apply caution and not 
necessarily assume that iterated integrals are always equal.

In 1902, the French mathematician Henri Lebesgue developed a truly 
sweeping generalization of the Riemann integral. Lebesgue’s theory allowed 
integration of vastly more functions than did Riemann’s approach. Perhaps, 
unforeseen by Lebesgue, his theory was to have a profound impact on the 
development of many areas of mathematics in the twentieth century—in 
particular the theory of partial differential equations. Mathematics students 
go into more depth about the Lebesgue integral in their first year of graduate 
study.

In 1907, the Italian mathematician Guido Fubini used the Lebesgue 
integral to state the most general form of the theorem on the equality of 
iterated integrals, the form that is studied today and used by working 
mathematicians and scientists in their research.

EXERCISES

1. Evaluate each of the following integrals if R

(a) + /) dA

(b) //. ye'ydA

2. Evaluate each of the following integrals if R
(a) //. (x”y") dx dy, where m,n>0

(b) JJ {ax + by A- c) dx dy

= [0,, l]x [0, 1].

(c) //. {xy)^ cosx^ dA

(d) //. ln[(x + l)(y+l)] dA

= [0,,l]x [0, 1].

(c) //. sin (x + y) dx dy

(d) //. {x^ + 2xy + yyfx) dx dy
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3. Compute the volume of the region over the rectangle [0, 1] x [0,1] and under the graph 
of z = xy.

4. Compute the volume of the solid bounded by the xz plane, the yz plane, the xy plane, 
the planes x = 1 and y = I, and the surface z = x^ + y'*.

5. Let / be continuous on [a, b] and g continuous on [c, d]. Show that

//. U{x)g{y)] dx dy = f f{x)dx f g(y)dyJ a J c

where R = [a,b]'K\c,d ].

6. Compute the volume of the solid bounded by the surface z = siny, the planes x = 1, 
X = 0, y = 0, and y = Tijl, and the xy plane.

7. Compute the volume of the solid bounded by the graph z = x^ + y, the rectangle 
R = [0, 1] X [1,2], and the “vertical sides” of R.

8. Let / be continuous on /? = [a, x [c, d]; for a < x < b, c < y < d, define

T(x,y) = rr /(«, v)dvdu.

Show that d^FIdx dy = d^Fjdy dx = f{x, y). Use this example to diseuss the relationship 
between Fubini’s theorem and the equality of mixed partial derivatives.

9. Let /: [0, 1] x [0, 1] R be defined by

1 X rational
f(x,y) =

2y X irrational.

Show that the iterated integral fg f{x, y)dy^ dx exists but that / is not integrahle.

10. Express cosh xy dx dy as a convergent sequence, where R = [0, 1] x [0, 1].

11. Although Fubini’s theorem holds for most functions met in practice, one must still 
exercise some caution. This exercise gives a function for which it fails. By using a 
substitution involving the tangent function, show that

ff^1 w ^ ^ 7T

h h yet fl —------—dxdy = — — .(x^ + y2)2 4

Why does this not contradict Theorem 3 or 3'?

12. Let / be continuous, / > 0, on the rectangle R. If ffj^fdA = 0, prove that / = 0 on 1?.
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5.3 The Double Integral Over More General Regions
Our goal in this section is twofold: First, we wish to define the double integral of a 
function f{x,y) over regions D more general than rectangles; second, we want to 
develop a technique for evaluating this type of integral. To accomplish this, we shall 
define three special types of subsets of the xy plane, and then extend the notion of 
the double integral to them.

Elementary Regions
Suppose we are given two continuous real-valued functions (/)]: [a, M and 
(j)2' [a, fc] -> M that satisfy <f)\{x) < (piix) for all x e [a, b\ Let D be the set of 
all points (x, y) such that x € [a, b] and 0i(x) < y < 4>2{x)- This region D is said to 
ht y-simple. Figure 5.3.1 shows various examples of y-simple regions. The curves 
and straight-line segments that bound the region together constitute the boundary 
of D, denoted dD. We use the phrase y-simple because the region is described in a 
relatively simple way, using y as a function of x.

