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0. Introduction

This long introductory chapter starts in 0.1 with what is the course is about. We review
the main ideas of calculus (0.2) and what is new in calculus when one considers functions
of several variables: 2, 3 or more variables (0.3).

In the remainder of this chapter we cover more concrete material. In 0.4 we review the
differentiation for several variables, the ideas and the notations. Then in 0.5 we explain
integration from the point of view that will be used throughout the course.

0.1. The nature of the course. In the calculus of several variables course MATH233
we learned how calculus works for functions of several variables. However, we mostly
concentrated on the functions of 2 or 3 variables since in these cases we could use the
visual intuition. In this course we revisit the calculus of several variables MATH233 with
some emphasis on doing everything carefully so that it works for functions of any number
of variables. So, our geometry now now moves from the line R, plane R2 and the space
R3 to any any Rn.

We will briefly review differentiation in this generality (the material in chapters 1-4 of the
book), however our main focus will be on integration (chapters 5-8).

0.1.1. Topics. We will cover material from chapters 5-8. We will assume chapters 1-4.
These and some other parts of our course have been covered in the Multivariable Calculus
course MATH233.

• 5. Double and Triple Integrals
• 6. The Change of Variables Formula
• 7. Integrals over Paths and Surfaces
• 8. The Integral Theorems of Vector Analysis

0.2. Calculus. The main subjects of calculus are the rate of change (differentiation) and
the total of a quantity which is spread over some region with a given density (integration).

The revolutionary idea that appears in both is that of infinite processes called limits.

The infinite processes (i.e., limits) are actually necessary in order to make sense of some
quantities of obvious interest like (1) speed of an object at a given moment or (2) area
under a curve. The abstract point of view on problems of this kind is called derivatives
(“abstract rate of change”) and integrals (“abstract areas”).

While by definition such processes require an infinite amount of work, it turns out that
often enough these processes are actually doable – however by thought rather than by
work alone. The “thought” part is provided by mathematical methods of differentiation
and integration. These allow us to efficiently calculate limits precisely in many situations
(and approximately in other situations).
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0.3. Multidimensional calculus requires geometry. From the calculus courses we
know how to extend calculus from functions of one variable to functions of two, three or
really any number of variables. One again considers the same two main ideas (differenti-
ation and integration), however a new difficulty is added to the subject – the complexity
of geometry.

In higher dimension, one has to consider more subtle geometric objects that we will call
“manifolds” or even more generally “spaces”). The basic geometric objects in the one
dimensional line R = R1 are the intervals. In the 2 dimensional plane R2 we find regions
and their boundaries which are called curves. In dimension 3 we find solids in R3 and
their boundaries are called surfaces. In Rn for an arbitrary dimension n there are higher
dimensional manifolds which are useful in many real life applications but we have difficulty
visualizing these for n > 3.

0.3.1. The idea of space . A key aspect of this course is a development of an abstract idea

of space which extends our experience in low dimensions to higher dimensional situations.
Our basic experience of space is with a three dimensional space. We can easily go to a
lesser number of dimensions by neglecting some directions in the three dimensional space,
placing cutlery on a table involves the two directions in the plane of the table. Riding a
train effectively uses one dimension. However, we are secretly aware of 4 dimensions since
the position of any event is described by 3 spatial directions and one time direction. So,
when one considers how objects in our 3 dimensional space evolve in time we are really
thinking of a four dimensional setting.(1)

A simpler example of higher dimensional spaces are the spaces of data. What I mean by
data is a sequence of numbers describing various aspects of some object. For instance any
strategy that involves choosing several parameters, say n parameters, requires choosing a
point in the n-dimensional space Rn.

Example. If baking a cake involves deciding on the amount of seven ingredients as well
as temperature and how long we bake, then our baking strategy consists of 9 numbers,
so we can think of it as a point in R9. So, a choice of how to bake can be thought of as a
choice of point in R9. However, we are not likely to use this geometric point of view since
in this business we have much experience (personal or collective, such as a recipe). For
more complicated problems geometry may be essential.

0.4. Differentiation for several variables. Here we review differentiation first for func-
tions of one variable and then for functions of an arbitrary number of variables.

For functions of one variable differentiation

1 The contemporary physics uses more dimensions. The best description of physics that we have at
the moment is String theory, it claims that our space is really 11 dimensional, beyond the 4 familiar
directions the remaining ones are more difficult to observe but are seen as necessary in order to explain
why the 4 familiar dimensions behave as they do.
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The rate of change of a function f(x) of one variable at x = a is a number called the
derivative f ′(a) of f(x) at a. However, for a function f(x1, ..., xn) of several variables the
rate of change at a point a = (a1, ..., an) is a function called the differential df(a) of the
function f at a. This function records the all rates change of f when one moves away
from the point a in various directions and with different speeds.

0.4.1. The rate of change (Dvf)(a) when one is moving with a constant velocity vector
v. Because we are in a higher dimensional setting one can move from a given point
a = (a1, ..., an) in Rn in many directions and in each of these directions one can move with
various speeds. The data of a direction and speed is called velocity and it is represented
by a vector v in Rn. When one is moving from the point a = (a1, ..., an) at the constant
velocity v = 〈v1, ..., vn〉, the position at time t is described by

x(t) = a+ tv = (a1, ..., an) + t〈v1, ..., vn〉 = (a1 + tv1, ..., an + tvn).

As one is moving on the line x(t) = a + tv in Rn, the value of the function f(x(t)) =
f(a + tv) changes. The change of function from time t = 0 zero to time t = h is
f(a+ hv)− f(a) = f(a1 + hv1, ..., an + hvn)− f(a1, ..., an). The average rate of change in
this period is 1

h
[f(a1 + hv1, ..., an + hvn)− f(a1, ..., an)].

Example. Imagine you are traveling in a train and as you look through the window you
see mountains. The height h of the piece of the mountain which is straight in front of you
when you are at a position x = (x1, x2, x3) depends on this position. So, it is a function
h(x) of x. The rate at which the height in front of you changes depends on how fast you
are traveling, and also on the direction in which the train is traveling. �

We are really interested in the instantaneous rate of change at time t = 0, i.e., at the
moment when one is at the position a = (a1, ..., an) and one is moving at constant velocity
v on the path x(t) = a + tv. We denote this rate of change (Dvf)(a). (Here “D” could
stand for “directional”, reminding us that at the moment we are just considering how f
changes in a given direction.)

This turns out to be a more abstract idea and we will use the average rate of change
1
h
[f(a+ hv)− f(a)] to understand it. When the time period h is small then the average

rate of change 1
h
[f(a+ hv)− f(a)] in this period can be used as an approximation of the

instantaneous rate of change at the beginning of the period.

This approximation by average rate of change gets better as the time period h gets smaller.
So, we can think of the instantaneous rate of change as the number approached by these
approximations as h goes to 0, This gives us a formula for the instantaneous rate of change

(Dvf)(a)
def
= lim

h→0

f(a+ hv)− f(a)

h
= lim

h→0

f(a1 + hv1, ..., an + hvn)− f(a1, ..., an)

h
.
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Remark. This formula is complicated because it involves a limit. However, this complex-
ity is not avoidable since this formula is the only way we can even make sense of the
instantaneous rate of change.

Example. If we only have one variable x then the velocity vector v is just a number. If
we choose v to be 1 (we are moving to the right on the x-axis with the unit speed. In this

case then (Dv=1f)(a)
def
= limh→0

f(a+h)−f(a)
h

is just the derivative f ′(a).

If in this 1-dimensional situation we move with the velocity which is a number v then
the rate of change is v times larger: (Dvf)(a) = vf ′(a) (since one is now differentiating
f(a+ vt) instead of f(v + t)).

0.4.2. The differential daf . Since in higher dimension the rate of change of a function
depends on the velocity vector v we have a large amount of information (the rates of
change for each velocity vector v). We will package this information in two ways.

The first is completely formal – we just think of all this information as a single function
called the differential of the function f at the point a and denoted daf or df(a). The second
is practical – it turns out that in order to know all directional derivatives it suffices to
know the n partial derivatives of f at a, and these numbers we put together into a vector
called the gradient vector (∇f)(a) (see 0.4.3 below).

We replace the usual derivative f ′(a) which is one number f ′(a), by a function called
the differential df(a) of the functions f(x1, ..., xn) at a1, ..., an). This functions sends
vectors to numbers, the value at a vector v is the rate of change (Dvf)(a) of the function
f(x1, ..., xn) when is moving from the point (a1, ..., an) at velocity v:

[df(a)](v) = (Dvf)(a)
def
= lim

h→0

f(a1 + hv1, ..., an + hvn)− f(a1, ..., an)

h
.

So, df(a) is a function on the space Rn of n-dimensional vectors, with values in real
numbers.

