5.2. Similiar matricas have the same eiganualues, their mnotipicities eud the dimensious of eigemesors

Recallections frous
Last Jine. Ne say that numben
λ is an eigenvalue of matirix
(A) if there existe a non zevo vecter v such that $A v=N_{0}$
LThen v vs said to be an eizanveder of A witth eigenvolu I!
Tl. The igemvalues of A arethe solutions of the characpristic equation $\operatorname{det}(A-A I)=Q_{0}$
 then its eigernvoluel are exactto tir diagonal extries!.
Ex. $\mathbf{A}=\left(\begin{array}{ccc}2 & 20 \\ 3 & -1 & 0 \\ 8 & 5 & 4\end{array}\right)$ eigennaluas are $2,-1,4$.

sobections: $a_{1}, a_{2}, \cdots, a_{n}$.
A. Multiplicities of eigenvalues if $\left.\operatorname{det}(A-\lambda I)=\frac{(\lambda-2)^{2}}{2)^{2}} \operatorname{c\lambda t} i^{5}(\lambda+1)^{\prime}\right)$ the eigen values have unlsipeicitios (2), (5) , (1).

So one finds the multiplicities by factoring the characteristic equation!
B. Eigenvectors far different eigenvalnar

Next:
We will notice that the eigenvectors with different eigenvalues are linearly independent.
This means that they point in genuinely different directions.

This fact can be viewed as understanding some kind of geometry of the vector space V by using ane linear transform \bar{J} on V (that correspond bo a motif A).

S. for $x^{x}=1, \cdots$, we knew thet

So: $a_{i}\left(\lambda_{9+1}-\lambda_{i}\right)=0$ s
but

$$
2 \underline{q+1} \pm 2
$$

hence $a_{i}=Q$.
so we get thd $y_{g+1}=a_{1} 11+\cdots+a_{12} y_{9}=9$.
thavever, this is impositble since $V_{g t r}$ iss air eigenveder, se it is $\neq 0$.

- Enclusion: it is impessible thot eigenvecters with differeil eigensalues are lincoully dependent!
C. Similiar matrices behave similarly

Start wises a warrix A.
If matrix P is invertible
then PAP is color the

$$
\frac{\text { P-conicosode of } A}{(P-\operatorname{san} \text { that } A P}
$$

A PAP

We say that ABB are silenilian if

(b) A,B have the san ne is chavartaristic polynomial hence the sank eigenvalues with the same multipercities.

Detailed Vergionsof, T2:
12. (a) If $B=P A P^{-1}$ then ane aebs a linean transtormabion $T_{\lambda}: V_{\lambda}^{A} \rightarrow V_{\lambda}^{8}$ g by

$$
\frac{T_{\lambda}(v)}{\left(a^{l}\right)}=P_{v}
$$

Pf. (a) Need is chech thot is

$$
\underbrace{v \in V_{\lambda}^{A}}
$$

If $A v=\lambda v$
them

$$
\underbrace{P v} \in V_{\lambda}^{B}
$$

but:

$$
\begin{aligned}
B(P \sqrt{ }) & =\frac{P A P^{-1}}{P v} \frac{P v}{P(\lambda N)} \\
& =\lambda P v \\
& =\lambda \cdot
\end{aligned}
$$

T_{λ} is linear: mult, by a motrixito
(a') daims that T_{x} is invertide $\left.\begin{array}{c}\text { This is true since } \\ \text { its inverse comese } \\ \text { from the emerse }\end{array}\right\} \xrightarrow{T_{\lambda}} u=\vec{p} u_{s}$ fram the emerse of the motrix P

Main consegwence of T_{2}.
C3. If A, B similiar thay
the faloing are the sente: (S2)
(1) charaderistic polyneurian
(2) eigounalees \& therr

Pe. (1) $\operatorname{det}(P-\lambda I) \stackrel{?}{=} \operatorname{det}(A \rightarrow I)$

$$
\begin{aligned}
\operatorname{Hes}:(B-\lambda I) & =\operatorname{det}\left[P A P^{-1}-\lambda P I \bar{P}^{\prime}\right] \\
& =\operatorname{det}\left[P(A-\lambda I) P^{-1}\right]
\end{aligned}
$$

$\left.=\operatorname{det}(P) \cdot \operatorname{det}(A-\lambda I)-\operatorname{det} C P^{-1}\right)$
$=\operatorname{dot}(A-\lambda I) \operatorname{det}\left(P \cdot P^{-1}\right)$

$$
=\operatorname{det}(I)=l_{0}
$$

$=\operatorname{det}(A-\lambda I)$.
2 followive
Remark:
Also: λ : inou spaces at $A D B$ are isomerphic, so they have the same dimension.