Figure 5.3.1 Some y-simple regions.

We say that a region D is x-simple if there are continuous functions i/f| and \j/2 

defined on [c, d] such that D is the set of points (x, y) satisfying

y e{c,d] and f\{y) < x < iA2(t)

where V^i(y) < ifiiy) for all y 6 [c, d\ Again, the curves that bound the region 
D constitute its boundary dD. Some examples of x-simple regions are shown in 
Figure 5.3.2. In this situation, x is the distinguished variable, given as a function of 
y. Thus, the phrase x-simple is appropriate.

Finally, a simple region is one that is both x- and y-simple; that is, a simple region 
can be described as both an x-simple region and a y-simple region. An example of a 
simple region is a unit disk (see Figure 5.3.3).

Sometimes we will refer to any of the regions as elementary regions. Note that 
the boundary 9 D of an elementary region is the type of set of discontinuities of a 
function allowed in Theorem 2.
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Thus, A(D) is the limit of the areas of the rectangles “circumscribing” D. The reader 
should draw a figure to accompany this discussion. A

The methods for treating x-simple regions are entirely analogous. Specifically, 
we have the following.

THEOREM 4': Iterated Integrals for x-Simple Regions Suppose 
that D is the set of points (x, y) such that y e [c, d] and ir\{y) <x< if2(y)- If 
/ is continuous on D, then

IId I'd r pf2(y)
Jc f(x,y)dx dy. (2)

To find the area of D, we substitute / = 1 in formula (2); this yields

'kiiy))dy.

Again, this result for area agrees with the results of single-variable calculus for the 
area of a region between two curves.

Either the method for y-simple or the method for x-simple regions can be used 
for integrals over simple regions.

It follows from formulas (1) and (2) that f dA is independent of the choice 
of the rectangle R enclosing D used in the definition of f d A, because, if we had
picked another rectangle enclosing D, we would have arrived at the same formula (1).

EXERCISES

1. Evaluate the following iterated integrals and draw the regions D determined by the 
limits. State whether the regions are x-simple, y-simple, or simple.

(a) f' f dydx

Jo Jo
(c) ^ ^ (x+y)dydx

p2
(h) dydx

(d> ^ ydydx

Evaluate the following integrals and sketch the corresponding regions.

(a) j{x^+y)dxdy ^n/2 rcosx(d) 1 / ysinxdydx
Jo Jo

/•i fW
(b) / / e'dy dx

J-\ J-2\x\
(e) f f {x" +y”')dxdy, m,n>Q

Jo Jy^

(c) / / dydx
Jo Jo

f.0 ^2(1-i2)'/2

j j X̂ dydx
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3. Use double integrals to compute the area of a circle of radius r.

4. Using double integrals, determine the area of an ellipse with semiaxes of length a and b.

5. What is the volume of a bam that has a rectangular base 20 ft by 40 ft, vertical walls 30 ft 
high at the front (which we assume is on the 20-ft side of the bam), and 40 ft high at the rear? 
The barn has a flat roof Use double integrals to compute the volume.

6. Let D be the region bounded by the positive * and y axes and the line 3x + 4y = 10. 

Compute

jj (x^+y^)dA.
7. Let D be the region bounded by the y axis and the parabola x = -4y^ + 3. Compute

IL x^ydx dy.

8. Evaluate / / + xy - yidydx. Describe this iterated integral as an integral over
Jo Jo

a certain region D in the xy plane.

9. Let D be the region given as the set of (x, y) where 1 < x^ + < 2 and y > 0. Is D an
elementary region? Evaluate f{x, y) dA where /(x, y) = 1 + xy.

10. Use the formula A(D) = j^dxdy to find the area enclosed by one period of the sine 
function sinx, for 0 < x < 2n, and the x axis.

