Q1. (a) $\operatorname{det}(A-\lambda I)=(1-\lambda)\left(\lambda^{2}-16\right)$.
(b) A is diagonalizable. $A=P D P^{-1}$, where $P=\left[\begin{array}{ccc}15 & 0 & 0 \\ -7 & 1 & 7 \\ 2 & -1 & 1\end{array}\right]$ and $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 4\end{array}\right]$

Q2. Answer:. $\operatorname{det} A=2(k-1)(k-2)(k-3)$.
Sketch of calculation: By row operations, A can be reduced to the following matrix

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & 7 \\
0 & 2 & 8 & 26 \\
0 & k-1 & k^{2}-1 & k^{3}-1
\end{array}\right]
$$

Then use the identity $k^{2}-1=(k-1)(k+1), k^{3}-1=(k-1)\left(k^{2}+k+1\right)$, we can factor out $2(k-1)$, so that by a cofactor expansion along the first column, we see that $\operatorname{det} A$ equals $2(k-1)$ times the determinant of the following matrix

$$
\left[\begin{array}{ccc}
1 & 3 & 7 \\
1 & 4 & 13 \\
1 & k+1 & k^{2}+k+1
\end{array}\right]
$$

Again by row operations, we reduce the above matrix to

$$
\left[\begin{array}{ccc}
1 & 3 & 7 \\
0 & 1 & 6 \\
0 & k-2 & k^{2}+k-6
\end{array}\right]
$$

It follows that

$$
\operatorname{det} A=2(k-1) \times 1 \times\left(1 \times\left(k^{2}+k-6\right)-6 \times(k-2)\right)=2(k-1)(k-2)(k-3) .
$$

Q3.
(a) $\mathcal{B}=\left\{1, t^{2}, \cos t\right\}$.
(b) The \mathcal{B}-coordinates for $p(t)=3 \cos t+t^{2}$ is $[0,1,3]^{T}$.

Q4.
(a) The eigenvalues of A are $3+3 i$ and $3-3 i$.
(b) $A=P C P^{-1}$ where $C=\left[\begin{array}{cc}3 & -3 \\ 3 & 3\end{array}\right]$ and $P=\left[\begin{array}{cc}-2 & 0 \\ 1 & 1\end{array}\right]$.

Q5. C is invertible, because the equation $B C B=I_{3}$ implies $(\operatorname{det} B)(\operatorname{det} C)(\operatorname{det} B)=1$, which in turn implies $\operatorname{det} C \neq 0$. Note that the equation $B C B=I_{3}$ also implies that $C=B^{-2}$, so $C^{-1}=B^{2}=\left[\begin{array}{ccc}1 & 0 & 1 \\ 7 & 2 & 10 \\ 4 & 1 & 6\end{array}\right]$.
Q6.
(a) Use the properties of transpose: $(A+B)^{T}=A^{T}+B^{T}$ and $(c A)^{T}=c A^{T}$, we obtain

$$
\begin{gathered}
S(A+B)=(A+B)^{T}-(A+B)=\left(A^{T}+B^{T}\right)-(A+B)=\left(A^{T}-A\right)+\left(B^{T}-B\right)=S(A)+S(B), \\
S(c A)=(c A)^{T}-c A=c A^{T}-c A=c\left(A^{T}-A\right)=c S(A) .
\end{gathered}
$$

Hence S is a linear transformation.
(b) The null space of S is the subspace of matrices A such that $A^{T}=A$. Hence a basis of the null space of S is given by $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
The range of S is the subspace of matrices A such that $A^{T}=-A$. So a basis of the range of S is given by $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
The sum of the dimensions of these subspaces equals the dimension of $\mathbb{R}^{2 \times 2}$, which is 4 (Note: This is the Rank Theorem.)

Q7.

(a) A basis of $\operatorname{Nul}(A)$ is $[-2,3,2]^{T}$.
(b) A basis of $\operatorname{Col}(A)$ is $[1,3,5,-2]^{T},[0,2,2,-2]^{T}$. (The first two columns of A.)
(c) A basis of $\operatorname{Row}(A)$ is $[1,0,1]^{T},[0,2,-3]^{T}$.
(d) The rank of A is 2 .

Hint: The reduced echelon form of A is $\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & -3 / 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.

