5.5. Eigenvalues which are compere numbers

- complex eigenvalues cone in pairs $\lambda, \bar{\lambda}$ with eigenvectors $v \bar{\imath}$
- se all eigenvalues car be divided into $p$ real eigenvalues $r_{1,2}, r_{p}$ and $l_{q}$ complot eigenvalues $\lambda_{12} \cdots \lambda_{9} \bar{\lambda}_{1}, \cdots \bar{f}_{9}$, (So, $p+2 q_{1}=$ size of the matrix)
- If $x_{2}, r_{2}, \ldots, r_{p}, \lambda_{1}, \ldots, i_{g}, r_{1}, \ldots, \lambda_{9}$ are all distinct, than $A$ has a "black diaganairation" where each in contributes are $2 t 2$ block, of the form:
$\left(\begin{array}{lc}a_{k} & -a_{k} \\ b_{k} & a_{k}\end{array}\right)$, where $\begin{aligned} & a_{k}=\operatorname{Re}\left(\lambda_{k}\right) \\ & b_{k}=\ln \left(\lambda_{k}\right)_{0}\end{aligned}$

we censiderthease whan a mobrix $A$ acts on a veotor $\checkmark$ as a number ("scobors) $\lambda$ ie.

$$
A v=\lambda v
$$

Than $v$ wae said to be an eligenvechen of A wikn eigenvolue $\lambda$, (provided vキQ)

- The best we Cau hape for $A$ is that flere is a basis $B=\left\{b_{77}, b_{n}\right\}$ of $\mathbb{R}$ Consisting of eigenvecter of $A$, i.e.,

$$
A b i=\lambda=b_{i}
$$

Such baeis gives a diaggnalizabian of $A$,
ie.

$$
A=P D \bar{P}^{\prime}
$$

whare:
is the dicogond

$$
D=\left[\begin{array}{lll}
\lambda_{1} & & \\
& - & \\
& & \lambda_{n}
\end{array}\right]
$$ mabrix of eigervales ef A,

cul

$$
P=\left\{b, \cdots b_{9}\right\}
$$

is the inverfidte urerix whase Colurnus are given by eigenvector basìs B.

- One caee wher this is grainanted to happer is when $A$ has $n$ distind
eiaenvalues which ave neal numbers.
However, eigenvalues are solulions of
$0=\operatorname{det}(A-\lambda I)$ So Wind happare when thay Sogare not veal numbers?
$\$ 5.5$ Eigenvalues wide are compere numbers
A. Example Consider $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
then the charaderissic polynancal is

$$
\operatorname{det}(A-\lambda I)=\operatorname{deg}\left[\begin{array}{cc}
0-\lambda & 1 \\
-1 & 0
\end{array}\right]=\lambda^{2}+1
$$

The eigenvalues are sohibrians of $\lambda^{2}+1=0$ re. $\lambda^{2}=-1$ so

$$
i_{1}=i \text { and }
$$

[Complex numbers are synibes albi whore $a, b \in \mathbb{R}$ and $i^{2}=-1$.

- Equation $\lambda^{2}+1 \equiv 0$ has ne solutions in $\mathbb{R}$ but it has soriestion $i$ (ie. Atli) aral than also $-i$ (ike. $Q+(-1) i$ ), in the set $\mathbb{C}$ of all complex numbers.)
B. From CF to $\mathbb{C}^{n}$ :
- C ss just a new system of neubers with ababian $(a+b i)+(a+b i)=(a+a i)+(b+b i)$ and unltipeicetion bad an $\because \because i=i^{2}=-1$;

$$
\begin{aligned}
(a+b) \cdot\left(a^{\prime}+b^{\prime}:\right) & =a a^{\prime}+b a^{\prime} a^{\prime}+a b^{\prime} a^{\prime}+b b^{\prime} \\
& =\left(a a^{\prime}-b b^{\prime}\right)+\left(a b^{\prime}+a^{\prime} b\right)
\end{aligned}
$$