0.4.3. Gradient ∇af . The standard vectors e1, ..., en in Rn are e1 = (1, 0, ..., 0), e2 =
(0, 1, 0, ..., 0), e3 = (0.0, 1, 0, ..., 0), ... en = (0, 0, ..., 0, 1). So the ith standard vector ei is
in the direction of the ith coordinate axis – it has all entries 0 except that the ith entry is
1.

The rate of change of a function f(x) in the direction of the ith coordinate axis is

Deif(a)
def
= lim

h→0

f(a+ hei)− f(a)

h
= lim

h→0

f(a1, ..., ai−1, ai + h, ai+1, ..., an)− f(a1, ..., an)

h
.

This is a familiar object which we call the partial derivative of f with respect to the ith

variable xi, denoted
∂f

∂xi
(a).
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The gradient vector for the function f(x) at the point a = (a1, ..., an) is the vector con-
sisting of all partial derivatives:

∇a(f) = ∇f(a)
def
= 〈 ∂f

∂x1

(a), ...,
∂f

∂xn

(a)〉.

Lemma. The rate of change of f at a and with velocity vector v is the dot product of the
gradient vector with v :

Dvf(a) = ∇f(a)·v.
�

Remark. So, the gradient is a very efficient way to capture all information of about rates
of change of a function.

0.5. The abstract idea of integration. Here we consider what it means to integrate
a function f over some space X .

At this point we use an imprecise phrase “space”, meaning roughly a “geometric object”
such as curve, surface or other objects that one can find in R3, R4, .... Because the idea
of integration that we describe here is used in a variety of settings (some vastly more
complicated than what one finds in any Rn), we will leave it a little vague what we mean
by a “space X”. [This will be explained in the rest of the course.]

The goal is to calculate the total amount of a quantity Q which is spread over some space
X in a way described by the density function f(x) on X . Let us denote this total quantity
Q(X). We also denote it

∫
X
f and call it the integral of f over X .

0.5.1. The strategy for computing Q(X). It is obvious – the total amount Q(X) is a sum
of contributions Q(P ) from various pieces P of X . (We call contributions from small
pieces the local contributions.) Here is how to make this strategy work:

Steps:

• S0. We need to understand the size of small pieces P of the space X . We denote
this size by V ol(Pi).

• S1. We approximate a (possibly complicated) space X by covering as much of it
as we can by a number of small pieces P1, ..., PN which are easier to understand.
This gives an approximation of the total amount of the quantity Q in X by the
sum

Q(X) ∼ Q(P1) +Q(P2) + · · ·+Q(PN)

of amounts in all pieces. (A short hand is the above sum is
∑N

i=1 Q(Pi).)
• S2. We approximate the density function f(x) on the ith piece Pi by a constant
function (i.e., a number). This number we choose to be f(ci) at some point ci that
we choose in the piece Pi.
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• S3. We approximate the contribution from the ith piece Q(Pi) by V ol(Pi)·f(ci).
[This would be correct if f we constant on Pi.]

• S4. We approximate the total amount Q(X) of the quantity Q in X by the sum
of approximations in all pieces

Q(X) ∼
N∑

1

Q(Pi) ∼
N∑

1

V ol(Pi)·f(ci).

• S5. We find the precise value of the total Q(X). This is the number approached
by approximations as they get better and better

Q(X) = lim

N∑

1

V ol(Pi)·f(ci)

0.5.2. How to make approximations better? To strategy to is to make the pieces Pi smaller.
This helps in two ways:

• Using smaller pieces one can can cover more of X (this diminishes the error we
made in the step S1 above).

• Using smaller pieces Pi diminishes the error we made in the step S2 above, i.e.,
the approximation of Q(Pi) by V ol(Pi)·f(ci) gets better. The reason is that when
the piece Pi gets smaller then the function f varies less in Pi so it is more alike a
constant function.

So, Q(X) is the limit of approximations
∑N

1 V ol(Pi)·f(ci) as we refine the subdivision
of X into pieces P1, ..., PN . The refinements are made by making the pieces smaller and
smaller. (This of course means that we will need more and more of these pieces to cover
X .) This is our formula

Q(X) = lim
as one refines the subdivision
by making pieces smaller

N∑

i=1

V ol(Pi)·f(ci).

0.5.3. The integration notation. We will now forget that the meaning of the function f
above was the density of a quantity Q spread over X . The above formula for the total of
Q is then viewed as an operation on functions on X called integration.

We define the integral of a function f over a space X by

∫

X

f
def
= lim

as one refines the subdivision
of X by making pieces smaller

N∑

i=1

V ol(Pi)·f(ci).

A more detailed notation is
∫
X

f dV or
∫
X

f(x) dV (x).
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Here, the integral sign
∫

is in the shape of letter S to remind us that this is a limit of
approximations which are sums. The expression f(x) dV reminds us that the terms in
the sum are products f(ci)V ol(PI) for small pieces Pi of X and a chosen point ci in Pi.
In particular “dV ” stands for the volume of a small piece of the space X .

Remark. Again, the meaning of this complicated formula is that

• the integral is the totality of something;
• it is computed by gathering all local contributions, i.e., contributions from small
pieces of the space X .(2)

0.5.4. Practical computation of integrals. The above definition of of an integral is a beauty
on the philosophical level and it has been immensely useful for applying integration in
many settings. However, it is clearly complicated because it:

• (i) even a single approximation can be difficult to calculate if it involves many
pieces;

• (ii) the definition involves infinitely many calculations of approximations that be-
come more and more accurate.

In dimension one we have two tricks for computing integrals: the Fundamental Theorem
of Calculus and Change of variable formula. These course just deals with extending these
two methods to higher dimension.

Remarks. Here are some more thoughts on difficulty of integrating by the above formula.

(0) One way you see the complexity is that when we are computing an approximation we
are allowed much choice both in: (i) choosing small pieces that “almost” fill the space X ,
and in (ii) choosing a point c in each such piece.

(1) The meaning of the above definition of the integral as the above limit is that – however
we make these choices – the approximations will always approach the same number called∫
X

f . So, the value of the integral is independent of all possible choices that we make.

(2) Not all sequences of numbers have a limit. Therefore, not all functions have integrals.
If for a given function f on X the integral exists (i.e., the sequence of approximations
converges) we say that the function f is integrable on X .

0.6. Integration of functions of several variables. Now we will become more concrete
and explain what are the spaces X over which we will integrate. The first (and simpler)
class of such spaces are called regions in spaces Rn.

2 Here, “local contributions” are all V ol(Pi)·f(ci) for 1 ≤ i ≤ N , and “gathering” means that we add
them up.
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Understanding integration over regions is a basis for calculation of integrals over a more
general class of spaces called the submanifolds of Rn. (I will sometimes use an ad hoc
informal terminology and call submanifolds the “shapes” in Rns.)

0.6.1. Regions in Rn. A region R in Rn means a subset which is described by inequalities.

Integration over regions is covered in chapter 5 of the book. Here are some examples of
regions.

Example. Boxes B = B ( a1 a2 ··· an
b1 b2 ··· bn ). If one restricts each of the coordinates x1, ..., xn

to some interval, say a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2, ..., an ≤ xn ≤ bn; one obtains an n-
dimensional box which we may denote B = B ( a1 a2 ··· an

b1 b2 ··· bn ) since it depends on the numbers
a1, ..., an, b1, ..., bn, We define the n-dimensional volume V oln so that the the volume of the
n-dimensional box B = B ( a1 a2 ··· an

b1 b2 ··· bn ) is the product of its sides (b1 − a1)(b2− a2)· · ·(bn −
an).

Example. Balls Another example would be an open ball Br(a) in Rn with center a =
(a1, ..., an) ∈ Rn and radius r. It is given by all points x = (x1, ..., xn) ∈ Rn with∑n

1 (xi − ai)
2 < r2.

The version where the inequalities are not strict is called the closed ball Br(a). It is given
by all points x ∈ Rn with

∑n

1 (xi−ai)
2 ≤ r2. (The difference is that the closed ball also

contains the sphere Sr(a) in Rn with center a = (a1, ..., an) ∈ Rn. It consists all points
x ∈ Rn with

∑n

1 (xi − ai)
2 = r2.

Subexamples. In the case when the dimension is one, the open ball Br(a) is the open
interval (a− r, a+ r) around a real number a. The closed ball Br(a) is the closed interval
[a− r, a+ r].

In the plane R2, an open ball Br(a) is a disc with its boundary circle removed. It becomes
a closed ball when we do include the boundary circle. In R3 ...

0.6.2. Submanifolds in Rn. These are geometric objects that lie in Rn that are defined by
equations or a combination of equations and inequalities. We will learn to integrate over
submanifolds in chapter ??.

Example. 1. The sphere Sr(a) in Rn with the center a = (a1, ..., an) and radius r is given
by a single equation

∑n

1 (xi − ai)
2 = r2.

