
LINEAR ALGEBRA 235

IVAN MIRKOVIĆ

Notes on the distance learning part of the course This covers three chapters

• 4. Vector spaces.
• 5. Eigenvalues and eigenvectors
• 6. Inner products and orthogonal vectors

The notes are organized the same as sections in the book (I tried to supply more expressive
titles of sections).

Current State of the Notes. At the moment only 4.1 is covered in detail.

For parts that are not covered here one should rely on the handwritten class notes. Hope-
fully I will be able to add some typed summaries here in time.
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5. Chapter 5. Eigenvalues and eigenvectors of a square matrix 10

Summary. 10

5.1. What are eigenvalues and eigenvectors? 10

Summary. 10

5.2. The characteristic equation 10

Summary. 10

5.3. Diagonalization of a matrix 10

Summary. 10

5.4. Eigenvector and eigenvalues of linear transforms 11

Summary. 11

5.5. Complex eigenvalues ? 11

6. Inner product on a vector space and orthogonal vectors 11

Summary. 11

6.1. Inner product, length, orthogonality 11

Summary. 11

6.2. Orthogonal sets 11

Summary. 11

6.3. Orthogonal projections 11

Summary. 11

6.4. Orthonormal basis and the Gram-Schmidt process 11

4. Chapter 4: Vector spaces

This chapter expands the methods we have developed from R
n’s to the larger class of

vector spaces.

We start with survey of the development of Linear Algebra in this course in 4.0

4.0. Survey: The Development of Linear Algebra. This part is not strictly needed.
The goal is to help with understanding of the flow of subjects in our course.

Linear Algebra starts historically with the problem of solving systems of linear equations
and progresses to notions of vector spaces and linear transforms on vector spaces.

The following sketch of the evolution of this material should become more and more clear
through the semester:
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4.0.1. Vector spaces and linear transforms come from systems of linear equations. This
evolution can be described as

A. From unknowns to vector spaces.

• (i) n unknown numbers x1, ..., xn.

• (ii) An element x =

( x1

...
xn

)

of Rn.

• (iii) A vector v in a vector space V .

B. From systems of linear equations to linear transforms.

• (i) A system of m linear equations in n unknowns x1, ..., xn

ai1x1 + · · ·+ ainxn = bi for i = 1, 2, ..., m.

• (ii) A matrix A =

( a11 ··· a1n
...

am1 ··· amn

)

.

• (iii) A linear transform T from a vector space U to a vector space V .

4.0.2. Study of vector spaces and linear transforms. These are the more advanced topics:

C. Things to do in a vector space. What one can do in a vector space is make linear
combinations. This leads us to consider whether a given sequence v1, ..., vp of elements of
a vector space V is

(1) linearly independent;
(2) a spanning set for V ;
(3) a basis for V .

Then the dimension of a vector space V is the size (i.e., the number of elements) of any
basis of V .

Vector spaces also often posses geometric notions of lengths of vectors and angles between
vectors.

D. How to analyze a linear transform. To a linear transform T from a vector space
U to a vector space V , one associates two vector spaces

• The null space Nul(T ) is a subspace of U .
• The range Ran(T ) is a subspace of V .

A deep understanding of a linear transform T from a vector space V to itself is achieved
by finding its eigenvalues and eigenvectors. This makes calculations with T “easy”.

4.1. Vector spaces and subspaces.
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4.1.1. Sets. A set X means a collection of objects. Then the objects in the collection X

are said to be elements of X . As a shorthand we write a ∈ X or X ∋ a to mean “a is an
object in the collection X”, i.e., “a is an element of the set X”.

Example. (0) R is the set of real numbers. So, a ∈ R means that a is a real number.

(1) [a, b] denotes the closed interval with ends a and b, so x ∈ [a, b] means that x is a real
number and a ≤ x ≤ b.

4.1.2. A vector space V is an object that “behaves like some R
n in the sense that,

• V is a set with two operations:
(1) the addition operation, usually denoted u+ v, combines two elements u, v of

V into a third one which is denoted u+ v;
(2) the multiplication by numbers operation, usually denoted cv, combines an

element v of V and a number c in R into another element of V denoted cv;
• Moreover, these two operations have the same properties as in R

n.

When V is a vector space we call its elements vectors.

Remarks. (0) The key thing one can do in any vector space V is that for elements v1, ..., vp
in V one can form linear combinations c1v1 + c2v2 + · · ·+ cpvp which are new elements of
V .

(1) In every vector space V there is a particular element 0 with the property that v+0 = v

for v ∈ V . It is called zero.

It would be more precise to denote it something like 0V in order to remember that this
is an element of V with the property v + 0V = v for v ∈ V . Such more precise notation
would avoid a confusion: not all zeros in all vector spaces are literally the same. For
instance in V = R

3 the zero is (0, 0, 0) and in R
2 the zero is (0, 0). However, in practice

we we use notation 0 for simplicity.

