Advanced Calculus 425, Homework 3.

Due Thursday Feb 13, in class.

3.0. Read the the notes: Chapters 0 and 5 again.

0

Volume of a pyramid

Define the right-angular pyramid P_{n} in \mathbb{R}^{n} as the set of all points $x=\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n}, such that $x_{1} \geq 0, x_{2} \geq 0, \cdots x_{n} \geq 0$ and $x_{1}+x_{2}+\cdots+x_{n} \leq 1$. We will eventually calculate the n-dimensional volume $\operatorname{Vol}^{n}\left(P_{n}\right)$ of this pyramid.
3.1. (a) Draw P_{1} in $\mathbb{R}^{1}=\mathbb{R}$, explain why this is the interval $[0,1]$. Find the length of this interval as $\int_{P_{1}} 1 d x_{1}$.
(b) Draw P_{2} in \mathbb{R}^{2}, explain why this is a triangle and what are its vertices. Find the are of this triangle as $\int_{P_{2}} 1 d x_{1} d x_{2}$ (compute it by iterated integrals).
3.2. Draw P_{3} in \mathbb{R}^{3}, explain why this is the pyramid and what are its vertices. Find the volume of this pyramid as $\int_{P_{3}} 1 d x_{1} d x_{2} d x_{3}$ (compute it by iterated integrals).

Volumes of solids

3.3. Do the problems

- section 5.5, problems $2,9,12,22,23,24,25$.

