4.5. Rank of a matrix
46.
$A \in M_{\text {use }}$
This
Rules $\operatorname{col}(2)]-\#$ pivots

- $C Q(A) \subseteq \mathbb{R}^{m}$
- Row (A) = span of all roue of A fr

Row (A) is sivan by $\neq 2$ vows of B_{0}
Pfitsuch Bl is detained from A by elementary row operations. Then the vows of B are linear combinations of rows of A.
so:

$$
\underbrace{\operatorname{span}[\text { rows of } B] \subseteq \underbrace{}_{\text {Row }(A)} \leq \operatorname{span}[\text { rows of } \Delta]_{0}}_{[\text {Row }(B)} \text { of }
$$

(2But are can also recover A from 8 by elementary operations So:- Row (B) \geq Row $\& \&$, hence
(3) they are equal:
(b) Let B be the REE of o Then by
(a) we know that:
 which is toe the span of
 $7 O$ rows of B. Call these rows $R_{1}, R_{2}, \ldots, R_{P}$ From the picture
we can see that these rows are indedonout
(due to "stow case" form of ReFl)
In a linear combination $C=C_{1} R_{1}+\cdots+C_{p} R_{p}$ the entry of C is c_{10}
Se, if $C=0$ than $c_{1}=0$.
This can be repeated: now $C=\left[0 \cdots 0 c_{2} x \ldots x\right]$ hence $c_{2}=0$
Now we know that the \notin renee \& B Spun Row $\langle\Delta)_{s}$ and they are linearly independent. So, they are a basis of Row (A) !

Recall
Recall spacehasabasirs by $\neq Q$ rows
So.
La. $\operatorname{sim}[\operatorname{Row}(A)]$.

Example. For armotwix A we will find

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
2 & 1 & 0 \\
3 & 2 & 1 \\
e & -1 & -2
\end{array}\right] D^{-1}\left[\begin{array}{l}
\text { bases of Row }(A) \text { aral } \\
\text { Cal }(A) \text {. }
\end{array}\right. \\
& {\left[\begin{array}{ccc}
\frac{5}{0} & 1 & -2 \\
\frac{1}{0} & 1 & 1 \\
0 & 1 & 1
\end{array}\right]} \\
& \text { This will show that } \\
& \operatorname{rank}(A)=2: \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & 0 \\
0 & -1 & -2
\end{array}\right]^{-2-2}} \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & -2 \\
9 & -1 & -2
\end{array}\right]^{-r 1}\left[\begin{array}{ll}
01 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]^{R} \text { Hence. }}
\end{aligned}
$$

$\frac{\text { deere of ce l } A)}{\text { A pivotal columns }}=\left\{\left[\begin{array}{l}2 \\ 3 \\ 9\end{array}\right] 2\left[\begin{array}{c}1 \\ 2 \\ 1\end{array}\right\}\right.$

Pecallertibus from tho The day Last Time.

From 4.5 Bases of vectspaces
(I) (a) Any spanning sot 9 contains a basie B.
(b) Any independent set

I can be complied $t o$ a basis B o provided that
V is finite dimensional
ie. that it has souse
finitite spanning sal.
12. Any twa bases of V lave the same size (cored the Qumansfon of V).
(3)- if $\operatorname{sim}(V)=n$ for a sub set of of size on, the following

- of is a basis $\}$ are
- At is limeanley indap: o lequivar
- A is a spainingsit Dent.

From 4.6. : Row space Rew (A) \&Rank For a udtrix A of type $u \times n$
$-\operatorname{Col}(A)=\operatorname{spqn}($ columus of $A) \subseteq R^{n}$

- $\operatorname{Rew}(A)=\operatorname{span}($ raws of $A) \subseteq \mathbb{R}^{m}$
$T r(a) \operatorname{dim}[\operatorname{col}(A)]=\operatorname{dim}[R a w(A)]$ \# af pivots.

$$
[\text { This \# is called rank of } A=\operatorname{rank}(A) \text {. }]
$$

(b) hal(A) (d) Raw (A) has be ba $\neq Q$ rows sp (BEF of A)

New: Cusider a mobrix of type man
T2. [Rank Theorens.]

T3. [Invertible matrix theoreur]
For a sqquave unbrix. A of type $n x u$ the following is equivalent-
(1) A is linversible
(2) $\operatorname{rank}(A)=(n$.
(3) $\operatorname{dim} \operatorname{NuQ}(A)=0$ ie, $N Q(A)=\left\{S_{0}\right.$

Pf. (2) $\Leftrightarrow(3)$ ("eguivalent") because $\operatorname{rank}(A)+\operatorname{tim} N u l(A)=n$
(1) We also levew that A is invertible iff
${ }^{29}$ columus of A span \mathbb{R}^{n}
(3) $A x=0$ has anly the trivial soluctions So, we know $\left.C D \Leftrightarrow\left(2^{\prime}\right) \Leftrightarrow(3)^{\prime}\right)=N$ selutios but:

Nul(A) $=$? 23
$(3)_{0} \operatorname{dim} N u l A$
$\operatorname{rank}(A)=n$
bliur [CQ (A)] $]$
span of alums
(2) sage that fer
the domersion is $n=2 \operatorname{ref}(R)$, surce the dunars) are the same: $C a l(A)=R$

$$
\begin{aligned}
& \text { ranke(A) } \\
& \text { din Col(A) " "it of people whe } \\
& e_{i} \text { is mevelp mened from } \\
& \tau\left(e_{i}\right)=\text { ith colvrra ofs veam (to "som 2" } \\
& \operatorname{din}[\mathrm{Nul(A)}]=" \# \text { of seopes } \\
& \text { whe epged is } \\
& \text { st roour" } \\
& \tau(x)=0 \\
& \text { ve } \\
& A x=0
\end{aligned}
$$

luburtive plicbure:

Leng infermieion:
lemma. If l is a sebsperce otV
(a) Hon $\operatorname{divin}(l) \leq \sin (v)$
(b) diven $(U)=$ Rin (V) iff $U=V$.

Prads
(a) $\operatorname{drr}(l)=$ size of eame basrs et of ll.
Now A sGUNV.
(b) ot is exur an bases abs

Now of can le coupldee fo a basts B of V.
than (a) size $(\mathbb{R}) \leq \operatorname{size}(B)$

$$
\text { dini } Q \text { dives } V
$$

(b) if $G=V \Rightarrow$ quen $U=$ Rimi

Qn the othar haval if

$$
\begin{aligned}
& \text { Rin } U=\text { giniv } \\
& \text { size \& size } B
\end{aligned}
$$

se: $R=\beta \& a r=B$

$$
U=\operatorname{span}(\Omega)=\operatorname{span}(B)=
$$

ZQ inbermisxian \mathcal{L} a $a \operatorname{ain}(\{0\})=0$
b) $\operatorname{din}(V)=0 \Rightarrow V=\{0\}$.

Pf. a) $V=\{0\}$ a bals
B of ter is

$$
\begin{aligned}
& B=\neq \beta \\
& \text { din } \angle Q B=\operatorname{sire\phi } \phi=Q_{0}
\end{aligned}
$$

(b) $\operatorname{dmu}(V)=0$ than every $V \in V$ is Q. If nol, if $r \neq 0$ than $g=\{*$? $1+$ wall be independos! Then dimV $\geqslant \operatorname{sire}(y)=10 \quad$ siretbory

Coubndex $\operatorname{dru} Y=0$.