Example. 2. In R2 one uses a single equation F (x, y) = 0 to describe a curve in R2. For
instance if F (x, y) = y− f(x) the meaning of equation F (x, y) = 0 is the y = f(x), so the
curve is the graph of the function f(x).
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Example. 3. In R3 a single equation F (x, y, z) = 0 describes a surface in R3. For instance
if F (x, y) = z − f(x, y) the surface is the graph of the function f(x, y).

However, if in R3 one uses two equations one obtains a curve. For instance equation
x2 + y2+ z2 = 25 gives a sphere and the equation x = 4 gives a plane. The two equations
together give a circle in R3 – it has center at (4, 0, 0), it lies is the plane x = 4 and its
radius is 3. [You should convince yourself of this!]

0.6.3. The dimension of a region or a submanifold. The dimension dim(X) of any “space”
X is roughly the number of independent directions in X . We will use this vague definition
without explaining when two directions are deemed independent. (The precise version
uses the notion of independent vectors from linear algebra.)

Example. dim(Rn) is n because the coordinate axis provide n independent directions in
Rn one can move that one can move in.

Equations. The effect of imposing an equation is that it usually decreases the dimension
by 1.

This principle is illustrated in examples 1-3 in 0.6.2 above,

Inequalities. Imposing inequalities usually does not change the dimension.

Example. Let us consider this intuitively in an example. For instance a closed ball in
R2 is a disc given by inequality (x1 − a1)

2 + (x2 − a2)
2 ≤ r2. We say that it has two

dimensions because from most points in this closed disc we can move within the disc
in two “independent directions”. However, if instead we use the corresponding equation
(x1−a1)

2+(x2−a2)
2 = r2 we get a circle which has only one dimension since we can only

move on the circle is in one “independent direction” (the opposite of a given direction is
not viewed as “independent”),

Example. A region in Rn still has dimension n as inequalities do not diminish the number
of directions.

0.6.4. Tricks for calculation of integrals in higher dimension. Integration in higher di-
mension is more difficult because geometry is more complicated than in dimension one.
The heart of the course deals with the following three methods.

(1) The “projection method”, i.e., “iterated integrals”. This approach at-
tempts to reduce the calculation to objects of lower dimension (meaning to func-
tions of fewer variables).
The idea is that for regions R that of a special form (roughly, regions between

graphs of two functions), the integral over R can be calculated as an iterated
integral. By repeating this idea one ends with repeated integrate over intervals,
i.e., a higher dimensional integration is reduced to (repeated!) one dimensional
integration.
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This is explained in the chapter 5 of the book.
(2) Change of variables. In dimension one this is the second most useful tool for

integration. However, in higher dimension it will be of fundamental importance.
In dimension one, i.e., for functions of one variable all regions are intervals. So.

the main problem is to choose the change of variables that simplifies the integral.
Only then does one pay attention to how the change variable has transformed the
original interval of integration to a new one.
In Rn some regions are more complicated than others. A change of variables

transforms integration region R to another region R′ which may have a drastically
different shape. So, the first concern may be that the new region is simpler than
the original one.
The change of variables relates R′ and R by providing a correspondence of

points of R′ a and R. Such correspondence is called a mapping. The key aspect
of a mapping is its “stretching factor” which measures how the mapping affects
(“stretches”) the volume of a small box. We will see that this stretching factor
can be computed as the Jacobian) of the mapping.
This is explained in chapter 6 of the book. The Jacobians are best understood

in terms of the notion of differential forms (Section 8.5 in the book).
(3) The Fundamental Theorem of calculus. In dimension one this is basic method

for calculation of integrals. It says that the integral of a derivative of f on interval
[a, b] is the change of f on the boundary points of the interval:

∫ b

a

f ′(x) dx = f(b)− f(a).

When we integrate over a region R in Rn, the same principle continuous to hold.
However, now the boundary ∂R of the region R is a nontrivial geometric shape
(for instance the boundary of a ball is a sphere). Moreover, one has to consider
what is the useful notion of the derivative over R in this situation.
This material is treated in chapter 8.
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5. Integration over regions in Rn (Chapter 5.)

5.1. Integrals over regions. In 0.6 we have explained a general idea of of integration
over abstract “spaces”. Here we consider how this idea of integration works in the par-
ticular case when the space we are integrating over is a region R in some Rn.

5.1.1. In 0.6.1 we have introduced the notion of a region R in some Rn as a subset which
is described by inequalities.

The integral
∫
R
f of a function f over a region R was defined as a limit of its approxima-

tions of the form
N∑

1

V ol(Pi) f(ci)

where

• (i) one approximates the region R by small pieces P1, ..., PN whose size V ol(Pi)
can be computed (or approximated);

• (ii) on each piece Pi one approximates the function f by a constant function – the
value f(ci) of the function f at some chosen point ci in Pi.

What is special about regions R⊆Rn is that one has convenient ways to approximate
a region by small pieces, one chooses the pieces to be boxes (see ) or more generally
paralellopipeds which just means slanted boxes (see 5.1.3).

5.1.2. Boxes. These were our first examples of regions (see 0.6.1). A choice of numbers
a1, ..., an, b1, ..., bn defines the box B = B ( a1 a2 ··· an

b1 b2 ··· bn ) which consists of all points x =
(x1, ..., xn) ∈ Rn such that for i = 1, ..., n the ith coordinate is restricted to the interval
[ai, bi], i.e., ai ≤ xi ≤ bi.

We have also defined the n-dimensional volume V oln = V ol of such box as the product
of lengths of its sides

V oln[B ( a1 a2 ··· an
b1 b2 ··· bn )]

def
= (b1 − a1)(b2 − a2)· · ·(bn − an) =

n∏

i=1

bi − ai.

Example. In low dimensions these boxes are familiar shapes.

• A 1-dimensional box B ( a
b ) is just the interval [a, b] and the 1-dimensional volume

is length.
• Two dimensional boxes B (

a1 a2
b1 b2 ) are rectangles and the 2-dimensional volume is

area.
• The three dimensional boxes B (

a1 a2 a3
b1 b2 b3 ) are the usual boxes and the 3-dimensional

volume is the usual volume of a box.
• Beyond that we can not draw the higher dimensional boxes but we do have some
intuition based on the lower dimensional cases.
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We see that the notion of the n-dimensional volume of an n-dimensional box (meaning
the size of a box) is the obvious generalization of the usual ways of measuring size of
intervals, rectangles and ordinary boxes.

5.1.3. Paralellopipeds, i.e., slanted boxes.

Remark. These will be used in the chapter 6 on Change of Variables.

For an n-tuple of vectors v = (v1, ..., vn) with vi ∈ Rn, we define the parallelopiped
P (v1, ..., vn) as the set of all linear combinations c1v1 + · · · + cnvn of of vectors vi with
coefficient numbers ci between 0 and 1 :

P (v1, ..., vn)
def
= {c1v1 + · · ·+ cnvn; 0 ≤ c1, ..., cn ≤ 1}.

Example. Recall the basic or standard vectors e1, ..., en in Rn defined by e1 = (1, 0, ..., 0),
e2 = (0, 1, ..., 0) and so on until en = (0, ..., 0, 1). Notice that if we multiply each ei by a
number bi ≥ 0, then the parallelopiped Pt(b1e1, ..., bnen) is the box B

(
0 ··· 0
b1 ··· bn

)
consisting

of all x ∈ Rn with 0 ≤ xi ≤ bi. �

Lemma. The volume of the parallelopiped P (v1, .., vn) is

| det(v1, .., vn)|

the absolute value of the determinant det(v1, .., vn) of the nxn matrix (v1, ..., vn) with
columns vi.

Proof. Since this is a statement in linear algebra we will not check this statement in
general, i.e., for all choices of vectors v1, ..., vn. We will only consider two classes of
examples:

(A.) In dimension 3 this determinant formula for the volume of a slanted box is a standard
topic in MATH233. This also implies the cases of dimensions that are ≤ 3.(3)

(B.) An example in any dimension is the case when the vectors vi are multiples of vectors
ei. Then P (b1e1, ..., bnen) is the box B

(
0 ··· 0
b1 ··· bn

)
. So we know that the volume is (b1 −

0)· · ·(bn − 0) = b1· · ·bn. This is the same as the determinant

det(b1e1, ..., bnen) = det




b1 ··· 0 0
0 b2 ··· 0
... ···

...
0 ··· 0 bn


 = b1· · ·bn. �

3 For n = 1 the formula is obvious. Say, in dimension n = 2 V ol2([P (v1, v2)]) is the area of the paral-
lelogram P (v1, v2)] with sides given by vectors v1, v2. This is the same as the volume of the parallelopiped
P (v1, v2, e3) in dimension 3 since its base is the parallelogram P (v1, v2)] and the height is 1. So, it is
given by det(v1, v2, e3) which is (by expansion in the 3rd row or column) the same as det(v1, v2).
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5.1.4. Beyond boxes. However, once we define integrals using boxes we will know in prin-
ciple how to compute the volume of any region B since V oln(B) will be defined as

∫
B

1,
the integral of the constant function 1.