- One can calculate with complex numbers $\mathbb{C}$ the same as with real numbers $\mathbb{R}$.
particular va can forms
$\mathbb{C}^{n}=a l$ in-treptes $\left(z_{1}, \cdots, z_{n}\right)$
- with zi sure complex \#s
and one can consider wobrices with
complex entries of type usxot,
dangled $M_{\min }(\mathbb{C})$,
Reunarkl. All of Eluear Algebra works as well with complex numbers (even better)!
Reusart 2. The improvement frown $\mathbb{R}$ to $\mathbb{C}$ that any polynourial has a solebtian which is a comer numbers, but some polynomials, say $\lambda^{2}+1$ have va solutions in real numbers!
C. Complex eraenm dines: For $A=\left[\begin{array}{c}0 \\ -10\end{array}\right]$
we fared eigenvobreal $\lambda \lambda=i, \lambda_{2}=-i$,
An eigenvector which is
killed by $A-I=\left[\begin{array}{ll}-i & 1 \\ -i & -i\end{array}\right]$ ie.
$\left\{\begin{array}{l}-i x+1 y=0 \\ -1 x-i y=0\end{array}\right\}$. The $\frac{1^{\text {st }} \text { equesian is }}{y=i x}$

$$
\text { The second equation } i-I+\pi \xrightarrow{I} \xrightarrow{\text { irrelevant: }} \text { ives } 0 x+0 y=0!
$$

So, the solution is $v=\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x \\ i x\end{array}\right]=\dot{x}\left[\begin{array}{l}1 \\ i\end{array}\right]$.
D. Conjugation of compert thes

This is the ayerofion thos takes $z$ to $\bar{z}$ by changing i fa $-i$, ie.
Ex: 7-3i $=7+35$
1t has beabiful proparties.
(a) $\overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}$, (1) $\bar{z}_{1} z_{2}=\bar{z}_{1} \cdot \bar{z}_{2}$.
(6) For a pelynousial $P(x)=B+p x+\cdots$ whose coefficients are real numbers $P_{0}, P_{1},-i P_{i} \in \mathbb{R}$ que has?

$$
\overline{P(z)}=P(\bar{z}) .
$$

(c) If $\lambda \in \mathbb{C}$ is an eigenvalue at a undetrix A of reak numbers than $\bar{\lambda}$ is also an eigonvaloe!
(d) Mereaver, if $v \in \mathbb{C}^{4}$ is a
$\lambda-e i g e n v e c t a r$ of such matrix A
then $\overline{\text { an }}=\left(\bar{v}_{1}, \ldots \bar{v}_{n}\right)$ is a
$\bar{\lambda}$-eigenvector of the same $A$.
Conclusian. Complax eigenvoluas of a real motrix A apper in Ceniugode pairs $\frac{\lambda_{2} \bar{\lambda}}{\text { Aur eigenvector v with eige पvalue }}$ gires an eiganvector $\bar{v}$ with eigenvolua
E. Exam
ple: Tha coniunate eignn Netor:
For $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ we found eigenvalue $\lambda_{1}=i$ with $v_{1}=\left[\begin{array}{l}1 \\ i\end{array}\right]_{0}$
Than we kuour thet

$$
v_{2}=\bar{v}_{1}=\left[\begin{array}{c}
1 \\
-i
\end{array}\right]
$$

is an eiganvector
with eigen volue

$$
\lambda_{2}=\overline{\lambda_{1}}=\bar{i}=-i
$$

Since we have a $2 \times 2$ unatorix A with twe anffeent eigenvokees $\lambda_{1}, \lambda_{2}$ the correspanding eiganvectars form an eigenvector basis of $e^{2}$ !
Expleira:
R. The ideas ure have aeveboped for real eigenvarees worly the sarme for compeox eiganvalues.

- For instance since $\lambda_{1} \not \lambda_{2}$ ie. $i \neq-i$, eigenve etars $v_{2} v_{2}$
are indepargant.
Two independant vecters in $E^{2}$ form a basis of $\mathbb{C}^{2}$ ! when we think of " $\mathbb{N}^{2}$ as a 2-dineusionelu
vector spaca aver compex vumbers $\mathbb{C}$.
R. $\mathbb{C}^{n}$ is alee a veeter space wer $\mathbb{R}$.

Then its basis is en_...enivien,...ien_ Se, glmersion over $\mathbb{R}$ is $2 n$.
F. Mare complicated $2 x 2$ mativicen

$$
\begin{aligned}
& \text { with complex eigeundres. } \\
& \text { El. } R=\left[\begin{array}{cc}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \operatorname{ces} \varphi
\end{array}\right] \text {, than: } \frac{\operatorname{det}(R-\lambda t}{}(\sin \varphi) \\
& \left\{\text { Ratabion of } R^{2}\right\} \\
& =\operatorname{det}\binom{\cos \varphi-\lambda-\sin \varphi}{\sin \varphi \cos \varphi-\lambda} \\
& \{\text { by angle e: }\} \\
& =(\cos \varphi-\lambda)^{2}+\sin ^{2} y^{2} \\
& \text { egrals: }=\cos ^{2} \varphi-2 \cos (\varphi) \lambda+\lambda^{2}+\sin ^{2} \varphi \\
& =\lambda^{2}-2 \cos (\theta) \lambda+1 \text {. } \\
& =\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)
\end{aligned}
$$

where:

