Advanced Calculus 425

Homework 6

Due Thursday March 12.

Integration over curves

A. Functions f with respect to length. This is Section 7.1. The length of the curve is denoted l (or s). is on calculation of an integral One calculates integrals over a curve C by using a parameterization $\gamma(t)=\langle x(t), y(t), z(t)\rangle$ of the curve C by an interval $[a, b]$.

$$
\int_{C} f d s=\int_{a}^{b} f(\gamma(t))\left|\gamma^{\prime}(t)\right| d t=\int_{a}^{b} f(\gamma(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

B. Vector fields with respect to position vector. In this situation the orientation of the curve is important.

This is Section 7.2. One writes such integrals in three forms

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} P d x+Q d y+R d z=\int_{C} \vec{F} \cdot T d l .
$$

In the first formula \vec{r} is the position vector field - at the point with coordinates (x, y, z) its value is just the position vector $\vec{r}(x, y, z)=\langle x, y, z\rangle$. So, this is the integral of the vector field \vec{F} with respect to position.
We get the second formula when we write the vector field \vec{F} in terms of its component functions P, Q, R as $\vec{F}=\langle P, Q . R\rangle$. We call this the integral of functions P, Q, R with respect to the variables x, y, z.

Finally, when we choose a direction of the curve we get the unit tangent vector $T(x, y, z)$ at each point (x, y, z) of the curve. Since the dot product $\vec{F} \cdot T$ is the component of \vec{F} in the direction of the tangential vector T, the third formula is called the integral of the tangential component of a vector field \vec{F} (with respect to the length l).
So, all three integrals are the same. The way one calculates them is in terms of a parameterization $\gamma(t)=\langle x(t), y(t), z(t)\rangle$ of the curve C, we get two formulas (the second one may be simpler) for these integrals as

$$
\int_{a}^{b} \vec{F} \cdot \gamma^{\prime}(t) d t=\int_{a}^{b} P x^{\prime}(t)+Q y^{\prime}(t)+R z^{\prime}(t) d t
$$

Remarks. (0) When the vector field \vec{F} is a force field then the meaning of the integral $\int_{C} \vec{F} \cdot d \vec{r}$ is the work that the force \vec{F} does as it moves an object along the curve C.
(1) These are also called line integrals.

Surfaces

C. Parameterizations of surfaces. These are introduced in Section 7.3. (The book also calculates the tangent plane at a point of a surface but we are only interested in two particular "basic tangent vectors" denoted $T_{u}=\frac{\partial T}{\partial u}$ and $T_{v}=\frac{\partial T}{\partial v}$ which are as the notation suggests the partial derivatives of the mapping T in the direction of u, v variables.

The following two surfaces are already described in terms of parameterizations $T(u, v)=$ $\langle x(u, v), y(u, v), z(u, v)\rangle$. For these two surfaces calculate :
(a) The basic tangent vectors $T_{u}=\left\langle x_{u}, y_{u}, z_{u}\right\rangle$ and $T_{v}=\left\langle x_{v}, y_{v}, z_{v}\right\rangle$.
(b) The cross product $T_{u} \times T_{v}$.
(b) The length $\left|T_{u} \times T_{v}\right|$.
6.1. $x=2 u, y=u^{2}+v, z=v^{2}$.
6.2. $x=u^{2}, y=e \sin \left(e^{v}\right), z=\frac{1}{3} u \cos \left(e^{v}\right)$.

The book

Read sections 7.1-7.4.

Problems.

- Section 7.1, problems 6, 7a, 13.
- Section 7.2, problems 1ab, 2d, 12.
- Page 514, problem 3a.

