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1. Witten-Kapustin approach to Geometric Langlands (“GL”) conjecture

We will be interested in what physicists do for the GL program and how they think about
it. The former part is substantial but the latter may be much more important.

The key ingredients:

• Constructions of relevant families of Quantum Field Theories from 4d gauge theory
and from 2d sigma models.
• Comparison of parameterizations of these two overlapping families of theories.
• Action of S-duality on these theories
• Branes.
• Wilson operators and t’Hooft operators.
• Wilson operators are the tensoring operators on Coh(LSǦ(C)), t’Hooft operators

are the Hecke operators in Fukaya(T ∗BunG(C)).
• Fukaya(T ∗BunG(C)) is identified with the microlocalization of D-modules on

BunG(C).

Remarks. (1) There is also a Gukov-Witten extension of this work to Tamely Ramified

Geometric Langlands, and Witten has announced further extension to the general (possi-
bly wildly ramified) global Geometric Langlands.

(2) Local Geometric Langlands conjectures have recently been formulated and explored
by Gaitsgory and Frenkel.

(3) A Quantum version of Langlands conjectures has been formulated by Feigin and Stoy-
anowski. Recently this formulation has been essentially improved and extended by Gaits-
gory based on suggestions of Bezrukavnikov and Lurie.

Question. A priori, Geometric Langlands conjectures concern curves defined over any
closed field k. So, it is not quite clear while in the case k = C we get a particularly nice
point of view on these (the hyperkähler structure on the Hitchin moduli), using a subfield
R⊆C.

1.1. New features of the KW-approach. What does the KW-approach do towards
proving GL? At the moment it offers no new results, however, there are several new and
important perspectives.

1.1.1. Context. From the point of view of physics Complex Geometric Langlands conjec-
ture is interpreted in terms of QFT. This makes GL a very special part of the S-duality
conjectures in 4d super Young-Mills, however this special case has exceptional amount of
structure. In particular, GL is seen as a close relative of the Donaldson theory.

From the mathematical point of view, the main achievement is the retelling of the complex
Geometric Langlands program in the language of Differential-Geometry.
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1.1.2. New perspectives.

(1) Prediction of elements of the geometric Langlands program for surfaces.
This is the most exciting aspect as mathematicians have not been making much

progress on this question, at least until the recent work of Braverman and Finkel-
berg.

(2) Relevance of the hyperkähler structure in representation theory.
This is also a crucial achievement since this has been a persistent mystery for 20

years since Kronheimer constructed hyperkähler structures on nilpotent orbits.
Various Kaḧler structures become relevant through (4), i.e., through the cate-
gories of supersymmetric branes that they define. From this point of view math-
ematicians did not have a chance to see the relevance of hyperkähler structures
before the development and of the Fukaya category. The hyperkähler structure
relevant in this work is the one on the Hitchin moduli.

(3) The machinery of branes.
A striking application of the point of view of branes in the KW approach is that

it promises to provide a more advanced and useful theory of microlocalization
given by Fukaya category, and it gives microlocalization a precise role as a bridge
between local systems and D-modules.

(4) Relation to S-duality conjectures in 4d.
S-duality conjectures in 4d currently have no mathematical formulation. How-

ever the relevance of this bigger picture is illustrated by its role in a new treatment
of the Beilinson-Drinfeld quantization of the Hitchin system.

(5) Ramification phenomena.

Once physicists found out what geometric Langlands is about, it took them
no time at all to extend the formulations to the tamely ramified case (regular
singularities) and maybe to the general case of wild ramification (irregular sin-
gularities). The tame case is in a paper of Gukov-Witten and the wild case is
announced as a work of Witten. The new element is the understanding of Hecke
operators at a singular point of a connection. This is interesting since the linear
differential equations with irregular singularities are still something of a mystery
(at least beyond curves).

There are other charming aspects of the KW approach such as

• “Additional dimensions” that appear when one studies Hitchin system as a target
of maps from a surface.
• A new differential geometric view on Hecke modifications through monopoles with

singularities and also as G-bundles on P1.
• Explicit Langlands correspondence, i.e., an explicit construction of a D-module

from a local system.