- there.

$$
\begin{aligned}
& \lambda_{1}=\frac{\cos \varphi+i \sin \varphi}{\lambda_{2}=\frac{\cos \varphi-i \sin \varphi}{}} \otimes \quad \lambda_{2}=\lambda_{p p}
\end{aligned}
$$

E2. $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ for some real numbers
Let

$$
r=\sqrt{a^{2}+b^{2}} \text { and write }
$$

Than $y \uparrow$ ( $\frac{a}{r} \frac{b}{r}$ ) is a pointanthe
 unit circle:

$$
\begin{equation*}
\left(\frac{a}{r}\right)^{2}+\left(\frac{b}{r}\right)^{2}=\frac{a^{2}+b^{2}}{r^{2}}=1 \tag{1}
\end{equation*}
$$

So: $\frac{a}{v}=\cos \varphi, \frac{b}{v}=\sin \varphi$
for same number $Y$ the anger of the point

$$
\text { with the } x \text {-axis! }
$$

Now: $C=r\left[\begin{array}{cc}\cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi\end{array}\right]$.
So by $E 1$, eigenvalues af $C=\left(\begin{array}{ll}a & -b \\ b & a\end{array}\right)$

$$
\operatorname{are}\left\{\begin{array}{l}
\lambda_{1}=\overline{r(\cos \varphi+i s i n \varphi)} \\
\lambda_{2}=r\left(\underline{\cos \varphi-(\sin \varphi)}{ }^{\lambda_{2}}=\bar{\lambda}_{0}\right.
\end{array}\right.
$$

G. $2 \times 2$ matrices with comvorpespepnuatias ave similar fo $E 2$ :
Ti.
Let $A$ be a $2 \times 2$ matrix wises a complex eigenvalue $\lambda=a+b i$ cue will assume that $b \neq Q$ se that $\lambda$ ins not reg!? Then
a) A is similar to the motor $x\left[C=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]\right.$.
6) Mare precisely one can find a matrix $P$ such that $A=P . C P^{-1}$ once are knows an eigenvector $(1)$ Ap with eigenvalue $\lambda$. The formula r is
[Rev) $\operatorname{lun}(v)]$.
Exporandiar: Far a caupeat number

$$
\begin{aligned}
& \text { its real part Re (z) is a } \\
& \text { its ingguary part } \ln (z) \text { is } b_{\text {e }}
\end{aligned}
$$

- We can extend real e incpuary parts to vectors: $\left[\begin{array}{l}\operatorname{Re}\left(\begin{array}{c}2-1 i \\ 3 i\end{array}\right]=\left[\begin{array}{c}\left.\frac{2}{0}\right)\end{array}\right]\left[\begin{array}{c}\ln (2-7 i \\ 3 i\end{array}\right]=\left(\frac{-7}{8}\right)_{0} \\ \hline\end{array}\right.$

$$
\begin{aligned}
\text { Ex. } \operatorname{Re}(2-3 i) & =2 \\
\operatorname{Im}(2-3 i) & =-3
\end{aligned}
$$

$R$. i is called "imaginary curt".
[Historically it was belie eved thor complex \#s de rat exist in nature, that we only imagine that they $d o$. NRORO.]
G. once again.

T1. Let $A$ be a $2 \times 2$ matrix with a campeax eigenvalue n $\lambda$ and
the corresponding eigenvector $\chi$. Then $A=P D P^{-}$
where $D=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$ for $a=\operatorname{Ra}(\lambda)$. $\quad \begin{aligned} & a=\ln (\lambda) \text {. }\end{aligned}$
(2) $P=[$ Re( $)$ lm $(x)]$

Pf.

$$
P e_{1}=\operatorname{Re}(v), P e_{2}=\operatorname{Im}(v) .
$$

$$
\text { So, } p\left(e_{1}+i e_{2}\right)=\operatorname{Re}(v) e[\ln (u)=0 \text {. }
$$