Then we will be able to calculate integrals
∫
R
f by subdividing the space R into small

pieces Bs of any shape convenient for a given situation (so Bs will not necessarily be “in
the shape of a box”). we will use the same strategy as above and the formula for the
corresponding approximation will be a sum of terms V oln(Bs)f(cs) which will now makes
sense.

The reason that initially we can use only boxes is that at the moment we only know how
to define the volume of a box.

However, once we define integrals using boxes we will know in principle how to compute
the volume of any region B since V oln(B) will be defined as

∫
B

1, the integral of the
constant function 1.

Remark. For now one can ignore this more general subdivision strategy, it will be used
later in chapter 6.

5.1.5. Approximation of regions by boxes. When R is a region in Rn there is a standard
way to “almost fill up R by small boxes”.

We say that a region R in Rn is bounded if it lies in some (sufficiently large) box B =
B ( a1 a2 ··· an

b1 b2 ··· bn ).

(1) For such region R we start by creating the subdivision of the box B on the “scale
1/N” for any N = 1, 2, 3, .... For this we divide each of the intervals [ai, bi] (for
i = 1, ..., n) that form the sides of the box into N subintervals. This is done by
choosing points ai = α0 < α1 < · · · < αn = bi. More precisely, since we have
to make this choice for all i between 1 and n, we will add index i to the points
αs in order to remember that these are the division points in the ith direction.
So, we have ai = α0

i < α1
i < · · · < αn

i = bi. The simplest way is to choose all
the subintervals of the same length, then in the ith direction this length will be
(bi − ai)/N .

(2) These subdivisions of the intervals Ii
def
= [ai, bi] into smaller intervals

Isi
def
= [αs−1

i , αs
i ] for s = 1, ..., N , creates a subdivision of our box B with sides

Ii = [ai, bi] into smaller boxes whose iθ side will be one of the subintervals Isi .
Since we have to choose subintervals in each of n directions, the choice will be

given by an n-tuple of integers s = (s1, ..., sn) with each si between 1 and N .
We can denote the corresponding “small box” by Bs = Bs1,...,sn, its sides are the
subintervals Is11 , Is22 , ..., Isnn .

(3) Now the “small boxes” that we are going to use in the N th approximation of the
integral will be some of the boxes Bs1,...,sn with 1 ≤ s1, .., sn ≤ N – the ones that
lie in the region R.
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5.1.6. Conclusion. We have now a workable strategy of calculating the integral
∫
R

f over
a region R.

We choose a box B that contains R. to get an N th approximation of the integral we
subdivide B into smaller boxes Bs on “scale” 1/N , and we throw away the ones that do
not lie in our region R.

Next, we choose a point cs in each of the remaining boxes Bs and we get an N th approxi-
mation which is the sum of f(cs)V oln(Bs) over the remaining boxes. Finally, the integral
is the limit of N th approximations as N → ∞.

Notation. Since the volume dV of a small box B
(

x′

1
··· x′

n

x′′

1 ··· x′′

n

)
is (x′′

1 − x′′
1)· · ·(x′′

n − x′′
n) we

will denote it dV = dx1· · ·dxn where dxi stands for a small change x′′
i − x′′

i of the ith

variable.

5.2. Existence of integrals. It is a priori not clear that the integral of a given function
f over a region R in Rn exists , i.e., that the above limit exists.(4)

In this respect we are saved by the following observation (we will make it more precise
and explain it later).

Theorem. If the region R in Rn is closed and bounded and the function f is continuous
on R then the integral

∫
R

f exists. �

Remarks. (0) We have defined “bounded” above. A region is said to be closed if it contains
all its boundary points. For instance a closed ball is a closed region but an open ball s
not. So, we see that a region is closed when its description by inequalities only uses the
non-strict inequalities.

(1) This existence result for integrals is very strong because in particular it asserts that
all possible choices of approximations converge to the same number

∫
R

f .

We will occasionally make use of this ability to tailor the choices of approximations as it
suits us.

5.3. Computation of higher dimensional integrals by iterated integrals (“pro-
jection method”). The idea is that often for a region R in some Rn one can choose
one

4 Remember that some sequences of numbers do not have a limit, i.e., they do not approach a single
number, for instance limn→∞

n+1
n

= limn→∞ 1 + 1
n
= 1 but limn→∞ (−1)n does not exist because the

sequence alternates between ±1 and does not approach a single number.
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5.3.1. Projections. The projections that we are going to use are fromRn
x1,...,xn

toRn−1
x1,...,xn−1

.

To a point a ∈ Rn
x1,...,xn

we associate a point pr(a) ∈ Rn−1
x1,...,xn−1

simply by erasing the last
coordinate, i.e., pr(a1, ..., an) = (a1, ..., an−1).

The projection pr(R) of a subset R⊆Rn
x1,...,xn

is the image of R under the projection, i.e.,
the set of all points pr(a) where a ∈ R.

Example. The following will be our running example. For the disc D given in R2
x,y by

radius r and center at (a, b) (i.e., by (x− a)2 + (y − b)2 ≤ r2), the projection pr(D) of D
to the x-axis, is the interval [a− r, a+ r] on the x-axis (i.e., by (x− a)2 ≤ r2). �

The fiber Rb of R at a point b = (b1, ..., bn−1) in Rn−1
x1,...,xn−1

is the set of all points a ∈
Rn

x1,...,xn
that project to b. So, these are the points a = (a1, ..., an−1, an) in R such that

pr(a) = (a1, ..., an−1) equals b = (b1, ..., bn−1). Then a = (b1, ..., bn−1, an).

So, the fiber Rb of R at b can be viewed as consisting of all numbers an such that
(b1, ..., bn−1, an) lies in R.

Example. Let us choose a point x0 in the interval [a − r, a + r]. Then the fiber Dx0
of

the disc D at x0 consists of all numbers y0 such that (x0, y0) lies in the disc D, i.e.,
(x0 − a)2 + (y0 − b)2 ≤ r2.

To understand the fiber Dx0
recall that the boundary of the disc D is the circle C given

by (x − a)2 + (y − b)2 = r2. We will first find y0’s such that (x0 − a)2 + (y0 − b)2 = r2.

For this we solve for y0 and we get y0 = b±
√

r2 − (x0 − a)2.

Now we see that in order that (x0 − a)2 + (y0 − b)2 ≤ r2 we need

b−
√

r2 − (x0 − a)2 ≤ y0 ≤ b+
√

r2 − (x0 − a)2.

So, the fiber Dx0
of the disc D at the point x0 on the x axis is the interval

Dx0
= [b−

√
r2 − (x0 − a)2, b+

√
r2 − (x0 − a)2].

5.3.2. Projection method. This method applies for a region R in some Rn if for each b in
the image pr(R) of R under the projection, the fiber Rb of R at b is an interval.

The end points of this interval depend on b so they are some functions g±(b) of b. Then
the interval is [g−(b), g+(b)].

This means that the region R lies above its projection pr(R) and between the graphs of
two functions xn = g±(b1, ..., bn−1).

Theorem. Suppose that the fibers of the projection of the region R are intervals
[g−(b), g+(b)] given by tw=o functions g±(b). In other words that the region R is the
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part of Rn that lies above the projection pr(R) and between the graphs of two functions
xn = g±(b1, ..., bn−1). Then
∫

R

f(x1, ..., xn) dV
n(x1, ..., xn) =

∫

pr(R)

[

∫ xn=g+(b1,...,bn−1

xn=g−(b1,...,bn−1

f(x1, ..., xn) dxn] dV
n−1(x1, ..., xn−1).

Example. We finish the running example by wring an integral over a disc as an iteration
of integrals over intervals:

∫

D

f(x, y) dV =

∫

pr(D)

[

∫ y=g+(y)

y=g−(y)

f(x, y) dy] dV 1(x) =

∫ a+r

a−r

∫ y=b+
√

r2−(x−a)2

b−
√

r2−(x−a)2
f(x, y) dy dx.

Remarks. (0) The effect of the above formula is that we have replaced integration over
a region R in Rn by an integration over a region pr(R) in Rn−1. So, one has decreased
the dimension by one at the price of calculating an additional ordinary integrals, i.e., an
integral over an interval.

(1) Instead of always using the above projection along the last variable, for any i ∈
{1, ..., n} the method can use the projection pri(x1, ..., xn) =)x1, ..., xi−1, xi+1, ..., xn) along
the ith variable.

(2) One can try to repeat this method in order to reduce an integral over a region in Rn to
smaller and smaller dimension until it becomes an n-fold iteration of ordinary integrals,
i.e., integrals over intervals.

(3) Sometimes no projection pri works, i.e., the fibers are not intervals. Then one cuts
the region R into nicer pieces for which the method works.