1.2. The setting and strategy of the KW-approach. The first observation is that
the two basic geometric objects in the GL-story, BunG(C) and LSG(C) appear as faces
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of the Hitchin moduli HU
C – two Kaḧler structures on this real manifold attached to a

compact form U of G. Second, the geometric mechanism that allows us to pass between
G and Ǧ is based on the structure of a completely integrable system on HU

C . Then the
somewhat mysterious relation between G and Ǧ takes a precise form in terms of Hitchin
moduli – the duality of completely integrable systems HU

C andHǓ
C . The third step is to lift

this duality of completely integrable systems to a level of equivalence of categories. Here,
a new ingredient appears. Mathematicians knew such equivalence in a special case when
one considers categories of coherent sheaves on T ∗BunG(C) its Ǧ counterpart. However
these categories are just tiny specializations of the categories of branes that are natural
for physicists; and in this larger setting the duality of completely integrable systems
gives (conjecturally) an equivalence of categories of branes on HU

C and HǓ
C which is an

example of T-duality equivalences of categories of branes. We are interested in one of
specializations of this T-duality equivalence, but not the one known to mathematicians
– equivalence of coherent sheaves on LSǦ(C) and the Fukaya category on LSG(C). The
fourth ingredient is the microlocalization – Fukaya category on LSG(C). is found to consist
of microlocalizations of D-modules on BunG.

1.2.1. Hitchin moduli HU
C . Let U be a compact Lie group and G its complexification, so

G is a reductive algebraic group over C. To a compact group U Hitchin associated for
each complex curve C the Hitchin moduli (of Higgs bundles)

HU
C .

Its standard incarnation is as a real manifold with a hyperkähler structure. This in
particular means a family of Kaḧler structures indexed by the 2-sphere

S
def
= {u ∈ H; u2 = −1}

consisting of all square roots of −1 in quaternions. We will concentrate on three basic
Kaḧler structures corresponding to I, J, K ∈ S. However, Hitchin moduli also has a stack
version (stack in differential manifolds), where one simply dispenses with bothersome
stability conditions.

Both heroes in the GL story, BunG(C) and LSG(C) appear as faces of HU
C – from the

point of view of the Kaḧler structure I, HU
C is HU

C(I) ∼= T ∗BunG(C), while HU
C(J) ∼=

LSG(C) ∼= HU
C(K).

1.2.2. Duality of completely integrable systems. However, we really need to move between
BunG(C) and LSǦ(C). The framework for the passage from G to Ǧ, i.e., U and Ǔ is
now given by Hutchins’s observation that HU

C is a completely integrable system over the
“Hitchin base” SU(C). Then the relation between U and Ǔ takes form of the duality of

completely integrable systems HU
C and HǓ

C .

The Hitchin map HU
C → SU (C) is only holomorphic for the complex structure I and from

this point of view it is the affinization of T ∗BunG(C), i.e., SU (C) is the affine variety
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associated to the algebra of global functions on T ∗BunG(C). Actually the algebra of
global functions is explicitly known and we find that

SU(C) = Γ[C, (Ω1
C⊗g∗)//G]

where // denotes the invariant theory quotient, i.e., categorical quotient.(1) This explicit
description gives an (almost canonical) identification of bases of Hitchin systems for dual
groups

SU (C) ∼= SǓ (C), b↔b̌.

Next, the fibers (HU
C)b, b ∈ SU(C), of the Hitchin map HU

C → SU(C) are “tori” (S1)2N for
a generic b, and in the complex structure I they are abelian varieties (Jacobians of certain
“spectral curves” Cb parameterized by the Hitchin base elements b). Now the duality

of completely integrable systems means that the abelian varieties (HU
C)b and (HǓ

C)b̌ are
canonically dual abelian varieties.

Remark. The duality of completely integrable systems is only a generic property. When
b ∈ SU(C) is not sufficiently generic, the fibers (HU

C)b and (HǓ
C)b̌ are singular and at

present no one knows what the meaning of duality should be.

1.2.3. Categories of branes. Mathematicians tend to concentrate on one complex struc-
ture on HU

C at a time, and they encode this complex geometry algebraically through the
triangulated category of coherent sheaves. Physicists however have a larger setting, the
category of branes Br[HU

C ] on the real manifold HU
C ; which so far has not been defined

mathematically.

For each u ∈ S the corresponding Kaḧler structures on HU
C defines two subcategories of

branes, the B-model category uses the complex structure part of the Kaḧler structure u,
and the A-model subcategory the symplectic part of the Kaḧler structure u:

• The B-model subcategory is the category of coherent sheaves

uB = BrB
u [HU

C ] = Br[HU
C , Ju]

def
= Db[Coh(HU

C(Ju))]

for the complex structure Ju associated to u.
• The A-model subcategory is the Fukaya category

uA = BrA
u [HU

C ] = Brωu
[HU

C ]
def
= Fu[HU

C , ωu]

for the symplectic structure Ju associated to u.

These are subcategories of branes which are invariant under certain symmetry associated
to Ju or ωu. This symmetry is odd so its called a supersymmetry.

