8.3. Guservalive Vector Fields
\$8.3 Which vector fiends are gradients?
A. Motivation: If $F=\nabla f$ we say that f is a potential for $F_{\text {: Thenit is }}$ over $\$ \nabla \rho$ easyto integrate curves $\frac{\nabla f}{1} \cdot d r=f(B)-f(A$ for
Remark! This formula from
 Chapter I, is the FTC for curves: Recall the general form of FTC for a shape S \& greantity If:
S certain deminotive $I=S_{2 S}=\underline{S}$
ape S shape 3 Here the shape S is a curve C ? quantity Y is a function f and the derivative in greastan is the gradient. Also when curve C is oriented from A to B :
\qquad
Remark 2. The proof of tow as by, reducing the cain for any curve C to the known Case for an interval $[a, b]$ in \mathbb{R},

$$
A \times T_{c}^{B} \text { Paranetrizotiou }
$$

Then $\int_{C} \nabla f \cdot \operatorname{dr} \xlongequal{\text { want }} f(B)-f(A)$

$$
{ }_{a}^{b}\left[f\left(f^{2}(x) 11\right]^{\prime} d x \overline{\overline{\text { know! }}} f(y(b))-f(x)(a)\right)
$$

Remark 3. This is exactly how we have veduccol the Stokes theorem to Grean's them - by parametrization af a surface S by a region R.

- Conclusion: when $F=\nabla f$ it is easy to integrate vector sill F aver carves
- Quasbian: For a given vector field F:
a) Is f a gradient of some f ?

If so: bl fino a pobratid f for F.
-These are the things too would urake it easy to integrate F over curves!

Clesed We denate s
 whem Cis claled

Tlofar $\frac{\text { B. The bia theorem: }}{\text { a vecter tiesed }}$ it an \mathbb{R}^{3} the fanbwina are equivaleirt:

$$
\text { Bredr }=0
$$

ever ebosel curves C.
F-dir mealeal sense
two curves ga srem A to B the integ $r a l s$ are the same: $\int F d r=\int F-d r$.
(iii) F is a grapient vectar siebl,
$i_{\infty} e_{0}, \quad F=\nabla$ f for some function f.
(iv) curl(F) $=0$

Ethen we say thet F is
'irrotesiond $]$

We avour linaur in is gredreet

$$
\operatorname{con} l(E)=0
$$

lso (ivl to chech whether' F rs gusdied. cerlF $=0$ Use: if cun $f(A)=0$ then fing conseqnative

CProofof $i \Rightarrow$ iig Supeose that F : $\mathbb{C}_{C}^{\&} F \cdot d$

- Censíbon

2 curves C_{1}, C_{2}
from Ate B: A

$$
e_{1}=\frac{s}{c} e_{2}
$$

- Cousider the difterence:

- Since C is comar

$$
\begin{aligned}
\text {CC}^{-} F \cdot d r & =0 \text {. Therefae } \\
& \int_{C_{1}} F \cdot d r=\frac{S}{C_{2}} F \cdot d r
\end{aligned}
$$

Remark: Propenty (ii) of F is called. "independence of the perits" ie inkependmue of the croice of A pater frous A to

Praf of $\} \quad$ Suppole thas SEqu
Dii \Rightarrow isi is dobinad for F A
We want: $F=\nabla f$ we uger tod such f
We will cheose a peint (a, b, c) and a paten ($=$ cunve) C from carb, $($) to any poing (x, y, z). Than we with define

$$
f(x, y, z)=\int_{\left(a^{(}, x\right)}^{\left(y_{2} z\right)} F-d_{v}=\int_{C} F \cdot d r .
$$

b2 In erder to calculate we cheese a cunve C in a simpewar: It mares हso in x-Qirection, the the y-direction and then the 7 -divection : $(a, b, c), c\rangle(x, b, c)$ When we paramebrize each leg of C we get a sum of three integrals

$$
\begin{aligned}
& \left.f(x, y, z)=\int_{C} F=d n \text {, equed if } F=L P, Q, B\right\rangle \\
& =\int_{C_{2}}+S_{C_{2}}+S_{S} P A x+Q d y+R R_{2} \\
& \begin{array}{lll}
= & \int_{a}^{*} P(\tilde{z}, b, c) d \tilde{x} \\
+ & \int_{b}^{y} Q(x, \tilde{y}, s) d y & \text { ence we use } \\
+ & \quad \underset{y}{z}, R(x, y, \widetilde{z}) d z
\end{array} \quad \begin{array}{l}
\text { paraudenica } \\
\text { tions of } \\
C_{1}, C_{2} C_{5}
\end{array}
\end{aligned}
$$