(4) It may also happen that one several projections works (say pr2, pr5, pr7). Then one
uses the projection that seems to give the easiest integral.

5.3.3. Proof of the projection theorem 5.3.2. The theorem states the equality
∫

R

f(x1, ..., xn) dV
n(x1, ..., xn) =

∫

pr(R)

[

∫ xn=g+(x1,...,xn−1)

xn=g−(x1,...,xn−1)

f(x1, ..., xn) dxn] dV
n−1(x1, ..., xn−1).

The LHS means that we are gathering local contributions over pieces of R to the total
amount of some quantity Q spread over R with density f . The RHS means that we
organize this gathering operation in the following way:

The first step is that at each point (b1, ..., xn−1) in the region pr(R) we gather all contri-
butions that in R and above the point (x1, ..., xn−1), i.e., that can be found in the fiber
R(x1,...,xn−1). This fiber is an interval [g−(x1, ..., xn−1), g+(x1, ..., xn−1)] so the effect of the
gathering over this interval is the integral

∫ xn=g+(x1,...,xn−1)

xn=g−(x1,...,n−1)

f(x1, ..., xn) dxn
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over this interval. In this integration variables x1, ..., xn−1 are constants.

In the second step we gather the contributions from all fibers R(x1,...,xn−1), i.e., at all
points (x1, ..., xn−1) in pr(R). This gathering procedure is the integral over pr(R). �

5.4. Change of order of integration.
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6. Change of Variables Formula (Chapter 6.)

6.0.1. Mappings. A change of variables in an integral
∫
R
f =

∫
· · ·
∫
R
f(x1, ..., xn) dx1· · ·dxn

over some region R in Rn means that (as in the 1-dimensional case) we will view
coordinates xi of points in R as functions xi = Ti(u) = Ti(u1, ..., un) of coordinates
u = (u1, ..., un) in some other region R′ in Rn.

The geometrically point of view on such change of variables is that it constitutes amapping
T from the region R′ to the region R. (The functions Ti are the component functions of
the mapping T .) Since mappings are a special class of the general notion of functions we
start with an introduction to language of functions in 6.1.2 and then we consider mappings
in 6.2.

6.0.2. Mappings and 1-1 correspondences. We want to equate integrals over two regions
R and R′ that are related by a mapping T from R′ to R. For the integrals to be the same,
the mapping T has to provide a very strong relation between the regions R′ and R. What
we need is essentially that anything done in R can be repeated in R′ using T and vice
versa. We can say that such relation makes “R and R′ contain the same information” or
that it makes “R and R′ into two equivalent ways of viewing the same thing”.

We call such mappings “1-1 correspondences” T from R′ to R. They are introduced in
6.1.4 in the generality of arbitrary functions. Then we show later in 6.3.5 that integrals
can be compared when the mapping T is a 1-1 correspondence and even when it is only
“close” to a 1-1 correspondence (as long as the error appears on the set of volume zero).

6.0.3. The stretching factor. So far we have noticed that having a map T from R′ to R
which is (close to) a 1-1 correspondence allows us to relate integrals in R′ and R. However,
this comparison involves a “stretching factor” function which tells us how the mapping T
distorts the volume.

The calculation of the stretching factor (see 6.5), involves an extension of the notion of
the rate of change (i.e., differentiation) to mappings. The notion of the differential of a
mapping is introduced (and calculated) in 6.3.

6A. Differentiation of mappings from Rm to Rn

6.1. Functions.

6.1.1. Sets. A set is a mathematical word for a collection of things. The theory of sets is
very simple, it systematically talks of what we can do with collections of objects.

Its basic advantage organizational and notational: the set theoretic notations allow us to
replace some parts of sentences with a few simple symbols.

A deeper usefulness comes from the fact that all mathematical objects can be described in
terms of sets – as systems of related sets. The point is that we are able to describe highly
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sophisticated (and therefore somewhat abstract and confusing) mathematical objects pre-
cisely, using the language of sets. There is also a disadvantage – presenting mathematical
objects in terms of sets may seem obscure to uninitiated.

6.1.2. Functions. A function f from a set A to a set B is a rule which assigns to each
element a ∈ A certain (unique) element of B, we denote this element f(a). One can think
of f as a “motion” that moves elements of A into B.

For psychological reasons, in other to distinguish between different kinds of functions,
functions will also be called maps or mappings or transforms.

Example. In calculus we get familiar with with functions f from an interval [a, b] to the
set R of real numbers. They are usually described by a formula for the values f(s) at
points s in the interval [a, b].

6.1.3. Composition of functions. For a configuration of functions A
f−→B

g−→C such that
the second function starts where the first one has arrived, one defines the composition

function A
g◦f−−→ C from the first set to the last one, by sending any element a ∈ A

to (g◦f)(a) def
= g(f(a)), So, one first applies to a ∈ A the “closer” motion f to get an

element f(a) of B, and then one applies the “farther” motion g to the result f(a), and
this produces g(f(a)). (Here “closer” and “farther” refer to the symbol (g◦f)(a) – in this
symbol f is closer to a and g is farther away.)

6.1.4. 1-1 correspondences. A function f : A → B is said to be a 1-1 correspondence (also
called bijection) if it

gives a complete translation between elements of A and B so that now sets A and B
contain “the same information”, i.e., anything done in A can be redone in B and vice

versa.

This amounts to requiring that for each b ∈ B there exists precisely one a ∈ A such that
f(a) = b. then we say that that elements a ∈ a and b in B correspond under the function
f .

We will now analyze this concept in details.

A function f : A → B is said to be 1-1 (or an injection) if it distinguishes elements of
A. This means that if for a, b ∈ A we have a 6= b then f(a) 6= f(b). Equivalently,that
f(a) = f(b) implies that a = b. (The meaning of both formulations is that the only way
the images f(a) and f(b) can be the same is if the original elements a, b are the same.)

A function f : A → B is said to be onto (or a surjection) if it hits every element of B,
i.e., for each b ∈ B there exists some a ∈ A such that f(a) = b.
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Lemma. f is a 1-1 correspondence iff it is onto and 1-1.

Proof. If f is onto then for each b ∈ B there exists some a ∈ A such that f(a) = b. If f
1-1 then such b is unique. �

6.2. Functions in calculus (mappings).

6.2.1. From Rn to R. In multivariable calculus one studies functions f from a subset R
of some Rn to the set R of real numbers.

Example. When we use coordinates x1, ..., xn on Rn then each coordinate xi is a function
from Rn to R. �

We will sometimes denote by Rn
x1,...,xn

the space Rn with coordinates xi (“a copy of Rn

with coordinates xi”).

A point p in Rn is an n-tuple of numbers (p1, ..., pn) (here, pi is the value of the i
th coordi-

nate function xi on the point p). So, we usually describe the values f(p) = f(p1, ..., pn) of
the function f on a point p ∈ Rn by a formula f(x1, ..., xn) written its of the coordinate
functions x1, ..., xn. To get the value f(p) at a point p we need to plug in pi for xi in
the formula for f(x1, ..., xn). For this reason we say that f is a function of n variables
x1, ..., xn.

6.2.2. From Rm to Rn (mappings between regions). We will now start to use more com-
plicated functions T : S → R where S is a subset of some Rm and R is a subset of some
Rn. To emphasize that we will think of such functions “geometrically” we will call them
mappings (or just maps).

We write formulas for such mappings T in terms of coordinates u1, ..., um on Rm and
x1, ..., xn on Rn.

The value T (s) of the mapping T on the point s ∈ S is a point in Rn, so it is an n-tuple
of numbers and these numbers are the coordinates xi(T (s)) of the point T (s). The way
these coordinates depend on the point s constitutes a function from S to R, this is the
composition of functions x◦T (the value (xi◦T )(s) of the composition xi◦T is xi(T (s))).

We will denote these functions by Ti
def
= xi◦T : S → R. Since T (s) =(

x1(T (s), ..., xn(T (s))
)

=
(
T1(s), ..., Tn(s)

)
we call the functions Ti the compo-

nent functions of T . Therefore, we can think of the mapping T : S → Rn as an n-tuple
of its component functions Ti.

It will be convenient to write this n-tuple vertically as a column vector T =

( T1

...
Tn

)
.
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Remark. Finally, we will recall that a point s in S lies in Rm so it is an n-tuple of numbers
s = (s1, ..., sm) with si = ui(s). Then we can write the mapping T in more details:

T (s) =

(
T1(s)

...
Tn(s)

)
=




T1(s1,...,sn)
T2(s1,...,sn)

...
Tn(s1,...,sn)



 .

When we want to emphasize that a point in S depends onm coordinate functions u1, ..., um

we rewrite the above formula for T as T (u1, ..., um) =




T1(u1,...,um)
T2(u1,...,um)

...
Tn(u1,...,um)



.