11. Find the volume of the region inside the surface z = x^ + y^ and between z = 0 and 
z = 10.

12. Set up the integral required to calculate the volume of a cone of base radius r and 

height Jt.

13. Evaluate Jf^^ydA where D is the set of points (x, y) such that 0<2x/tt < y, y < sinx.

14. From Exercise 5, Section 5.2, rr f(x)g(y)dydx = f(x)dx^i^j^ g(y)dyy
Is it true that f(x)g{y) dx dy = {[ f(x) dx )(/:: g(y) dy^ for y-simple regions?

15. Let D be a region given as the set of (x, y) with —<j>{x) < y < <l>ix) and a < x < b, 
where 0 is a nonnegative continuous function on the interval {a,b\ Let /(x, y) be a function 
on D such that /(x, y) = -/(x, -y) for all (x, y) € D. Argue that //^ /(x, y)dA = 0.

16. Use the methods of this section to show that the area of the parallelogram D determined 
by two planar vectors a and b is \a\b2 — <22^11. where a = aii 4- 02! and b = I)ii + h2j-

17. Describe the area A{D) of a region as a limit of areas of inscribed rectangles, as in 

Example 3.
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Dividing through inequality (5) by A(D), we get

/(x, y)dA < M.- A{D) J Jo (6)

Because a continuous function on D takes on every value between its max­
imum and minimum values (this is the two-variable intermediate value theorem 
proved in advanced calculus; see also Review Exercise 32), and because the number 
[\/A{D)] ff^ f(x, y)dA is, by inequality (6), between these values, there must be a 
point (xo, yo) e D with

which is precisely the conclusion of Theorem 5. ■

EXERCISES
1. In the following integrals, change the order of integration, sketch the corresponding 

regions, and evaluate the integral both ways.

i-b py
(d) / / f{x, y) dx dy (express your answer in terms of antiderivatives).

2. Find

3. If f{x, y) = g^d D = [—tt, n] x [—jr, n], show that

4. Show that

5. If £> = [—1, 1] X [—1,2], show that
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dA 1 
TTI - 4’

6. Using the mean value inequality, show that

-<ff -
JJd y-

where D is the triangle with vertices (0, 0), (1, 1), and (1,0).

7. Compute the volume of an ellipsoid with semiaxes a, b, and c. (Hint: Use symmetry and 
first find the volume of one half of the ellipsoid.)

8. Compute jj f(x,y)dA, where f(x,y) = and O is the set of (x, y) where x > 0,
y > x^, and y < 10 — x^.

9. Find the volume of the region determined by x^ + y^ + < 10, z > 2. Use the disk
method from one-variable calculus and state how the method is related to Cavalieri’s principle.

10. Evaluate j j dx dy, where D is the interior of the triangle with vertices (0, 0),(1,3), and (2, 2)."°

11. Evaluate JJ y^(x^ + dx dy, where D is the region determined by the conditions
f < y < 1 and x^ + y^ < 1.

12. Given that the double integral JJ f(x,y) dx dy of a positive continuous function /
dx, sketch the region D and interchange thef{x,y)dyequals the iterated integral 

order of integration.

13. Given that the double integral JJ f(x,y) dx dy of a positive continuous function /equals the iterated integral [[r /(x, y)<ixj dy, sketch the region D and 

interchange the order of integration.

14. Prove that 2 J J f(x)f{y)dydx = (/ f{x)dxj . [Hint: Notice that

f{x)f(y)dxdy.\
'[a.b]A“M

15. Show that (see Exercise 27, Section 2.5)

^ f f f(x,y,z)dzdy = f f{x,y,z)dz+ f f Mx,y,z)dzdy. 
wAT Jq Jc Jc Ja Jc

5.5 The Triple Integral
Triple integrals are needed for many physical problems. For example, if the temper­
ature inside an oven is not uniform, determining the average temperature involves 
“summing” the values of the temperature function at all points in the solid region 
enclosed by the oven walls and then dividing the answer by the total volume of the 
oven. Such a sum is expressed mathematically as a triple integral.
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EXAMPLE 6 Evaluate

f f f dzdydx. 
Jo Jo Jx^

Sketch the region W of integration and interpret. 

