Advanced Calculus 425 Homework 4

\odot
Due Thursday February 20, in class.
\bigcirc

Higher dimensions

4.1. Find the 4 -dimensional volume of the pyramid P_{4} in \mathbb{R}^{4} as $\int_{P_{4}} 1 d x_{1} d x_{2} d x_{3} d x_{4}$ (compute it by iterated integrals).
4.2. Consider the projection π from $\mathbb{R}_{x_{1}, \ldots, x_{4}}^{4}$ to the line $\mathbb{R}_{x_{4}}$ by $\pi\left(x_{1}, \ldots, x_{4}\right)=x_{4}$.
(a) Show that the image of the pyramid $P(1,1,1,1)$ under this projection π is the interval $[0,1]$ in $\mathbb{R}_{x_{4}}$.
(b) Find the fiber F_{a} of the pyramid $P_{4}=P_{4}(1, \ldots, 1)$ at the point a in this interval $[0,1]$ in $\mathbb{R}_{x_{4}}$.
$\left[\left[\right.\right.$ By $\mathbb{R}_{y_{1}, \ldots, y_{m}}^{m}$ we denote the space \mathbb{R}^{m} with coordinates $\left.\left.y_{1}, \ldots, y_{m}.\right]\right]$

Change of variables

For the following problem, use the prescription on the next page:
4.3. Let $a, b, c>0$ and let S be the solid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1$. The elliptic change of coordinates

$$
x=\rho a \sin (\phi) \cos (\theta), \quad y=\rho b \sin (\phi) \sin (\theta), \quad z=\rho c \cos (\phi)
$$

gives a mapping T from the box S^{\prime} in coordinates ρ, ϕ, θ given by

$$
0 \leq \rho \leq 1, \quad 0 \leq \phi \leq \pi, \quad 0 \leq \theta \leq 2 \pi
$$

to the solid S. This map is a 1-1 correspondence $T: S^{\prime} \rightarrow S$ (up to an error which happens on a volume zero subset).
(a) Compute the Jacobian of T, i.e., the determinant

$$
\frac{\partial(x, y, z)}{\partial(\rho, \phi, \theta)}=\operatorname{det}[(\nabla T)(a)]
$$

(b) Calculate the volume of the solid S using the above change of variables.

Change of variables summary

A. Gradient of a mapping. Consider a mapping $T=\left(\begin{array}{c}T_{1} \\ \vdots \\ T_{n}\end{array}\right)$ from $\mathbb{R}_{u_{1}, \ldots, u_{m}}^{n}$ to $\mathbb{R}_{x_{1}, \ldots, x_{n}}^{n}$. Here, for $i=1,2, \ldots, n, T_{i}$ are the component functions $x_{i}=T_{i}\left(u_{1}, \ldots, u_{m}\right)$ of T. The gradient $\nabla T(u)$ of the the mapping T at u is the matrix given by arranging all partial derivatives of component functions T_{i} of the mapping T into

$$
(\nabla T)(u)=\left(\begin{array}{ccc}
\frac{\partial T_{1}}{\partial u_{1}}(u) & \cdots & \frac{\partial T_{1}}{\partial u_{m}}(u) \\
\vdots & \cdots & \vdots \\
\frac{\partial T_{n}}{\partial u_{1}}(u) & \cdots & \frac{\partial T_{n}}{\partial u_{m}}(u)
\end{array}\right)
$$

B. Jacobian of a mapping. When $m=n$ one defines the Jacobian of a mapping T ss the determinant of the gradient matrix of T

$$
\mathcal{J}_{T} \stackrel{\text { def }}{=} \frac{\partial\left(v_{1}, \ldots, v_{n}\right)}{\partial\left(u_{1}, \ldots, u_{n}\right)}=\operatorname{det}[(\nabla T)]
$$

C. Comparison of integrals over regions \mathcal{R} and \mathcal{R}^{\prime}. Consider an integral $\int_{\mathcal{R}} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}$ over a region \mathcal{R} in $\mathbb{R}_{x_{1}, \ldots, x_{n}}^{n}$. In order to compute this integral by a change of variable we need another region \mathcal{S} in $\mathbb{R}_{u_{1}, \ldots, u_{n}}^{n}$ and a mapping $T: \mathcal{S} \rightarrow \mathcal{R}$ that relates the old region \mathcal{R} with the new region \mathcal{S}. [Actually, this mapping has to be a 1-1 correspondence up to volume zero. ${ }^{(1)}$]
D. The change of variables formula. It reduces calculation of an integral over \mathcal{R} to another integral over \mathcal{S} :

$$
\int_{\mathcal{R}} f d V=\int_{\mathcal{R}^{\prime}} f \circ T \cdot \mathcal{J}_{T} d V
$$

In more details we write it as

$$
\int_{\mathcal{R}} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}=\int_{\mathcal{R}^{\prime}} f\left(T\left(u_{1}, \ldots, u_{n}\right)\right) \cdot \mathcal{J}_{T}\left(u_{1}, \ldots, u_{n}\right) d u_{1} \cdots d u_{n}
$$

Here, the Jacobian \mathcal{J}_{T} appears as the stretching factor for the mapping T, i.e., $\mathcal{J}_{T}(u)$ measures how much the the mapping stretches the volume near a point u in \mathcal{R}.

[^0]
[^0]: ${ }^{1}$ This condition has been discussed in class.