Remark. One of shorthands in calculus is to denote the component functions Ti = xi◦T
just by xi. This is of course confusing (since the symbol xi is already used to denote a
coordinate function on Rn) but it is also convenient for writing simple formulas. Then

the above formula for T is now written as T (u1, ..., um) =




x1(u1,...,um)
x2(u1,...,um)

...
xn(u1,...,um)



.

Example. [Polar coordinates.] This is a standard example of a mapping T from R2
r,θ to

R2
x,y. So, the variables x1, x2 in the target of T are now called x, y and the variables u1, u2

in the source are now denoted r, θ. The mapping T (r, θ) is given by the usual relation of
Cartesian and polar coordinates

T (r, θ) =
(

x(r,θ)
y(r,θ)

)
=
(

r cos(θ)
r sin(θ)

)
. �

(The component functions of T are T1(r, θ) = x(r, θ) = r cos(θ) and T1(r, θ) = y(r, θ) =
r sin(θ).)

Then the mapping T sends a point with Cartesian coordinates (r, θ) to the point T (r, θ)
which has polar coordinates r and θ. �

6.3. The differential of a mapping T from Rm to Rn. The differential dT (a) will be
a way of recording the rates of change (DvT )(a) of T at the point a and with respect to
all velocity vectors. We find that (DvT )(a) is calculated in terms of the matrix (∇T )(a)
which is given by all partial derivatives.

6.3.1. The differential of a function f from Rm to R (recollections from 0.4). The rate of
change of a function f(x) of one variable at x = a is a number called the derivative f ′(a)
of f(x) at a.

We have already extended the idea of the rate of change (in 0.4) to functions f : Rn → R

from Rn to the real numbers. The rate of change of such function at a point a = (a1, ..., an)
is called the differential of f at a and is denoted df(a) (or daf). Because one can move
from the point a in many directions – described by vectors v ∈ Rn – the differential is
not just a number but a new function from Rn to R. The value at a vector v ∈ Rn is the
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rate of change of the function f when one is moving from the point a with the constant
velocity vector v :

(daf)v
def
= (Dvf)(a)

def
= lim

h→0

f(a+ hv)− f(a)

h
.

This new function is in some sense very simple: it can be described by a single vector
∇af (called the gradient vector for f at a) using the dot product

(daf)v = ∇af · v.

The gradient vector is explicitly known – its components are the partial derivatives at a

∇af =
( ∂f
∂x1

(a),
∂f

∂x2
(a), ....,

∂f

∂xn

(a)
)
.

6.3.2. The rate of change (DvT )(a) at the point a when one is moving from the point with
a constant velocity vector v. For a mapping T from Rm to Rn the rate of change at a
point a ∈ Rm and with respect to the velocity velocity vector v is defined in the same way

(DvT )(a)
def
= lim

h→0

T (a+ hv)− T (a)

h
.

Here, T (a + hv)− T (a) is the change of values of T when one moves in time h from the
point a to the point a + hv. Notice that since values of T are in Rn we are subtracting
vectors in Rn and the change is again a vector in Rn. Next, the vector 1

h
(T (a+hv)−T (a))

is the average rate of change of values of T from a to a + hv. Finally, the limit h → 0
says that we make the time interval [0, h] very small, so as h approaches 0, the average
rate of change approaches the instantaneous rate of change at a.

Notice that in the end (DvT )(a) is a vector in Rn. We will now find a simple formula for
this rate of change vector.

In order to write a formula for the rate of change (DvT )(a) of the mapping T with respect
to a velocity vector v, we recall how one writes the mapping T in terms of its component

function Ti as T =




T1(a)
T2(a)

...
Tn(a)


.

Lemma. The rate of change of the mapping T is a vector whose components are the rates
of change of the component functions Ti of T :

(DvT )(a) =




(DvT1)(a)
(DvT2)(a)

...
(DvTn)(a)


 =




(∇T1)(a) · v
(∇T2)(a) · v

...
(∇Tn)(a) · v


 .
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Proof.

(DvT )(a) = lim
h→0

T (a+ hv)− T (a)

h
= lim

h→0

1

h

(



T1(a+ht)
T2(a+ht)

...
Tn(a+ht)


−




T1(a)
T2(a)

...
Tn(a)


)

= lim
h→0




1

h
[T1(a+ht)−T1(a)]

1

h
[T2(a+ht)−T2(a)]

...
1

h
[Tn(a+ht)−Tn(a)]


 = lim

h→0




1

h
[T1(a+ht)−T1(a)]

1

h
[T2(a+ht)−T2(a)]

...
1

h
[Tn(a+ht)−Tn(a)]


 =




(DvT1)(a)
(DvT2)(a)

...
(DvTn)(a)



 .

�

6.3.3. The differential daT of a mapping T . Again, we package the information of the
rates of change of T at a with respect to each velocity vector v into a single function daT
called the differential of the mapping T at the point a. This functions is (again, as for the
functions f from Rn to real numbers,) a function on vectors v in Rm. The value of the
differential at a vector v ∈ Rm is the rate of change (DvT )(a) of T when we are moving
away from a at velocity v

[dT (a)](v) = (DvT )(a)
def
= lim

h→0

T (a1 + hv1, ..., an + hvn)− T (a1, ..., an)

h
.

6.3.4. The matrix ∇T (a) of the differential daT . We define the nxm matrix ∇T (a) (i.e.,
with n rows and m columns), so that the entry in the ith row and the jth column is the
partial derivative ∂Ti

∂uj
(a) at the point a of the ith component function Ti with respect to

the jth coordinate uj, i.e.,

∇T (a)
def
=




∂T1

∂u1
(a) ∂T1

∂u2
(a) · · · ∂T1

∂um
(a)

∂T2

∂u1
(a) ∂T2

∂u2
(a) · · · ∂T2

∂um
(a)

...
∂T1

∂u1
(a) ∂T2

∂u2
(a) · · · ∂Tn

∂um
(a)


 .

Notice that the ith row is the gradient∇Ti(a) =
(

∂Ti
∂u1

(a)
∂Ti
∂u2

(a) ···
∂Ti
∂um

(a)
)
of the ith coordinate

function Ti. So we can symbolically write this as a column vector whose entries are
gradient vectors:

∇T (a) =




∇T1(a)
∇T2(a)

...
∇Tn(a)


 .
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Lemma. ∇T (a) is the matrix corresponding to the operator dT (a) in the sense that for

any vector v (viewed as a column vector v =

( v1
...
vm

)
) in Rm, the value of the differential

dT (a) on v is given by the product of a matrix and a vector

[(dT )(a)v = (∇T )(a) v.

Proof. When one recalls how matrices multiply with vectors, then the ith entry of the
product (∇T )(a) v of a matrix (∇T )(a) and a vector v, is just the dot product of the ith

row (∇Ti)(a) of the matrix ∇T (a) with the vector v. This gives a formula for the product

(∇T )(a) v =




(∇T1)(a) · v
(∇T2)(a) · v

...
(∇Tn)(a) · v


 .

However, this is exactly the above formula for the rate of change DvT (a) (which is the
same as (DvT )(a)). �

6.3.5. The Jacobian of a mapping. When for a mapping T from Rm to Rn the dimen-
sions are the same, i.e., m = n, then (∇T )(a) is a square matrix and we can take its
determinant. We call it the Jacobian of the mapping T at a and we denote it

∂(x1, ..., xn)

∂(u1, ..., un)
def
= det[(∇T )(a)] = det




∂T1

∂u1
(a) ∂T1

∂u2
(a) · · · ∂T1

∂um
(a)

∂T2

∂u1
(a) ∂T2

∂u2
(a) · · · ∂T2

∂um
(a)

...
∂T1

∂u1
(a) ∂T2

∂u2
(a) · · · ∂Tn

∂um
(a)


 .

Remark. Recall that one sometimes simplifies the notation for the component functions
Ti ofT to just xi. Then the Jacobian is

det




∂x1

∂u1
(a) ∂x1

∂u2
(a) · · · ∂x1

∂um
(a)

∂x2

∂u1
(a) ∂x2

∂u2
(a) · · · ∂x2

∂um
(a)

...
∂x1

∂u1
(a) ∂x2

∂u2
(a) · · · ∂xn

∂um
(a)




and this is the reason why it is denoted ∂(x1,...,xn)
∂(u1,...,un)

.

6B. Change of variables: 1-1 correspondences of regions

6.4. Change of variables as a mapping between regions. We consider an integral∫
R

f =
∫
R

f(x1, ..., xn) dx1· · ·dxn over some region R in Rn. So, region R lies in
Rn

x1,...,xn
, a copy of Rn where we use coordinates x1, ..., xn.
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A change of variables means that we will view coordinates xi of points in R as functions
xi = Ti(u) of coordinates u = (u1, ..., un) in some other region R′ in Rn

u1,...,un
.