SOLUTION

I dzdydx = I I {2 — x^ — y^)dydx
Jx'^+y'^ Jo Jo

Jo \ 3 / 4 12 3

This integral is the volume of the region sketched in Figure 5.5.8. a

Eigure 5.5.8 The region W lies between the 
paraboloid z — x^ + y^ and the plane z = 2, 
and above the region D.

In Exercises I to 4, perform the indicated integration over the given box.

^’ /// ^ ^
^' /// ^ ^ ^

3. JJJ(2x +3y + z)dx dydz, B = [0, 2] x [—1, 1] x [0, 1]

jjj dx dydz, B = [0, 1] x [0, 1] x [0, 1]

In Exercises 5 to 8, describe the given region as an elementary region.

5. The region between the cone z = y/x^ + y'^ and the paraboloid z = + y^.
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6. The region cut out of the ball + >>^ + < 4 by the elliptic cylinder 2x^ + z^ = 1,
that is, the region inside the cylinder and the ball.

7. The region inside the sphere x^ + + z^ = 1 and above the plane z = 0.

8. The region bounded by the planes x =0, y = 0, z = 0, x+y = 4, and x = z — y — 1.

Find the volume of the region in Exercises 9 to 12.

9. The region bounded by z = x^ + y^ and z = 10 — x^ — 2y^.

10. The solid bounded by x^ + 2y^ = 2, z = 0, and x + y + 2z = 2.

11. The solid bounded by x = y, z = 0, y = 0, x = 1, and x + y + z = 0.

12. The region common to the intersecting cylinders x^ + y^ < and x^ + z^ < a^.

Evaluate the integrals in Exercises 13 to 21.

13. I I I cos [7t(x + y + z)]dx dydz
Jo J\ Ji

m
y
(y + xz)dzdydx

E (x^ + y^ + z^) dx dy dz‘, W is the region bounded by x+y + z = a (where a > 0), X = 0, y = 0, and z = 0.

16. JJJ zdx dy dz\ W is the region bounded by the planes x = 0, y = 0, z = 0, z = 1, and the cylinder x^ + y^ = 1, with x > 0, y > 0.

17. JJJ x^ coszc(xrfy<fz; IT is the region bounded by z = 0,z = w,y = 0, y = 1, X = 0, and x + y = 1.

m
x+y

dzdydx

///, (1 — z^) dx dy dz\ fV is the pyramid with top vertex at (0, 0, 1) and base vertices 

at(0,0,0Ul,0,0), (0, 1,0), and(l, 1,0).

“• E (x^ + y^) dx dy dz\ W is the same pyramid as in Exercise 19.
plx rx+y

21. I I I dzdydx.
Jo Jo Jx^+y^

22. (a) Sketch the region for the integral f f f f(x,y,z)dzdydx.Jo Jo Jo
(b) Write the integral with the integration order dx dy dz.
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For the regions in Exercises 23 to 26, find the appropriate limits </>i(x), 4>2(x), yi(x, y), and 
Y2(x, y), and write the triple integral over the region W as an iterated integral in the form

23. W = {(x, y, z) I y/x'^ + y'^ < z < 1}

24. W = {(x, z) I 5 < z < 1 and x^ + y^ + z^ < 1)

25. IV = {(x,y,z) I x^ + y < l,z > Oandx^ + y^ + z^ <4}

26. fV = l(x,y,z) 1 |x| < 1, |y| < l,z > 0 andx^ + y^ + z^ < 1}

27. Show that the formula using triple integrals for the volume under the graph of a positive 
function /(x, y), on an elementary region D in the plane, reduces to the double integral of / 
over D.

28. Let W be the region bounded by the planes x = 0,y = 0, z = 0,x+y = 1, and 
z = x + y.

(a) Find the volume of W.
(b) Evalute x dx dy dz.
(c) Evalute y dx dy dz.