Example. (0) Set Rn with the usual operations of addition and multiplication by numbers.

() Set Mmn (a better notation would be Mm,n of all m×n matrices with the usual opera-
tions of addition and multiplication by numbers.

(2) Set C∞[a, b] of infinitely differentiable functions on an interval [a, b]. The operation of
addition of functions f, g produces a function f + g whose values are sums of values of f

and g, i.e., (f + g)(x)
def
= f(x) + g(x) for any point x ∈ [a, b]. Similarly, the product of a

function f and a number c is a new function cf whose values are obtained by multiplying
values of f by c, i.e., (cf)(x) = c 1 x) for x ∈ [a, b].

1 ! (
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(3) Set P = R[X ] of polynomials P = a + a1X + a2X
2 + · · · + anX

n of all polynomials
in a variable X .

Usefulness 1. The notion of a vector space covers much beyond the R
n’s that we have

been considering but in all these new examples one can still do what we do in R
n, i.e.,

linear combinations.

4.1.3. Subspaces of vector spaces. A subspace U of a vector space V means a subset U of
V such that

• It is closed under addition and multiplication by numbers.

This means that if u, u′ are elements of U and c ∈ R then the sum u + u′ ∈ V and the
product cu ∈ V (both calculated in the vector space V ) happen to be elements of U .

Lemma. A. If A is an m×n matrix then the set Nul(A) of all solutions x ∈ R
n of the

homogeneous equation Ax = 0 is a subspace of Rn.

Remark. Nul(A) is therefore called the null space of A.

Proof. �

Example. (0) The set U of all vectors v = ( v1//v2//v3// ) in R
3 such that v1 = 2v2 and

v1 + v3 = 0 is a subspace of the vector space R
3. For instance it is the null space of the

matrix A = ( 1 −2 0

1 0 1
).

(1) For any number ω, the set Sω of all functions f ∈ C∞[0, 1] such that f ′′ + ω2f = 0 is
a subspace of C∞[0, 1].

Lemma. B. If v1, ..., vp are vectors in a vector space V then the set Span(v1, ..., vp) of all
linear combinations of these vectors is a subspace of the vector space V .

Proof. �

Example. (2) In R
3, the xy-plane is the subset Span(e1, e2) so it is a subspace. Similarly,

the z-axis is Span(e3) hence a subspace.

Summary of 4.1.

(1) We define the notion of a vector space to be a setting which “behaves like any R
n”

in the sense that one can form linear combinations with the usual properties.
(2) The notion of a “subspace U of a vector space V ” is defined so that subspaces of

V are just the subsets that themselves vector spaces. This produces many new
vector spaces.

(3) A subset S of V gives a subspace Span(S) of V .
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(4) A matrix A of type m×n (it corresponds to a linear transform T : R→
R

m by
T (x) = Ax), gives

• The null-space of A is a subspace Nul(A) of Rn (here Rn is the source of T );
• The column space is a subspace Col(A) of Rm (here R

m is the target of T .
(5) A subset S = {v1, ..., vp} of V is a

• spanning set of V if ...;
• linearly independent if ...
• basis of V if both.

(6) A spanning subset S provides a concrete description of V (as all linear combina-
tions of elements of S).

(7) A basis B of V provides a most economical concrete description of V (as linear
combinations of the smallest possible subset of V ).

(8) Any two bases of V have the same number of elements. [This will be checked in
4.5.]
This dimension of V is the size of any basis of V . It is denoted dim(V ).

(9) Vectors e1, ..., en in R
n are a basis. We call it the standard basis of Rn. Therefore

dim(Rn) = n. (This agrees with the usual idea of dimension for a line R = R
1,

plane R
2 and space R

3.)
(10) The zero vector space Is V = {0} with only the vector zero. Its basis is the empty

set, so its dimension is zero.

4.2. 4.2 Vector spaces Nul(A), Col(A) associated to a matrix A and

Ker(T ), Ran(T ) associated to a linear transform T .

Summary of 4.2.

(1) For two vector spaces U, V we define linear transforms T from U to V .
• A linear transform T : U → V defines a subspace Ker(T ) of the source U

(the “kernel” of T ), and a subspace Ran(T ) = Im(T ) of the target V (the
“range” or “image” of T ).

• When U = R
n and V = R

m and T (u) = Au for a matrix A then the new sub-
spaces coincide with the old ones: Ker(T ) = Nul(A) and Ran(T ) = Col(A).

4.3. Bases of a vector space.

Summary of 4.3.

(1) For a matrix A of type m×n (i.e., A ∈ Mmn),
• A basis of Col(U) is given by pivotal columns of A. Therefore, dim[Col(A)]
is the number of pivots of A.