After we have chosen the change of variables functions Ti(u) we still need to know the
region R′ in Rn

u1,...,un
that corresponds to our original region R in Rn

x1,...,xn
.

For this it is convenient to think of the n-tuple of functions T1(u), ..., Tn(u) from Rn
u1,...,un

to real numbers as a single function T from Rn
u1,...,un

to Rn
x1,...,xn

. The value T (u) ∈ Rn
x1,...,xn

is an n-tuple of numbers which we will denote as a column vector

T (u) =




T1(u)
T2(u)

...
Tn(u)


 =




T1(u1,...,un)
T2(u1,...,un)

...
Tn(u1,...,un)


 .

While the mapping T is presented here by a formula, we will need to think of it geometri-
cally – as a motion of points from Rn

u1,...,un
to Rn

x1,...,xn
. Indeed for any point b = (b1, ..., bn)

in Rn
u1,...,un

, the map produces a new point denoted T (b) =

(
T1(b)

...
Tn(b)

)
in Rn

x1,...,xn
, with

coordinates Ti(b) = Ti(b1, ..., bn). So, a map T as above is just a way of “pushing” points
b in Rn

u1,...,un
to points T (b) in Rn

x1,...,xn
.

6.4.1. The (almost) 1-1 correspondences. In order to translate integration over R in co-
ordinates xi into an integral in coordinates uj we need to know a region R′ in Rn

u1,...,un

that “corresponds” to R under the change of coordinates given by the mapping T .

Here, “corresponds” should mean that

• T maps the region R′ to the region R (i.e., any point b ∈ R′ is sent to the point
T (b) which lies in R);

• Map T from R′ to R is a 1-1 correspondence from R′ to R, i.e., any point a ∈ R
is hit by precisely one point a′ in R′ in the sense that a = T (a′).

We see that “T is a 1-1 correspondence from R′ to R” means that T can be used to
translate any information about R′ into information about R and vice versa.

Here is an example of the change of variables to polar coordinates.

Example. Consider the region R in the xy plane R2
x,y described by lying in the wedge

between angles θ1 and θ2 and between the circles of radii r1 and r2 (centered at origin).
(Here θ1 ≤ θ2 and r1 ≤ r2.)

We will use the change of variables to polar coordinates. It is given by the mapping

T =
(

x(r,θ)
y(r,θ)

)(
r cos(θ)
r sin(θ)

)
, Under this mapping our region R in the x, y plane corresponds to

The region R′ in the r, θ plane R2
r,θ given by r1 ≤ r ≤ r2 and θ1 ≤ θ ≤ θ2 is a rectangle.

The mapping T takes R′ to R (because it maps the point in R′ with Cartesian coordinates
(r, θ) to a point in R2

x,y with polar coordinates r, θ.)
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Is this a 1-1 correspondence? First, it is onto, i.e., by applying T to all points in R′ we
do hit all points in R. However, the 1-1 property is here more subtle because if θ′ and θ
differ by a multiple of 2π then T is the same on (r, θ) and (R, θ′). Therefore, T : R〉 → R
is a 1-1 correspondence iff θ2 − θ1 < 2π. �

6.4.2. Volume zero spaces do not matter for integrals. This is the observation that if we
remove from a region R in Rn a subset A for which the volume V oln(A) is zero, the
integral does not change.

When n = 1 this means that we can remove several points form an interval (V ol1 is
length and the length of a point is 0). When n = 2 we can remove several curves from a
2-dimensional region in the plane (V ol2 is are and the area of a curve is 0). When n = 3
we can remove several surfaces from a 3-dimensional region in space (V ol3 is the usual
volume and the volume of a surface is 0).

The reason is that the integral
∫
R
f is calculated approximately as a sum of terms

V oln(B)·f(c) for small boxes B in R (and a choice of a point c in B). So, integral
over n-dimensional regions R is based on calculating the n-dimensional volume of pieces
of R. Therefore, a subset A of R that has volume zero will not affect the integral.

Example. The polar coordinates change of variables (the example in 6.4.1) is valid even
in the case when θ2 − θ1 = 2π ! (For instance in the case θ1 = 0 and θ2 = 2π which is
often of interest!)

In this case T : R′ → R is not a 1-correspondence because T has the same values at θ = 0
and at θ = 2π. However, the failure of being a 1-1 correspondence is concentrated to the
segment where θ = θ2 (and r1 ≤ r ≤ r2). Since this segment has measure zero it does not
influence the integral! �

This example shows that

• In order that the mapping T : R′ → R can be used for a change of variable in
integration it suffices that T is “close” to being a 1-1 correspondence in the sense
that T becomes a 1-1 correspondence after removing from R and R′ subsets of
volume zero.

6.5. Recollections on the 1-dimensional case. The change of variable is a standard

method for computing 1-dimensional integrals
∫ b

a
f(x) dx. The first step is to consider

x as a function x = x(u) of another variable u. Then formally for indefinite integrals the
change of variables formula comes from dx = x′(u) du. This gives

∫
f(x) dx =

∫
f(x(u)) dx(u) =

∫
f(x(u)) x′(u) du.
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However, for definite integrals we also need to change boundaries of integration

∫ b

a

f(x) dx =

∫ b′

a′
f(x(u)) x′(u) du

where the new boundaries of integration a′, b′ are chosen so that

• x(a′) = a and x(b′) = b and
• as u travels the interval [a′, b′] starting from a′ and ending at b′, its image x(u)
travels the interval [a, b] from a to b and it visits each point in [ab] precisely once.

These conditions ensure that the map u 7→ x(u) really gives a strong relation (a “1-1
correspondence”) between intervals [a′, b′] and [a, b] so that the integrals can be compared.

Remark. When calculating a 1-dimensional definite integral using the change of variable,
one can usually avoid finding the new boundaries of integration. Rather,

• one usually calculates a formula for the indefinite integral
∫

f(x(u)) x′(u) du ;
• this formula is a function of u and next we translate it into a function of x (by
expressing in this formula u in terms of x). Then

• one calculates the definite integral using the original boundaries of integration.

However, the indefinite integrals in several variables need not be as useful. For this reason
we usually have to calculate the boundaries of integration in several variables.

6C. Change of variables: The stretching function of a mapping is its
Jacobian

6.5.1. The stretching function. Consider a mapping T : R′ → R which is a 1-1 correspon-
dence. In order to compare integrals over R and R′ we will define the stretching function
J on R′. It measures how the mapping T distorts the volume.

First for a box B in R′ we define the average stretching factor over the box B as

J (B)
def
=

V oln(T (B))

V oln(B)
,

the ratio of the volumes of the image T (B) and of the of the volume of the original box B.
Then we define the value J (b) of the function J at a point b ∈ R′ as the limit of average
stretching factors J (B) over boxes B that contain the point b as the boxes become smaller
and smaller (so that the average stretching of the volume over a box approximates better
and better the stretching of the volume at b)

J (b)
def
= lim

→ boxes B ∋ b getting small
J (B).
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While the average stretching J (B) over a given box may be difficult to calculate (it
involves integration) the stretching function will be easy to compute (this involves differ-
entiation). We will do this in 6.5.3).

6.5.2. Comparison of integrals over R and R′.

Lemma. If T : R′ → R is a 1-1 correspondence (up to volume zero) then it gives a change
of variable formula

∫
R

f =
∫
R′

f◦T ·J , i.e.,
∫

R

f(x1, ..., xn) dx1· · ·dxn =

∫

R′

f(T (u1, ..., un)) ·J (u1, ..., un) du1· · ·dun.

Proof. I. Approximations of regions R′ and R. Let us approximate R′ by a bunch of
small boxes B1, ..., BS. The image T (Bi) of the box Bi under the mapping T is defined
as the set {T (b); b ∈ Bs} of all values T (b) of the mapping T on points b in the box
Bs. It is a subset of R obtained my moving all points in B by T . Because mapping
T is a 1-1 correspondence between R′ and R it translates the the approximation of the
region R′ by the boxes B1, ..., BS. into an approximation of the region R by the images
T (B1), ..., T (BS) of these boxes under T .

II. Approximations of integrals over R via R′. We can use this approximation of R
to approximate the integral

∫
R

f by the sum
∑

s=1S f(cs)V oln(T (Bs)) where we choose
one point cs in each T (Bs).

In order to reduce the computation in R to a computation in R we notice that each cS is
of the form c′s for a unique point c′s in Bs. We get

∫

R

f ∼
∑

s=1S

f(T (c′s)) V oln(T (Bs)).

III. The average stretching factor J . In order for this sum to be related to an
integral over R′, we would like to have factors V oln(Bs) rather than V oln(T (Bs)). So, we
rewrite it as∫

R

f ∼
∑

s=1S

f(T (c′s)) J (Bs) V oln(Bs) for J (Bs)
def
=

V oln(T (Bs))

V oln(Bs)
.

