8.4. Gauss Divergence Theorem (the FTC for solide)

Topics: A. GDT and its prof. B. Erampers. C. The meaning of divergence D. Moving the surface of integration

Proch of the Gauss Divergence theorems: Ir workes alshe the other cases of FTC Stepl. When W is a vectorgular box with sides' paralled to Ti-J EW panes, 7 3 calculate both sides of the tearent there, DW consists of six rectangles. Each of colculations yrelds 6 terms, and those happe to match. Step 2. Approximate solid NO by a solid W which is abtained by glaing boxee tagetter: Theorem holds for the office of the office of the columns Principles (because it holds for each box by Step D. Step 3. Wand ite boundary DW are limits of W' and DW' as on one passes to tetter and better approximations W (by using a grid with sudled and Swaller boxes). So, the darm for No halde because it halds for solids No' glued gram boxes.

 S_{α_1} for $F = \langle R_1 Q_2 R_7 = \langle x_1 V_1 P_1 \rangle$ we have that:

Clidea Let us trink of Fas vebcity vedor for the flow of some quantity Q through space. Then SSF-23 is the flux, ie. total flow through the surface S. flow through the surface S. At some points P on the surface on the sur all such local cantributions at all points P of DW So this integral us a sum of positive contributions (where a gove aut) and negative contributions (where it flows in This seem is then the total loss of the amound of Q in W / Since by GDT this total change in W can le represented as SSS divED de We see that the divergence dir (F) should be related to change of Concentration of Q in W. So we guess that divED (20 is the brate of every of concentration of a at VN

C 2	. When	3 would	conce	A.	Maio	chave	e?
	Such	change	can	be	af d	25 Spere	ten
N of	fiere	sn d	n'S Sere	e-d	si fa	ations	<u>ک</u> :
•	încu	reace ma	y co.	me s	from	some	source
	of	Q insid	e W				
1	En. 1	f Q vs	heat	suc	h so	urce al	i head
	mag k	e source	heat	ing	de uz	ce su	ich as
	a 24	ove, F	08-4-0	rel	50 S (C	LQ,	
•		veale u	al al	200	be a	accume	labra
	24			0			
	$e_{X_{\bullet}}$	for a	5 cou	efa	gas -	such e	les air 1
	the	for ac	it sel	y u	at	samo	-me elecal
	Cera	ducina	incre	20300	s pre	esure	as in
	WEG	ther e	u ste	(om			
			5		•		
	* det	crease	may	Come	- fron	s a s	sink
	lost		z, az	plac		ere x	gets
	Ex. 8	ar a	flow	of n	nater	· · · · ·	l river 7
	or si	nk vou	12 be	<u>L</u> a	place	2 whe	re
	wate	er seaps	unde	~ the	- gro	and ag	where
	City	or aus	No QUE		A	to	710
	CO.		and are	<u>s</u> be		_	
	- Jean	n pushin	g (x	ta d	lecrass	L Cenca	intration
		_owering	3 04	Prese			

C.5. Value f(P) at a point P f= dis F and integrals over small balls On a small ball BEGP a given function for is likely not to change much. So we can approximate for by a constant which is the value for at the center office ball- This gives approximation of the integral $333 + (x) dV \approx 533 + (x) dN$ $B_{E}(p) = B_{E}(p)$ BEG = f(p) 533 | dv = $\frac{1}{2} \frac{1}{2} \frac{1}{2}$ = fcp - Nag (Becp) ~ \$CP = TE3 Se, we can approximate the value of p using the integral area a small ball: f(p) 1 535 f(x) 20, ball: balle(p) 355 f(x) 20, · As the radius & of the ball Belp) gold smaller the approximation fix) ~ fip) on the ball gold better and better. So, in the limit we got the exact