1g∗//G can be viewed as a vector space but maybe not completely canonically.
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Actually there is more, for each pair (u, v) ∈ S2 we get one Generalized Kaḧler structure on
HU

C and one subcategory Br[HU
C ; u, v] of (u, v)-supersymmetric branes. The above

subcategories are the just the special (anti)diagonal cases :

Ju↔(u, u) and ωu↔(u,−u).

1.2.4. Fourier transforms in mathematics and physics. Mathematically, the generic dual-
ity of completely integrable systems (in the holomorphic view of dual disconnected abelian
varieties), yields the Fourier-Mukai equivalence of derived categories of coherent sheaves
on T ∗BunG(C) and T ∗BunǦ(C) over the “regular” parts SU(C)reg

∼= SǓ (C)reg. This
has been interpreted by Pantev as (generic part of) the classical limit of the Langlands
correspondence.

The (generic) Fourier-Mukai equivalence of coherent sheaves Db[Coh(T ∗BunG(C))] ∼=
Db[Coh(T ∗BunǦ(C))] can be viewed as an equivalence of certain categories of branes

BrB
I [HU

C ] ∼= BrB
I [HǓ

C ].

Physicists see this as a very special case of a general equivalence

Br[HU
C ] ∼= Br[HǓ

C ,

which is a special case of several conjectural kinds of dualities, so it can be viewed as
Mirror Symmetry, T-duality or S-duality.

We will most often refer to it as S-duality. The standard meaning of this expression is
a very important and mysterious duality (i.e., equivalence) of two supersymmetric gauge
theories in four real dimensions predicted by the Montonen-Olive conjecture. The rela-
tion to Langlands duality has been a prominent question since these two gauge theories
correspond to dual groups U and Ǔ . Now, the above conjectural S-duality equivalence
BrB

I [HU
C ] ∼= BrB

I [HǓ
C ] is the brane formulation of a certain 2-dimensional limit (“com-

pactification”) of a certain simplification (“the GL-topological twist”) of the original 4-
dimensional S-duality.

The standard properties expected from S-duality are then used to show that it exchanges
subcategories IB(U) and IB(Ǔ) as well as JB(U) and KA(Ǔ). The first case is the Fourier-
Mukai transform which is a classical limit of the Langlands duality. However, the second
case will turn out to be a key step in Langlands duality itself.

1.2.5. Kapustin-Witten strategy in terms of branes for three holomorphic structures. We
start with the category Db[Coh(LSǦ(C))] of coherent sheaves on the moduli of Ǧ local
systems. We view this category as B-branes for the complex structure J . There are two
steps

(1) S-duality exchanges JB and KA so it takes a coherent sheaf F to an A-brane S(F)

for the Kaḧler structure K.
(2) Now, we use the observation that
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(∗) global A-branes on HǓ
C(K) can be identified with modules for

microdifferential operators on BunǦ(C).

Then the A-brane S(F) for K. is a microlocalization of a D-module on BunG(C)
which we call the Langlands transform L(F) of F .

Remark. Notice that in the first two steps we use Kaḧler structures J, K which are both
isomorphic to the the moduli of local systems. In the third step the complex structure
I, i.e., the moduli of Higgs bundles, appears as an ingredient of the procedure (∗). This
procedure is based on a choice of a certain “large A-brane”, and that choice involves
the complex structure I. So, the third step is a very nontrivial form of a hyperkähler
rotation. (The naive one is obviously not compatible with categories.)

1.3. Construction of relevant Quantum Field Theories via Gauge Theory. A
priori, the Geometric Langlands duality appears in this approach as a relation between
certain 2-dimensional Quantum Field Theories called sigma models, attached to compact
forms of dual groups G, Ǧ and to a curve C. However, these theories turn out to be
essentially related to certain gauge theories in dimensions 10 and 4. While these sigma
models can be introduced directly, their most interesting aspect (at least for physicists), is
that they are specializations of gauge theories. The gauge theory background turns out to
have various consequences for GL, which are so far physical proofs of known mathematical
results such as commutativity of Hecke operators or quantization of Hitchin’s completely
integrable system (a deep result of Beilinson and Drinfeld).

So, the setup of the KW treatment of GL is the construction of certain Quantum Field
Theories in dimensions 10,4 and 2. Eventually, different constructions will yield different
but overlapping families of theories in 2 dimensions so we will have to compare the natural
parameterizations of families coming from sigma models and from gauge theory.

From the point of view of gauge theory it is natural to starts with a 10 dimensional gauge
theory. Then one deduces the 2d sigma models through a sequence of “simplifications”.
We first list the steps and then supply the details bellow.