$\left.\begin{array}{l}\text { For ar } \\ \text { choice of } \\ \text { f we need }\end{array}\right\} \nabla f=F_{i e}\left\{\begin{array}{l}f_{x}=P \\ f_{y}=Q, \\ f_{z}=R,\end{array}\right\}$
This z dervrative of the

The if the surnuader do not have any z 's so vie got
However, this is jut $=R(x, y, z)$ berivese: $\frac{d}{d x} \int_{a}^{x} g(b) d u=g(x)$,
DY.
Calculate f_{x}, f_{y}
(8) This can net be dene from the above formula far f !
(2) However, if we cheese anther pots: $1^{\text {st }} y$-direction, $2^{v \theta} z$-direction, $3^{\text {nd }} x$-direction we get another formula for f

$$
f(x, y, z)=\binom{x, y, z}{b, b, c} \cdot d v
$$

Now,
it is easy to calculate $f_{x}=P$.

$$
{\underset{\sim}{x} c_{y} y}_{c_{2}}^{c_{y}} \frac{c_{z}}{c_{z}^{x}}
$$

The vealan is that how x-direction is the lastone, (se it works the same as for fz_{z} wite isp two terms having zeno derivatives.
D5 Remark. In order to chechthe?
satisfies

$$
\nabla \frac{8}{3}=F,
$$

we really needed the property of F that the ulegra does nat depend on the chaste of path, between two points.

Proof of $\}$ Suppose $F=\nabla f$.
$\frac{\text { Li } \Rightarrow \text { Ne }}{\text { We }}$ Naut $\operatorname{curec}(F)=0$.
Let $F=\langle P, Q, R\rangle$ se $P=f_{x}, Q=f_{y}$

$$
\begin{aligned}
& \operatorname{ces} Q(F)=\nabla \times F \\
& R=f_{z} \\
& =< \\
& \text { ide., I will only consider } \\
& \text { the } 3^{\text {rd }} \text { component }
\end{aligned}
$$

Fo Proof of (iv) $\Rightarrow x$ (i):

Since we know curl we C want to use Stokes theorem!

For this, as in the picture, we choose any surface whose boundary is S. An S we pul a Carorpetible arientakian n. Than $\underset{C}{\mathcal{F}} F \cdot d r=S_{S} \underbrace{\operatorname{curh}(E)}_{=0} \cdot 2 \vec{S}=0$.

Remark. There are many dhescos
 of 3 , such that $D S=C$
G. Fermula for the Potentias:

Let F be a veder field an π^{3} \& seppee we linow if rs censervabive ie, poterbial f exrses:

The censtruction of the poterti? in the proof of $i i \Rightarrow$ iii, lears to the follewing simple formua:

$$
\begin{aligned}
& f=M+N+K+C \text { where: } \\
& \left\{\begin{array}{l}
M=S P Q_{\lambda} \\
N=S Q-M_{y} d y \\
K=S-M_{z}-N_{z} d z \\
C \text { is amy constad. }
\end{array}\right.
\end{aligned}
$$

So, we are integroxing t in the $x-2 i v e c t i o n, h$ in y-directiou and R in the zdirecsion
a° in the proaf of $(i) \Rightarrow$ cirii.
We have extra terms becavel We are how using idesinite integrabs!!

H:2 variables in $\}$ Her: $F(x, y)=\langle P(x, y), Q(x, y)\rangle$
T^{\prime} (en) F has a poserial ifs

$$
Q_{x}=P_{y}
$$

(b) Ho en

$$
\begin{aligned}
& P x=M y \\
& f=M+N+C \\
& M=S P d x, N=\rho Q-M y d y
\end{aligned}
$$

Pf (a) $F=\nabla f$ thees $F=f x, Q=f y$

$$
Q_{x}=(f y) x, y=(f x) y
$$

$$
Q_{x}=P_{y}
$$

$$
\text { If } Q_{x}=P_{y} \text { then }
$$

$$
f(x, y)=
$$

$$
\begin{aligned}
& \text { - } \int^{x} p(\vec{x}, 5) d x \\
& +\frac{\int_{6}}{6} a c \approx 2 \bar{s}
\end{aligned}
$$

jurist like in the Bd case. Then the proof of $\nabla f=F$ is again as in $3 l_{\text {l }}$
(b) We are leoking for a sunctionf such that $\nabla f=F$ i.e. $f_{x}=P$ and $y f_{y}=Q$.

