8.2. Gireen and Stobes Theoveur II

Recall formulations of Stohes 8.2.1 and Green theerems
A We guessed that FTC tor an
wrieuted shape S

$$
\begin{aligned}
& \text { S derivative of } q=\frac{S}{\partial S} \psi \psi ~
\end{aligned}
$$

B. The case whem S is a surface is
[Stokes theoreve] For a vecter fidld F

$$
\int_{S} \text { carl }(F) d \vec{S}=S F-2 r
$$

Yis F, deninabive of 4 is Certc)
When surface S is a veging
in plane anos the vectas fiedd
is $F(x, y, z)=\langle P(x, y), Q(x, y), \otimes\rangle$
Lcovrespondring to a planar vecter fieds then the strees

\checkmark
\int^{y}
theoreuspurs

Grean] $Q_{x}-P_{y}$ a\& $\sim S \underbrace{P Q_{x}+Q_{y}}$ $\operatorname{cosf}(F)-2 \vec{S}$
C. Prosis of Stakestheorem:
\rightarrow (1) Grean for re ctangles:
(2) Green:
(3) Strikes:
D. Greenis throode if when the region S is a rectangle: Trich: use gif ferent order of iate vaction
$S \int_{S}^{-T} Q_{x}-P_{y}$ of Grea

$$
S_{S}
$$

$-\int_{x=a}^{d y p} P_{y} d y$ $\stackrel{t}{6} x$ $8 x_{0} N_{\text {ow }}$
use FTC

$$
=\int_{c}^{Q}[Q]_{x=a}^{x=b} d y
$$

\qquad $=\int^{b}[P]_{y=c}^{d}$ $d x$ $=\int_{c}^{d} Q(b, y)-Q(a, y) d y-\sum_{a}^{b} p(x, p) \sim P(x, b) d x$
$\frac{\text { The Rtes of Greenis: }}{\int P d x+Q d i}$
as
OS has 4 pieces
$c_{1}, c_{2}, c_{3}, c_{4}$ as in the picture 1

Pavauselenizonines of C.
pouse of C, are of the form (x, c)
for $a \leq k \leq t b$.
We cheere.

$$
\text { Nav: } \int_{C_{1}} P Q_{x}+Q_{=0}^{d y}
$$

Next, we rewrife it using x instead of us

- Compariean of

HHS R RHSotGreenisT.:
(1) Each has 4 terus
(2) We just matcol one term, similary for othoss.
(3) One subst ety: the LHS has sememinuses.

Homever, these wrll abse appas on the Rhs due to the "backnour d " an jentabion of c_{3}, c_{4} :
 Se we fry par aureter for $u=x$ and parameterizabion: $\delta(u)=\left[\begin{array}{l}\text { us } \\ \text { with }\end{array}\right]=\left[\begin{array}{l}x \\ d\end{array}\right]$ a a us $\leq b$.
However this is really a paraviebritolion of C_{3}^{-}. ie. C_{3} as in the picture wrong qivediar!

Finales:

- In this way ab 4 terms on LHS A BHS match exactly.

We int erupt the proof to bring you 8.2 .5 ore application: Es Computation of

se that $P=0$ and $Q=x$ 。
Se:
RHS Gran

Prado.
This covellary Dives 3 formulas fern the area. The $1^{\text {st }}$ is from the gemma.
The $2^{\text {nd }}$ is checked in the saveway.
The $3^{\text {vel }}$ is the average of $1^{\text {st }} 22^{\text {io l }}$.
Now we came bacla to the proof of Greets theorem, based on the special case of rectangles (which we have cloches)

EI, Gluing princire?

Lloif region S is

cut inte 2 pieces $s_{11} s_{2}$
Then Stobes for $S_{2} S_{2}$
inplass
Stekes fors.
Praef We … a

$$
S_{s} \operatorname{cevrl}(\underset{\text { steher as }}{\rightarrow} \underset{?}{s} \text { F. Qr }
$$

Now Ltis is clearly:

$$
\begin{gathered}
S=S_{S}+S_{1} \quad \begin{array}{c}
\text { Since steves nodes for } \\
S_{1} \text { and for } S_{2} \\
\text { fenis is }
\end{array} \\
\hline
\end{gathered}
$$

E2. Pracf of Grean:
We approximede a vegian S by aregion S^{\prime}

g^{l} is a ceniar of vectanglos!' By the gluing prrucippe Green's theorem hade for S!
(15 Now we will tabe dhe limit of the Greanis theovem for S^{\prime} :
 ank so these two are the same!

Recollections: We want to prove for any qrieuted surface, s :-

$$
\text { Stalees } \mathrm{S} \text { une }(F) \times Q S=S F \cdot \vec{S}
$$

So, far ve have calculatied what is the special case of the Stoless theover when surbace lies in the xiy plane. This is colleal Grearis thearem. We have proved it in 2 sepp

- EGrean Ja jorsson R in \mathbb{R}^{2}

- Reurains:

Stue that the stohes thearem is a consogerence of (1) Grean thearesen

Fi. Peouction of stakes to Enean'etheoreu.
$\int \operatorname{curl}(F) \cdot \overrightarrow{Q s}$
$3 \|$ stanes
S F.dr

In the spere ure censider as a surface S with an orientatien n
as linerer to caipute verery as.
cheose a paraurelerizastion t

if S by a negion R in the u,s plave:

So, S\&Bare unatched loy a pavauretoriztrian

$$
\Phi: R \longrightarrow B
$$

Which is I-1 cerrespordurel
[Here we qusalbir ans ëroror un the parametenizdion teing a H coresperslance: errows which are "sumel for $S^{\prime \prime}$ ie. \&s area zero could hapsen an all of as !]

When $\Phi=R \longrightarrow S$ is al-1 cors. then it nesforcts to al-1 cour. of bavzbaries

This abmes fo celculede using parametervizobions fot both S \& as!
Sa:

$$
\begin{aligned}
& S_{S} \ldots \frac{\Phi}{\operatorname{eot}} S_{R} \ldots \ldots \\
& \text { S.. } \frac{\text { Io }}{\text { Eos }} \text { S?! wantStokes }
\end{aligned}
$$

This translabes Stohae: to a clacur of the form
G. In the poof we have skipped calculating what is integrated over $R_{2} \partial R$, ie. what are? and

Claim: equality of the the last two is just Green's theorem!!!
The claims is checked by showing that for some P, Q ane has

$$
Q=Q_{x}-P y \text { and } ? ?=P Q x+Q Q
$$

Actubly, we have ely ese chevied this in reamer Ne verde chided alreden that the Stakes thooreur when specibarizal ta doled srour a pare
is Greene Shin.

HRemarks: I. In the beale the cenditi thearem are stal uale for stolles

- S is a paramelemized serface hod to be 1-1 carr?
- F us requined te be c^{\prime} on S, :e., witu continueres

2. Stches theorem may fail
if these caditious ave not sasistiel, say if is tal at some point : - it is not desined as hat defines or ar they partiols are cantincous:
If thave F wnid
 3 is bad
then theaver unas farl.
$\operatorname{sen} 12$ in 82