(1) In dimension 10 there is an essentially unique supersymmetric gauge theory T .
(2) The straightforward dimensional reduction gives a gauge theory T ′ in 4d, but this

theory has no supersymmetry.
(3) However, a twisted dimensional reduction gives a 4d theory T ′′ with two super-

symmetries, the N = 4 super Young-Mills theory.
• This twisted dimensional reduction has a well known analogue which produces

Donaldson theory
(4) Two supersymmetries give a P1-family of topological twists of this N = 4

super Young-Mills , hence a P
1-family T ′′

t , t ∈ P
1 of topological gauge theories

in 4d.
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(5) The fields for the theory T ′′
t are solutions of certain system of PDEs, the equations

of invariance under the supersymmetry corresponding to t ∈ P1. So the nature of
these theories is glimpsed through various results on these PDEs.(2)

(6) “Compactification” of 4d topological Quantum Field Theories to a compact
Riemann surface C, gives a P1-family of sigma models on C, with target the
Hitchin moduli .

1.3.1. Super gauge theory in 10d. Here are some clues for the role of dimension 10:

• Nahm’s theorem. 10d is the maximal dimension for a supersymmetric gauge the-
ory. The theory in 10d is in some reasonable sense unique.
• The simplest construction of the maximally supersymmetric 4d super Young-Mills is

by dimensional reduction from 10d.
• We will see later that the existence of interesting theories parallels the chain

R, C, H, O of division algebras.

Now we go through some of the features of the theory in 10d:

(1) The Lagrangian in 10d is kinetic and contains one coupling parameter denoted e.
(2) The 10d super gauge theory lives on a superspacetime H1,9. The spin bundle S on

R
1,9 is chosen to be R

1,9-equivariant, hence in particular trivial. Then the super-
spacetime is a Heisenberg type supergroup, an extension of the odd abelian Lie
group S− of odd spinors on R1,9, by the group R1,9 of even spacetime translations.
On the level of Lie algebras

0→ R
1,9 → h1,9 → S− → 0.

The extension is defined by the canonical (hence Spin(1, 9) invariant), self-pairing

of odd spinors S− into vectors R1,9.
(3) The fields in a super gauge theory are pairs (A, λ) where fermion λ (“superpart-

ner”), is an even spinor with “values in g”, i.e.,

λ ∈ Γ(M,E g⊗S+).

(4) The group of symmetries of the theory is the super Poincare group sP 1,9 which
is the semidirect product

sP1,9 def
= H1,9

o Spin(1, 9)

of the superspacetime translations group H1,9 and the linear rotations Spin(1, 9).
Here, Spin(1, 9) appears rather then SO(1, 9) because fields include spinors.

(5) Supersymmetries of H1,9 (also called odd symmetries or fermionic symmetries).
They are given by translations of the superspace H1,9, i.e., by the odd spinors

S− (“odd chirality spinors”). It will be important that they are organized as the
odd spinorial representation of Spin(1, 9).

2These are 4d PDEs. However, one also studies their reductions to 3d and 2d which will become
important later.
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They form an odd vector bundle of odd symmetries on R1,9 of the rank 2|
9+1

2 /2 =
210/2−1 = 24 = 16.

(6) Action of supersymmetries on fields. Supersymmetries, i.e., S−
1,9 act on fields via

...

1.3.2. The straightforward dimensional reduction to 4d. The straightforward dimensional
reduction gives a super gauge theory in 4d valid on any spin manifold M . We will see
that the problem with this theory is that in the full generality of arbitrary M it is not
supersymmetric, i.e., it has no supersymmetry.

To start with, this reduction of the supersymmetric theory T on R1,9 consists of restricting
the fields on the 10 dimensional Minkowski space R1,9 (i.e., on H1,9), to those which are
constant in the direction of R

1,5, i.e., equivariant under the group of translations R
1,5..

We think of the restricted fields as fields on the quotient R4 = R1,9/R1,9. This gives a 4d
theory T ′. The use of the factorization reduces the rotational symmetry from Spin(1, 9
to Spin(1, 5)×Spin(4). So, T ′ on R4 carries a sophisticated symmetry group because of
its 10d origin.

(1) The effect on bosonic fields is that from one gauge field A in 10d we get a pair
(A, φ) of one gauge field A in 4d and six scalar fields Ai, 3 < I ≤ 9, on R4.(3)

(2) The first effect of the reduction on the Lagrangian (=action) is to make it look
more complicated. The kinetic term in 10d Lagrangian turns into a sum of three
terms. One is the analogous kinetic term of the 4d gauge field, but there is also
the bracket of scalar fields in ad(E) and a mixed term – the covariant derivatives
of scalar fields.