29. Let / be continuous and let be the ball of radius e eentered at the point (xo, yo, zo). 
Let vol (Be) be the volume of 5j. Prove that

f(x,y,z)dz dyidx.

REVIEW EXERCISES FOR CHAPTER 5

Evaluate the integrals in Exercises 1 to 4.

2.
0 Jyft

(x + yf dy dx 4.

Reverse the order of integration of the integrals in Exercises 5 to 8 and evaluate.

5. The integral in Exercise 1.

6. The integral in Exercise 2.

7. The integral in Exercise 3.

8. The integral in Exercise 4.
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9. Evaluate the integral {y + xz) dz dy dx.

10. Evaluate fg ff dx dy.

11. Evaluate /„' y cos;c>- dx dy.

12. Change the order of integration and evaluate

'O Jyll

■ 1
I {x +yfdxdy

13. Show that evaluating dx dy, where D is a >^-simple region, reproduces the formula 
from one-variable calculus for the area between two curves.

14. Change the order of integration and evaluate

15. Let D be the region in the xy plane inside the unit circle x^ +y^ — 1. Evaluate 

IId /(^’ 3') following cases:

Evaluate the integrals in Exercises 17 to 24. Sketch and identify the type of the region 
(corresponding to the way the integral is written).

(a) f(x, y) = xy (b) f(x, y) = x^y^ (c) f(x, y) - xfy^

16. FindjJ^yll - cos(7Tx/4)] rfjc rfy, where £) is the region in Figure 5.R.I.

Figure 5.R.1 The region of integration for Exercise 16.

17- / / x(l + y)dydx
0 •/situ:

nx cos{nx/2)
18. . {x^ +xy+ \)dydx
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23.

n
^y

dx dy

In Exercises 25 to 27, integrate the given function f over the given region D.

25. f(x, y) = x — y; Dis the triangle with vertices (0, 0), (1, 0), and (2, 1).

26. f(x, y) = x^y + cosx; D is the triangle defined by 0 < jc < 7t/2, 0 <y <x.

27. f{x,y) = x^ + 2xy^ + 2; Dis the region bounded by the graph of y = -x^ + x, the x 
axis, and the lines jc = 0 and x = 2.

In Exercises 28 and 29, sketch the region of integration, interchange the order, and evaluate.

28.

29.

n:
a:

(x +y^)dydx

{x + y^)dxdy
\-y

30. Show that

31. Show that

4e= '-Jf
J J[\,2]x[2,A]

iL

e^^^^dA < 4e^^

4;r < (x^ + y^ + l)dx dy < 20tt,

where D is the disk of radius 2 centered at the origin.

32. Suppose W is a path-connected region, that is, given any two points of W there is a 
continuous path joining them. If / is a continuous function on W, use the intermediate-value 
theorem to show that there is at least one point in W at which the value of / is equal to the 
average of / over W, that is, the integral of / over W divided by the volume of W. (Compare 
this with the mean-value theorem for double integrals.) What happens if W is not connected?

33. Prove: F{u)du]dt = f^(x — u)F(u)du.

Evaluate the integrals in Exercises 34 to 36.

34.

35.

36.

m
y xy^z^ dx dy dz

d ry v

x^ -I- z- dz dx dy

f f f yz^dxdydz J\ J\ Jl/y

37. Write the iterated integral /J f{x, y, z)dzdydx as an integral over a region in
and then rewrite it in five other possible orders of integration.
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EXERCISES
Let S* = (0, 1] X [0, 2n) and define T{r, 6) = (r cos9, r sin0). Determine the image 

sef S. Show that T is one-to-one on S*.

2.1 Define

X* — y* X* -l-y*
V2 ’ V2 )

Show that T rotates the unit square, D* = [0, 1] x [0, 1].

3. / Let D* = [0, 1] X [0, 1] and define T on D* by T{u,v) = (—u^ + 4w, u). Find the 
ihrage D. Is T one-to-one?