Here, the average stretching factor factor J (Bs) for T on Bs measures how the mapping
T distorts the volume on the box Bs.

III. The stretching function J . The last step is to turn the average stretching factors
for boxes J into an actual function J on R′. The the definition of J above, the average
stretching J (Bs) over a box Bs is( well) approximated by the value J (c′s) of the function
J at a point in the small box Bs. So, we have
∫

R

f ∼
∑

s=1S

f(T (c′s)) J (Bs) V oln(Bs) ∼
∑

s=1S

f(T (c′s)) J (c′s) V oln(Bs) ∼
∫

R′

f◦T · J .
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Now,
∫
R

f =
∫
R′

f◦T · J since both integrals are approximated by the same numbers!
�

6.5.3. The stretching function of a mapping is its Jacobian determinant.

Proposition. The stretching factor of a mapping T from Rn to Rn at a point b is the
absolute value

∣∣∂(x1,...,xn)
∂(u1,...,un)

∣∣ of the determinant of the matrix (∇T )(b) of the matrix of the

differential dT (b) of the mapping at b.

JT (b) =
∣∣∂(x1, ..., xn)

∂(u1, ..., un)

∣∣. �

The proof will be divided into four steps. One first reduces the calculation of the stretching
factor from the mapping T to its differential dT (step I). Then one one computes the
stretching factor of the differential using the fact that it is a fairly some mapping – a
linear mapping, so it is determined by its matrix. The computation of stretching factors
for linear mappings (step III) is based on the volume formula for slanted boxes (established
in step II).

I. Linear approximation. Remember that a function of one variable f(x) has a linear
approximation near a point a, by the linear function y = f(a) + f ′(a)(x− a). The graph
of this approximation is the tangent line at x = a to the graph of y = f(x).

One can say it also in terms of the change of function f(x)−f(a) – it has an approximation
by the function y = f ′(a)(x− a) which is called the differential of f at a.

The same applies to a function f(x1, ..., xn) of n variables, the change f(x) − f(a) –
which in this case means f(x1, ..., xn)− f(a1, ..., an) – has a linear approximation by the
differential df(a) (which is a function from Rn to R), applied to the vector x − a =
(x1, ..., xn)− (a1, ..., an) in Rn.

Finally, the same works for the mappings T : Rm → Rn. For u = (u1, ..., um) near a point
b = (b1, ..., bm) in Rm, the change of function vector T (u)− T (b) in Rn, is approximated
by [(dT )(b)](u − b), the differential dT (b) of the mapping T at the point b ∈ Rm (this
differential is a new function from Rm to Rn), applied to the vector u− b in Rm.(5)

5 Actually, there is nothing new here, the mapping is a column vector T =

(
T1

...
Tn

)
, of functions from

Rn to R so, approximating T (u1, ..., um) means approximating each of the functions Ti(u1, ..., um). This
is done by the differential dT (a) because this differential is again such column vector of the differentials
of component functions

dT (a) =

(
dT1(a)

...
dTn(a)

)
. So, the new approximation of T (u) reduces to the known approximations of

component functions.
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Lemma. The stretching factor JT (b) for a mapping T at a point b is the same as the
stretching factor JdT (0) for the differential dT (b) (which is another function Rm → Rn)
at the point 0 ∈ Rm.

Proof. The point is that in order for T (u) to be as close to the value of its linear approx-
imation T (b) + [(dT )(b)](u− b) as we want, it suffices that u is sufficiently close to b; say
that u is in a sufficiently small box B around b. Since the function T (u) and its linear
approximation are very close on B the images of B under T and its linear approximations
are “almost the same”. Therefore, their volumes are “almost the same”. This implies
that the average stretching factors on B are arbitrarily close for the function and its linear
approximation. Now in the limit as the box B shrinks around the point b, we get that
the stretching factor JT (b) for T at b is the same as f the stretching factor JT (b)+dT (b) for
the linear approximation function T (b) + dT (b).

Finally, the linear approximation T (b) + dT (b)(x − u) is a composition of three simple
function, a translation u 7→u − b by vector b, the differential dT (b) and the translation
by the vector T (b). Since the translations obviously preserve the volume, the stretching
factors are the same: [JT (b)+dT (b)(x−u)](b) = JdT (b)(0). So, JT (b) = JdT (b)(0). �

xxx II. Paralellopipeds, i.e., slanted boxes. For an n-tuple of vectors v = (v1, ..., vn)
with vi ∈ Rn, we define the parallelopiped P (v1, ..., vn) as the set of all linear combinations
c1v1 + · · ·+ cnvn of of vectors vi with coefficient numbers ci between 0 and 1 :

P (v1, ..., vn)
def
= {c1v1 + · · ·+ cnvn; 0 ≤ c1, ..., cn ≤ 1}.

Example. In Rn we have basic vectors e1, ..., en where e1 = (1, 0, ..., 0), e2 = (0, 1, ..., 0)
and so on until en = (0, ..., 0, 1). Notice that if we multiply each ei by a number bi ≥ 0,
then the parallelopiped Pt(b1e1, ..., bnen) is the box B

(
0 ···∗0

b1,...,bn

)
consisting of all x ∈ Rn

with 0 ≤ xi ≤ bi. �

Lemma. The volume of the parallelopiped P (v1, .., vn) is | det(v1, .., vn)| of the nxn, the
absolute value of the determinant det(v1, .., vn) of the nxn matrix (v1, ..., vn) with columns
vi.

Proof. We will not check this statement in general, i.e., for all choices of vectors v1, ..., vn.

In dimension 3 this determinant formula for the volume of a parallelopiped is well known
(see MATH233). This implies the cases of all dimensions ≤ 3.(6)

An example in any dimension is the case when the vectors i are multiples of vectors ei.
Then P (b1e1, ..., bnen) = B

(
0 ···∗0

b1,...,bn

)
the volume is (b1 − 0)· · ·(bn − 0) = b1· · ·bn. This

6 For n = 1 the formula is obvious. Say, in dimension n = 2 V ol2([P (v1, v2)]) is the area of the paral-
lelogram P (v1, v2)] with sides given by vectors v1, v2. This is the same as the volume of the parallelopiped
P (v1, v2, e3) in dimension 3 since its base is the parallelogram P (v1, v2)] and the height is 1. SO, it is
given by det(v1, v2, e3) which is (by expansion in the 3rd row or column) the same as det(v1, v2).
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is the same as the determinant

det(b1e1, ..., bnen) = det




b1 ··· 0 0
0 b2 ··· 0
... ···

...
0 ··· 0 bn


 = b1· · ·bn.

�yyy

III. The stretching factor of a linear map is the determinant. Now consider an

Nxn matrix A and the multiplication operator, i.e., the mapping Ã : Rn → Rn given by
multiplying vectors with the matrix A

Ã(v)
def
= A v.

One can easily check that for any vector u, v and numbers a, b one has

Ã(au+ bv) = aÃu+ bÃv.

(Because multiplication with a matrix is —em distributive, i.e., A(au+bv) = aAu+bAv.)
Maps with this property are called linear.

Lemma. The stretching factor of the mapping Ã at the vector 0 in Rn is the absolute
value of the determinant of the matrix A

JÃ(0 = | det(A)|.

Actually, for any box B the average stretching factor for Ã over B is the same – it is
| det(A)|.
Proof. We can choose boxes B in Rn that contain vector 0 as B

(
0 ··· 0
b1 ··· bn

)
=

P (b1e1, ..., bnen) for positive bi’s. Now notice that the Ã-image of a parallelopiped

P (v1, ..., vn) generated by vectors vi is the parallelopiped P (Ãv1, ..., Ãvn) generated by

vectors Ãvi = Avi.

Therefore, average stretching factor for the box B = P (b1e1, ..., bnen) is

J (B) = V oln[Ã(B)]/V oln(B) = V oln[P (Ab1e1, ..., Abnen))/V oln(P (b1, ..., bnen)) = | det ( Ab1e1 ··· Abnen ))|/
However, the matrix ( Ab1e1 ··· Abnen )) with columns Abiei which are products of the matrix
A with vectors biei, can be thought of as the product of matrices A ( b1e1 ··· bnen )). So, its

determinant is det(A)· det[( b1e1 ··· bnen )]. Therefore. the average stretching factor for Ã
over the box B is | det(A)|.
Since all average stretching factor for Ã over boxes are | det(A)|, the limit of such as the
box shrink is also | det(A)|. �

IV. Proof of the formula for the stretching function. By step (I) we know that the
value JT (b) of the stretching function does not change if we replace T by its differential
dT (b) and vector b by vector 0.
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Moreover, we have a formula for the differential dT (b) – it is the operator ∇̃T (b), i.e., the
multiplication of vectors by the matrix ∇T (b) of the differential dT (b). Finally, by step

(III) the stretching factor of the operator ∇̃T (b) is the absolute value of the determinant
of the matrix ∇T (b). �
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