Disclaimer: Due to the "take-home" nature of the Final Exam, this practice test does not necessarily look similar to the actual exam.

Q1. Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & 7 \\ 1 & 1 & -3\end{array}\right]$
(a) Find the characteristic polynomial of A.
(b) Diagonalize A, if possible. If A cannot be diagonalized, explain why.

Q2. Compute the determinant of the following matrix $A=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & k & k^{2} & k^{3}\end{array}\right]$. Your solution should be a polynomial in k.
(Hint: Recall that $k^{2}-1=(k-1)(k+1)$ and $\left.k^{3}-1=(k-1)\left(k^{2}+k+1\right).\right)$
Q3. Let V be the vector space of continuous functions that are linear combinations of $f(t)=$ $\cos t, g(t)=t^{2}-1, h(t)=t^{2}+1$, and $r(t)=t^{2}+\cos t$.
(a) Find a basis \mathcal{B} for V.
(b) Find the \mathcal{B}-coordinates for $p(t)=3 \cos t+t^{2}$, where \mathcal{B} is the basis from part (a).

Q4. Consider the matrix $A=\left[\begin{array}{cc}6 & 6 \\ -3 & 0\end{array}\right]$.
(a) Find the eigenvalues of A.
(b) Find an invertible matrix P such that $A=P C P^{-1}$ for some rotation-scaling matrix C (i.e., $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ for some real numbers a, b).

Q5. It is known that the matrix $B=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 1 & 3 \\ 1 & 1 & 1\end{array}\right]$ is invertible. Suppose C is a 3×3 matrix such that $B C B=I_{3}$ (the 3×3 identity matrix). Is C necessarily invertible? If yes, find the inverse of C. If no, explain why.
Q6. Let $\mathbb{R}^{2 \times 2}$ denote the vector space of 2×2 real matrices, and define a transformation

$$
\begin{gathered}
S: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}, \\
S(A)=A^{T}-A,
\end{gathered}
$$

where A^{T} is the transpose of the matrix A.
(a) Show that the transformation S is linear.
(b) Find a basis of the range of S and a basis of the null space of S. Explain how the dimensions of these subspaces are related.

Q7. Let $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ 3 & 2 & 0 \\ 5 & 2 & 2 \\ -2 & -2 & 1\end{array}\right]$. Find
(a) a basis of $\operatorname{Nul}(A)$,
(b) a basis of $\operatorname{Col}(A)$,
(c) a basis of $\operatorname{Row}(A)$,
(d) the rank of A.