\ 4./ Let D* be the parallelogram bounded by the lines y = 3x — 4, y = 3x, y = ^x, and 
p~= j(x + 4). Let D = [0, 1] X [0, 1]. Find a T such that D is the image of D* under T.

5. Let D* — [0, 1] X [0, 1] and define T on D* by T{x*, y*) = {x*y*, x*). Determine the 
image set D. Is T one-to-one? If not, can we eliminate some subset of D* so that on the 
remainder T is one-to-one?

6. Let D* be the parallelogram with vertices at (— 1, 3), (0, 0), (2, — 1), and (1,2), and D be 
the rectangle D = [0, 1] x [0, 1], Find a T such that D is the image set of D* under T.

7. Let T: —>• be the spherical coordinate mapping defined by (p, 0, 6) (->• (x,y,z),
where

Let D* be the set of points (p, 0, 6) such that <t> 6 [0, n], 6 € [0, 2:7r], p € [0, 1]. Find 
D = T{D*). Is T one-to-one? If not, can we eliminate some subset of D* so that, on the 
remainder, T will be one-to-one?

In Exercises 8 and 9, let T{x) = Ax, where A is a2 x 2 matrix.

8. Show that T is one-to-one if and only if the determinant of A is not zero.

9. Show that det ^ ^ 0 if and only if T is onto.

10. Suppose T; R^ ->■ R^ is linear and is given by T{x) = Ax, where ..4 is a 2 x 2 matrix. 
Show that if det A 0, then T takes parallelograms onto parallelograms. [Hint: The general 
parallelogram in R^ can be described by the set of points q = p -t- Xv -I- p,w for X, p, € (0, 1) 
where p, v, w are vectors in R^ with v not a scalar multiple of w.]

11. Suppose T: R^ -»• R^ is as in Exercise 10 and that T(P*) = P is a parallelogram. Show 
that P* is a parallelogram.

12. Consider the map T: D ^ D, where D is the unit disk in the plane, given by

X = p sin(/> COS0, y = p sini/) sin0, z = pcos<(>.

Tir cosd, r sin0) = (r^ cos20, r^ sin20).
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Using complex notation, z = x + iy, the map T can be written as T{z) = z^. Show that the 
Jacobian determinant of T vanishes only at the origin. Thus, away from the origin, T is 
locally one-to-one. However, show that T is not globally one-to-one on minus the origin.

Given two regions D and D* in a differentiable map T on D* with image D, that 
is, T{D*) — D, and any real-valued integrable function /: Z) ^ R, we would like 
to express f{x, y) as an integral over D* of the composite function / o T. In 
this section we shall see how to do this.

Assume that D* is a region in the uv plane and that D is a. region in the xy plane. 
The map T is given by two coordinate functions:

T(u, v) = (x(u, v), y(u, v)) for (u, v) e D*.

At first, one might conjecture that

where f o T{u, v) = f(x{u, v),y{u, v)) is the composite function defined on D*. 
However, if we consider the function where f{x,y)= I, then equation
(1) would imply

But equation (2) will hold for only a few special cases and not for a general map T. 
For example, define T by T{u, u) = {-u^ + 4u, v). Restrict T to the unit square; that 
is, to the region D* = [0, 1] x [0, 1] in the uv plane (see Figure 6.2.1). Then, as in 
Exercise 3, Section 6. FT takes £)* onto Z) = [0, 3] x [0, 1], Clearly, ^(D) A(D*),
and so formula (2) is not valid.

y

6.2 The Change of Variables Theorem

(1)

(2)

r(0, 1) ( ►

D
u

(3,0)
X

(1,0)

Figure 6.2.1 The map T: (m, v) {-u^ ■+• 4m, u) takes the square D* onto the 
rectangle D.
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EXAMPLE 7
volume of W.