- Ne unitl ise the fermala $\int \frac{d f}{d x} d x=f(x+\ldots$
- When me keap y as a censtart it glives $f(x,-0)=\int \frac{\partial f}{\partial x} d x+C$
exept that there is are constarl far each y, se it is vealles:

$$
\left.f(x, y)=\int \frac{\partial f}{\partial x} \partial x+C(y)=M+C(x)\right) .
$$

- Now, difforentiate urith vespect to y to gat

$$
\begin{aligned}
& Q=\frac{\partial f}{\partial y}=M_{y}+C^{\prime}(y) . \\
& S_{0 .} .
\end{aligned}
$$

hence

$$
\begin{aligned}
C(y) & =\int C^{\prime}(y) d y \\
& =\int Q-M_{y} d y=N
\end{aligned}
$$

Therefes

$$
f=M+C(-D)=M+N_{0}
$$

- $\left\{\begin{array}{l}\text { Prearse versibulas a veder fided: } \\ \text { has force }\end{array}\right\}$

I. Gravitation potential mstead of computing potential we will guess what it is? We start with the gravity on a line Here $\nabla f=f^{\prime}$ (ane variable only?), so $F=\bar{\nabla}$ weans that $F=f$ ' se it is solved by integuabion.

$$
f=\int F(x) d x .
$$

On a live gravitational farce is given by Newton's formula: $F=6 \mathrm{~m} M \cdot \frac{1}{x^{2}}$ where the picture is:

$$
\text { So, } \begin{aligned}
f(x) & =\int F(x) d x= \\
& =\int \operatorname{Gim} M \frac{d x}{x^{2}}
\end{aligned}
$$

ie. $f(x)=\operatorname{Gin} M \frac{-1}{x}$.

Bach te 3 : We make the guess that heed $\quad f=\operatorname{Gmis} \frac{1}{|r|}$.
This is our candudode for the potential. We have to compute its gradient We will consider a mare general function $\quad f=C|r|^{n}$.
For us $C=G m H$ and $n=-l_{0}$

Se, et $f=C \left\lvert\, r 1^{r}=c\left(x^{2}+y^{2}+z^{\frac{n}{z t}}\right)\right.$. Then:

$$
\begin{aligned}
f_{x} & =c \cdot \frac{n}{2}\left(x^{2}+y^{2}+z^{2}\right)^{n / 2-1} \cdot 2 x \\
& =n c\left(\sqrt{x^{2}+y^{2}+z}\right)^{n-2} \cdot x
\end{aligned}
$$

hence:

$$
\begin{aligned}
\nabla f & =C n \underbrace{\langle\dot{x} \cdot y \cdot z\rangle}_{r} \cdot|r|^{n-2} \\
& =n C \frac{r}{|r|^{2}-n}
\end{aligned}
$$

In the particebair cake when $n-1$ we have found that:

$$
\begin{aligned}
\nabla\left(\frac{C}{|r|}\right) & =(-i) C o \frac{r}{\left.\left.w\right|^{2-(}-i\right)} \\
& =-C \frac{r}{|r|^{3}}
\end{aligned}
$$

So, for $C=6$ miss we have:

$$
\begin{aligned}
f=\frac{G M_{1}}{|r|}, \nabla f & =-G_{\text {vil }} \frac{r}{|r|^{B}} \\
& =F_{\text {gran. }}
\end{aligned}
$$

We have found that the gravifations farce is conservative (since it lees have a potation.)

Conservative forces
Farces F we find in the world are conservative as vector fields. There is a reason far that!

Remember that F being conservative means that the infiezurals aver dosed curves vanish.

$$
\oint_{C} F-d r=0
$$

Far a farce F, integral ever a curve C means the work that the forcedes along the curve C.

It is related to the energy thad we posses. Integral δf-dr being zero means that the fath energy is preserved along a closed curve!
Ex, When we go up we lose energy as it is invested into the work of Climbing. However, when we ge down by falling we gain velocity hence kinetic energy. So, coming down to the startines point we have not gained ar leet energyo

