Advanced Calculus 425, Homework 3.

Due Thursday Feb 13, in class.

 \heartsuit

3.0. <u>Read</u> the the notes: Chapters 0 and 5 again.

 \heartsuit

Volume of a pyramid

Define the right-angular pyramid P_n in \mathbb{R}^n as the set of all points $x = (x_1, ..., x_n)$ in \mathbb{R}^n , such that $x_1 \ge 0$, $x_2 \ge 0$, $\cdots x_n \ge 0$ and $x_1 + x_2 + \cdots + x_n \le 1$. We will eventually calculate the *n*-dimensional volume $Vol^n(P_n)$ of this pyramid.

 \heartsuit

3.1. (a) Draw P_1 in $\mathbb{R}^1 = \mathbb{R}$, explain why this is the interval [0,1]. Find the length of this interval as $\int_{P_1} 1 dx_1$.

(b) Draw P_2 in \mathbb{R}^2 , explain why this is a triangle and what are its vertices. Find the are of this triangle as $\int_{P_2} 1 dx_1 dx_2$ (compute it by iterated integrals).

3.2. Draw P_3 in \mathbb{R}^3 , explain why this is the pyramid and what are its vertices. Find the volume of this pyramid as $\int_{P_3} 1 dx_1 dx_2 dx_3$ (compute it by iterated integrals).

 \heartsuit

Volumes of solids

3.3. Do the problems

• section 5.5, problems 2, 9, 12, 22, 23, 24, 25.