Let W be the ball of radius R and center (0, 0, 0) in Find the

SOLUTION The volume of W is dx dy dz. This integral may be evaluated 
by reducing it to iterated integrals or by regarding IF as a volume of revolution, but 
let us evaluate it here by using spherical coordinates. We get

p [* p /*7T /*2;r pR
jjj dxdydz= I I I sine/) dp dO d(f) JJJw Jo Jo Jo

— — I I sin <p do d(t) 
3 Jo Jo

2nR^ 2tt Atx R?
s\n<j) d(j) — —-—{—[cos(7r) — cos(O)]} = —-—,

3 Jo ---- --- 3

which is the standard formula for the volume of a solid sphere.

EXERCISES

Let D be the unit disk: < 1. Evaluate

JI exp (x^ + y^) dx dy

by making a change of variables to polar coordinates.

^ Let D be the region 0 < y < x and 0 < x < 1. Evaluate

+y)dxdy

by making the change of variables x = « + ii,y = w — u. Check your answer by evaluating

3
ntegral directly by using an iterated integral.

Let r(w, v) = (x(u, u), y(w, v)) be the mapping defined by T{u, v) = (4«, 2u + 3v). Let 
oe the rectangle [0, 1] x [1,2]. Find D = T(D*) and evaluate

(a) fL xy dx dy (b) fL (x-y)dxdy
by making a change of variables to evaluate them as integrals over D*.

4. Repeat Exercise 3 for T(u, v) = (u, v(l + «)).

5. Evaluate

dx dy
^/l -t X y 2y

where D = [0, 1] x [0, 1], by setting T(u, v) = (u, u/2) and evaluating an integral over D*, 
where T(D*) = D.

V6?^efine T(u,v) = — v^, 2uv). Let D* be the set of (m, v) with < 1, u > 0,

V > 0. Find T(D*) = D. Evaluate jQT^ dx dy.
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7. Let T{u, V) be as in Exercise 6. By making a change of variables, “formally” evaluate the 
“improper” integral

[Note. This integral (and the one in the next exercise) is improper, because the integrand 
1/is neither continuous nor bounded on the domain of integration. (The theory 
improper integrals is discussed in Section 6.4.)]

10. Let £)* be a u-simple region in the uv plane bounded by u = g{u) and v = h{u) < g(u) 
for a < u < b. Let T: ^ be the transformation given by x = u and y = ^(u, v),
where i/r is of class C' and 3i/r/dv is never zero. Assume that T(D*) = Z) is a y-simple 
region; show that if /: Z) —>■ R is continuous, then

11. Use double integrals to find the area inside the curve r = 1 + sin0.

12. (a) Express/J/g xyofyiZx as an integral over the triangle Z)*, which is the set of ( 

where 0<«< l,0<i)<tt. (Hint: Find a one-to-one mapping T of D* onto the given 
region of integration.)

(b) Evaluate this integral directly and as an integral over D*.

13^ Integrate over the cylinder < 4, 2 < z < 3.

Let D be the unit disk. Express j j (1 -F x^ -t- dx dy as an integral over 
[of 1] X [0, 2n] and evaluate.

15. ‘Using polar coordinates, find the area bounded by the lemniscate (x^ + =
2a^ (x^ — y^).

16. Redo Exercise 11 of Section 5.3 using a change of variables and compare the effort 
involved in each method.

17. Calculate jj (x + yfe’^~^ dx dy where R is the region bounded by x -|- y = 1, 
x-|-y = 4,x—y = —1, and x — y = 1,

18. Let T: R^ —>■ R^ be defined by

JjRX+y ' ’ ...... ............
X -F y = 4, by using the mapping T{u, v) = (u - uv, uv).

8. Calculate J J ~ ^ dy dx, where R is the region bounded by x = 0, y = 0, x -F y = 1,

9. Evaluate (x^ -F dx dy where D is the disk x^ -F y^ < 4.
J

dv

T(u, V, w) = (u cosvcosw, u sin u cos w, u sin w).
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(a) Show that T is onto the unit sphere; that is, every (x, y, z) with + z^ = \
ean be written as (x, y, z) = T{u, v, w) for some (u, v, w).