• Recall that the general solution of the homogeneous system of equations Ax =
0 is of the form y1v1 + · · · + yqvq where y1, ..., yq are the free variables and
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vi are some vectors we find from the REF of the system. Then a basis of
Nul(A) is given by the vectors v1, ..., vq that appear with the free variables.
Therefore, dim[Nul(A) is the number of free variables.

• dim[Nul(A))]+dim[Col(A)] is n, the dimension of the source Rn of the trans-
form T (u) = Au.

4.4. Coordinate systems associated to bases.

Summary of 4.4. Let us consider a basis B = {b1, ..., bn} of a vector space V .

(1) For any vector v in V there are unique numbers c1, ..., cn such that v = c1v1 +
· · ·+ cnvn. The coefficients c1, ..., cn that we use to write v as a linear combination
of vectors in the basis B are called the coordinates of v in basis B or just the
B-coordinates of v.

Vector

( c1
...
cn

)

is the coordinate vector for v in basis B and denoted by [v]B.

(2) When the vector space V is R
n, for any basis B = {b1, ..., bn} of Rn we get the

matrix PB = [b1· · ·bn] whose columns are vectors b1, ..., bn. Matrix PB is invertible.
(3) When the vector space V is Rn one can find the coordinate vector [v]B of a vector

v ∈ R
n as the solution of the equation PB x = v. So, one can write it as [v]B =

PB
−1v.

(4) The geometric meaning of coordinates c1, ..., cn of v in a basis B is that they
describe how to decompose v into a sum of contributions c1b1, ..., cnbn in the
directions of basis vectors b1, ...bn.
For instance if B = {e1, ..., en} is the standard basis of Rn then for a vector

v =

( v1
...
vn

)

we have v = v1e1 + · · ·+ vnen. So, the {e1, ..., en}-coordinates of v are

just the components v1, ..., vn of v. In vector terms this says that [v]B = v.
(5) A key property of coordinates of vectors V in V for a basis B of V , is that they

translate any computation in V into a computation in R
n.

To make this clear I will consider the role of invertible linear transforms:

(1) A linear transform T : U → V is said to be invertible if there is a linear transform
S : V → U in the opposite direction, such that each reverses the other, i.e., what
one does the other one undoes. The precise meaning is that S(T (u)) = u for u ∈ U

and T (S(v)) = v for v ∈ V .
Then S is denoted by T−1.

(2) If T : Rn → T
m is given by a matrix A, i.e., T (x) = Ax, then the linear transform

T is invertible if and only iff (“iff”) the matrix A is invertible. Then the inverse
of T is the multiplication with A−1, i.e., T−1(y)A−1y.
[Such T can only be invertible if n = m!.]
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(3) If T is invertible it gives a 1-1 correspondence (“bijection”) between vectors in U

and V . Any vector u ∈ U corresponds to a vector v in V which is v = T (u). In
the opposite direction one can recover u from v by = T−1(v).

(4) This allows us to translate any situation in of these vector spaces into the other
–everything works the same in U and in V . For instance for vectors u1, ..., up in
U :
(a) u1, ..., up are linearly independent in U iff T (u1), ..., T (up) are linearly inde-

pendent in V ;
(b) u1, ..., up span U iff T (u1), ..., T (up) span V ;
(c) u1, ..., up is a basis of U iff T (u1), ..., T (up) is a basis of V .

(5) An invertible linear transform T : U → V is also called an isomorphism of vector

spaces. The meaning is that T makes U and V have the “same shape” in the sense
that “everything works the same in U and V ’. (Here, “iso” means “the same” and
“morphos” means “shape”.)

Finally:

• For a basis B = {b1, ..., bn} of V the coordinate map [−]B : V → R
n is an isomor-

phism of vector spaces, i.e., a an invertible linear transform . So, all calculations
for V can be translated into calculations for R

n by taking the B-coordinates of
vectors.

• An example. Let P be the vector space of polynomials in variable T . Let Pn =
Span(1, T, T 2, ..., T n be all polynomials P (T ) = p0 + p1T + · · · + pkT

n, i.e., all
polynomials with degree ≤ n.
Then B = {1, T, ..., T n} is a basis of Pn (so the dimension is n + 1). For this

basis the coordinate vector of P (T ) = p0 + p1T + · · ·+ pkT
n is [P (T )B =

(

1
T
...
pn

)

,

i.e., the coordinates are just the coefficients in the polynomial.

4.5. The dimension dim(V ) of a vector space V .

Summary of 4.5. This section deals with abstract properties of bases, linearly indepen-
dent sets and spanning sets.

The first group of results is devoted to proving that two basis have the same size. This is
the claim (4) below,and (1-3) are just preparation for (4).