Now, $P\left(e_{1}+i e_{2}\right)=0$ gives $\vec{P}_{N}=e_{1}+i e_{2}$.
So,

$$
\begin{aligned}
P\left(P D P^{-1}\right) v & =P D\left(e_{1}+i e_{2}\right)=P\left[\begin{array}{c}
a \\
-6 \\
-6
\end{array}\right]\left[\begin{array}{l}
i \\
\lambda
\end{array}\right] \\
& =P\left[\begin{array}{c}
a+i b \\
-1+i a
\end{array}\right]=P\left[\begin{array}{c}
i
\end{array}\right]=
\end{aligned}
$$

$P(\lambda[j])=\lambda P\left[\begin{array}{l}{[1]} \\ i\end{array}\right]=\lambda v$
So, we have found that
PDF y = Au,
we corrugate $\frac{x_{0}}{A N}$ ge $P D P^{-1} \bar{x}=\overline{P D F^{2}} \bar{u}$
$=P D P^{-1} v=A U=\bar{A} \bar{A}$.

Heve, $A v=\lambda u$ implies thal

$$
A \bar{v}=\bar{\lambda} \bar{v}
$$

So, and $\bar{y}$ ave eiganvecters of $A$ with different eigervalues $\lambda_{7} \bar{\lambda}$.

Hence, $D V$ and $\bar{V}$ forns ae baeis of $\mathbb{C}^{2}$.
(2) Maluicas $A$ a al $B=P P^{-1}$ act the sarue on viv?.

$$
B v=A, \quad B^{\prime} \bar{V}=A \bar{N}_{n}
$$

So ass the earne on all vectous ins $\mathbb{C}^{3}$


$$
\frac{\sin }{i . Q_{0,}} B=A, \quad \operatorname{PD}=A^{\prime}
$$

in section 5.5., Hecover 9 grus the sames as the abave $T V$.
It seams to we thot thes, ande Tl is less courfusing-easiev to use.
H. Black diagonalizabian of

Matrices A of any size $n$ \}
T. (a) A has $r$ eigenvolues which we can group into: $\square$ Preal \#s: $\qquad$ and

$$
9 \text { pairs of comppex } \# 3=
$$

Heve, $p+2_{2}=n$.
$i_{2}, \bar{z}_{2},-y_{2} \bar{x}_{2}$
(b) If the eigenvalus
are all different then the eerrespending

- eigenvecters are af the form
$\qquad$
whene uis are red eigenvecters and compox eigenvectrs
This us basis afaci censistings of Aneigenved (c) If sa, then A is similar
to a blech griagend it matri $\hat{x}$
$C_{k}=\left[\begin{array}{cc}a_{k} & -b_{k} \\ b_{k} & a_{k}\end{array}\right]$
for


$$
\begin{aligned}
& a+b_{k} i \\
& k
\end{aligned}
$$



$$
\begin{aligned}
& a_{k}=R_{e} \lambda_{k} ? \\
& b_{k}=\operatorname{lm} \lambda_{k} ?
\end{aligned}
$$

"Compox" diagandi zstion !!!
E. Exaurees: matrices with $n$ distinct eigen

$$
\begin{aligned}
& n=2=\left[\begin{array}{ll}
r_{2} & \\
& r_{2}
\end{array}\right] \text { ar }\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] \text { \& } b \pm \text { valkes. }
\end{aligned}
$$

$$
\begin{aligned}
& u=4 \cdot\left[\begin{array}{lllll}
r_{1} & & & \\
& r_{2} & & \\
& & r_{3} & \\
& & & r_{4}
\end{array}\right] a^{a s} \quad\left[\begin{array}{llll}
r_{1} & & \\
& r_{2} & \\
& & & \\
& & & a \\
-6 & a
\end{array}\right] \text {. }
\end{aligned}
$$

cr

$$
\left[\begin{array}{rr}
\alpha & -\beta \\
\cos & \alpha
\end{array}\right) .
$$

D. The gque: (1) Find eigenvalues frems factoring reel

$$
\begin{aligned}
\underline{\operatorname{det}(\lambda-\lambda I)}= & (\lambda-2) \cdots\left(\lambda-\operatorname{sip}_{p}\right) \\
& \left(\lambda-\lambda_{0}\right)\left(\lambda-\lambda_{1}\right) \text { aumplesp } \\
& \left(\lambda-\lambda_{e}\right)\left(\lambda-\lambda_{2}\right)
\end{aligned}
$$

(2) Final eigonspace Y for each Eigervolue $\lambda$.
(2) If essible find a basis \&f eigenvecsors af
(4) Than Beack-diaganalize A as abovel