(b) Show that T is not one-to-one.

19. Integrate + y^ + z^ over the cylinder x^ + y^ < 2, —2 < z < 3.

20. Evaluatedx.

21. Let B be the unit ball. Evaluate

///. dx dydz
Ib v'T+x^'+y^T?

by making the appropriate change of variables.

22. Evaluate JJ [I/(x^ + y^)^] dx dy where A is determined by the conditions x^ -f < 1 

dx dy dz

and X -I- y > 1 

23. Evaluate Jj j , where W is the solid bounded by the two spheres
w (x^ + y^ -I- z’̂ f!^ 

x^ + y^ +z^ = a} and x^ -I- y^ -I- = b^, where 0 < b < a.

24. Evaluate 11 x^ dx dy where D is determined by the two conditions 0 < x < y and
1 i 1 ^ \ J J D ■'x -\~y < 1.

25. Integrate ^x^ -I- y^ -I- z^ over the region described in Exercise 23.

26. Evaluate the following by using cylindrical coordinates.
(a) ///. z dx dy dz where B is the region within the cylinder x^ -H y^ = 1 above the 

xy plane and below the cone z = (x^ -I- y^)'^^.

(b) E (x^ -H y^ -I- z^) dx dy dz where W is the region determined by theconditions | < z < 1 and x^ -I- y^ -I- z^ < 1.

27. Evaluate jj (x -f- y) dx dy where B is the rectangle in the xy plane with vertices at 
(0, 1),(1,0), (3,4), and (4, 3).

28. Evaluate j j {x + y)dx dy where D is the square with vertices at (0, 0), (1, 2), (3, 1), 
and (2,-1).

29. Let E be the ellipsoid (x^/a^) + (y^lb^) + < 1, where a, b, and c are positive.

(a) Find the volume of E.

(b) Evaluate jjj [(x^a^) + (yV*^) + (Hint: Change variables
and then use spherical coordinates.)

30. Using spherical coordinates, compute the integral of /(p, <j>, 6) = \ jp over the region in 
the first octant of E^, which is bounded by the cones 0 = 7t/4, 0 = arctan 2 and the sphere
p = \/6.
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31. The mapping T{u, u) = — v^, 2uv) transforms the rectangle 1<«<2, 1<d<3
of the uv plane into a region K of the xy plane.

(a) Show that T is one-to-one.
(b) Find the area of using the change of variables formula.

32. Let denote the region inside +y^ = 1, but outside x^ +y^ = 2y with
X > 0, _y > 0.

(a) Sketch this region.
(b) Let u = x^ + y^, V = x^ + y^ — 2y. Sketch the region D in the uv plane, which 

corresponds to /? under this change of coordinates.

(c) Compute Jj xe^ dx dy using this change of coordinates.
33. Let D be the region bounded by x^/'^ -F y^'^ = for x > 0, y > 0, and the coordinate 
axes X = 0, y = 0. Express IL f{x, y) dx dy as an integral over the triangle D*, which is 

the set of points 0<i/<a,0<u<a — «. (Do not attempt to evaluate.)

34. Show that S(p, 9,<p) = (p sin <j> cos&, p sin 4> sin 9, p cos <j>), the spherical change-of- 
coordinate mapping, is one-to-one except on a set that is a union of finitely many graphs of 
continuous functions.

6.3 Applications
In this section, we shall discuss average values, centers of mass, moments of inertia, 
and the gravitational potential as applications.

Averages
If Jti,... ,Xn are n numbers, their average is defined by

]av — Xl+------\-x„ 1 "

/=1

Notice that if all the jc, happen to have a common value c, then their average, of 
course, also equals c.

This concept leads one to define the average values of functions as follows.

Average Values The average value of a function of one variable on the interval 
[a, b] is defined by

[/lav
la fix) dx

b — a
Likewise, for functions of two variables, the ratio of the integral to the area of D,

[/lav
ffpfix,y)dxdy

Ifndxdy (1)