(1) For subsets S⊆T of V , Span(S) is a subspace of Span(T ). Also,if T lies in
Span(S) then the inclusion Span(S)⊆Span(T ) is equality.

(2) [Replacing a vector in a spanning set.] Let S⊆V be a spanning set, so that any
v ∈ V is a linear combination of vectors of S. If for a vector u in S, the coefficient
of vector u in this linear combination is not zero then one can replace u in S by v,
in the sense that when R is obtained by removing u from S then S1 = R ∪ {v}
is again a spanning set.
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(3) [Replacement in a spanning set by independent vectors.] Let S⊆V be a spanning
set and let the subset I⊆V be linearly independent. Then one can split S into
union of subsets S ′ and R, so that

• (i) S ′ and I have the same number of elements; and
• (ii) R∪ I is still a spanning set.

So, some elements of S can be replaced by elements in I, so that the resulting set
is still a spanning set.

(4) [Spanning sets are larger then linearly independent subsets.] If S⊆V is a spanning
set of q elements and I⊆V is a linearly independent subset of V with p elements
then q ≥ p.

(5) Any two basis of V have the same number of elements.
• This has been announced earlier. The number of elements in a basis of V
is called dim(V ). One can think of the dimension of V as a measure of how
complicated vector space V is.

Next, we consider how to find a basis if one knows some spanning set or some linearly ind
pendent set.

(1) Any spanning subset S of V contains a basis.
(2) We say that a vector space is finite dimensional if it has a finite spanning set.

Then t actually has a finite basis B, so dim(V ) is a finite number. [We will really
be interested only in finite dimensional vector spaces.]

(3) If V is a finite dimensional vector space then any linearly independent subset I of
V can be completed (by adding more vectors) to a basis of V .

(4) [Basis theorem.] If A is a subset of V of size dim(V ), then in order for A to be
a basis it suffices that they satisfy one of the following two conditions: (i) A is
linearly independent, or (ii) A is a spanning set.
In other words, if we know that A has the correct size then one needs to check

only one of the conditions (i) and (ii).
(5) If U is a subspace of V then dim(U) ≤ dim(V ). One has equality of dimensions

dim(U) ≤ dim(V ) iff U = V .
(6) The dimension of the zero vector space {0} is 0. This is the only vector space with

dimension 0.

4.6. Rank of a matrix.

Summary of 4.6. The first topic is the row space Row(A) of a matrix A :

(1) Therow space Row(A) is the span of rows of A. If A ∈ Mmn then Row(A) is a
subspace of Rn.

• If two matrices A,B are row equivalent then Row(A) = Row(B).
• A basis of Row(A) is given by the non-zero rows of the REF of A. [So the
dimension of Row(A) is again the number of pivots in A.]

• Row(A) and Col(A) are analogous – the spans of rows and of columns of A.
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(2) dim[Row(A)] = dim[Row(B)] and it is the number of pivots of A.
(3) This number is called the rank of A and denoted rank(A).

The second topic is the Rank Theorem:

(1) [Rank Theorem.] For a matrix A of type m×n: rank(A) + dim[Nul(A)] = n.
• This we have already noticed!
• If one thinks of A in terms of the linear transform T : Rn → R

m then the
intuitive meaning of the rank theorem is the following.
Think of Rn and R

m as rooms containing n and m people respectively. Think
of T as a process of some people going from the room R

n to the room R
m.

Then rank(A) is the dimension of Col(A) = Ran(T ), it corresponds to those
who have moved from R

n to R
m. Also, Nul(A) corresponds to people that

T did not manage to displace, so dim[Nul(A)] corresponds to the number of
people who have stayed in the room.
Now, the Rank Theorem says hat the number of people who have left R

n,
plus the number of people who stayed in R

n is the total number of people in
R

n.

The last topic is the relation of invertibility of A and the rank of A.

(1) For a matrix A of type n×n the following is equivalent:
(a) A is invertible;
(b) rank(A) = n

(c) Nul(A) = {0} or dim[Nul(A)] = 0.
(2) This is really just a reformulation of equivalences in the Invertible Matrix Theorem

from chapter 2.

5. Chapter 5. Eigenvalues and eigenvectors of a square matrix

Summary.

5.1. What are eigenvalues and eigenvectors?

Summary.

5.2. The characteristic equation.

Summary.

5.3. Diagonalization of a matrix.

Summary.
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5.4. Eigenvector and eigenvalues of linear transforms.

Summary.

5.5. Complex eigenvalues ?

6. Inner product on a vector space and orthogonal vectors

Summary.

6.1. Inner product, length, orthogonality.

Summary.

6.2. Orthogonal sets.

Summary.

6.3. Orthogonal projections.

Summary.

6.4. Orthonormal basis and the Gram-Schmidt process.
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