(3) There is also another source of complexity of the Lagrangian of the 4d theory.
In 4d we can (and we do) add to the action a topological term which is specific
for gauge theories in dimension four. The new coupling θ combines with the old
coupling e into a complexified coupling τ ∈ H.

(4) The key information for the reduced theory T ′ is the organization of supersym-
metries S− according to the rotational symmetry group. This is just elementary
representation theory or linear algebra. the restriction of the representation S− of
Spin(1, 9) to the subgroup Spin(4)×Spin(1, 5).(4)

3The 4d interpretation of a component of a 10d field is based on how it transforms under the rotations
of the 4d space. For instance, a scalar field or zero spin field, will mean a functions on the space (here
with values in g), and it is characterized by the trivial action of rotations of the 4d space.

Explicitly, A =
∑9

I=0 AIdxI and A =
∑3

I=0 AIdxI . We view the six scalars as a single field

φ =

9∑

I=4

AIdxI

which is a map from R4 to translation invariant one 1-forms on R1,5 = R6 with values in g.
4Using special isomorphisms of low rank semisimple groups, we view Spin(4) as a product

SU(2)L×SU(2)R of the left and right copy of SU(2). To some extent in QFT one can pass between
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The important role of the rotational symmetry Spin(4) is that it allows to extend the
theory from R4 to any 4d Riemannian manifold (M, g). The supersymmetries that extend
to (M, g) are those that are fixed under the holonomy subgroup Hol(M, g)⊆Spin(4). So,
the ones that carry over to any (M, g) are those invariant under Spin(4). However, the
RT shows that (S−)Spin(4) = 0, so no supersymmetries survive if we try to extend the
theory to a general 4d Riemannian manifold.(5) However, there is a way around this:

1.3.3. Twisted dimensional reduction from 10d to 4d. Here we adapt the straightforward
reduction T ′ this will allow us us to keep half of the 4×4 = 16 SUSY charges, ending up
with 4 left movers and 4 right movers. This is achieved by twisting the action of rotational
symmetries Spin(4) on the fields. I will call this a holonomy twist. For this, we use a
nonstandard embedding of 4d rotations into the group of symmetries of the theory T ′

κ : Spin(4) ↪→ Spin(4)×Spin(6).

One can think of it as a new copy Spin(4)′⊆Spin(4)×Spin(6).

(1) A particular choice of κ used here (called the GL twist), gives a theory T ′′ valid
on arbitrary 4d Riemannian manifold, but this time with two supersymmetries as

ß
def
= SSpin(4)′

− ) is two dimensional.
(2) The first component of the holonomy twist κ is identity. The second is the canoni-

cal embedding of Spin(4) ∼= SU(2)×SU(2) as the semisimple part of a Levi factor
in Spin(6) ∼= SU(4).

(3) An important symmetry of the theory is given by the center of the this Levi
subgroup. This is a copy of U(1) which acts on fields and centralizes Spin(4)′.

(4) Once we have changed the action of Spin(4) on the fields, the interpretation of
the fields also changes! The effect is that in the holonomy twisted theory T ′′ the
bosonic fields are triples (A, φ, σ)(6) of

the Minkowski space and the Euclidean space, or real and complex representations of groups, so we
replace Spin(1, 5) with Spin(6) ∼= SU(4).

Now the restriction of S− to rotational symmetries is

S−|SL(2)×SL(2)×SL(4)
∼= L(1)⊗L(0)⊗L(ω3) ⊕ L(0)⊗L(1)⊗L(ω1),

which we denote (2,1,4)⊕(1,2,4) or just (2L,4)⊕(2R,4) (??).
Notice that this decomposes supersymmetries into left-handed and right-handed ones, according to

which copy of SU(2) acts nontrivially. Say, left-handed ones are invariant under SU(2)R.
This at the same time explains the effect of the reduction to fermions since the restrictions of S± are

the same.
5Some supersymmetry may survive on manifolds with sufficiently small holonomy.
6The bosonic fields for T ′ are pairs (A, φ). The new component A is the same as before. The field φ

can be written as
∑9

4 AIdxI for any coordinates xI on R
6. For certain choice of coordinates xI it splits

into φ formed from four components A4, ..., A7 and

σ
def
=

A8 − iA9√
2

, σ =
A8 + iA9√

2
.
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• (i) a gauge field A =
∑3

0 Aµdxµ (a g-valued one form),

• (ii) a g-valued one form φ =
∑3

0 φµdxµ, and
• (iii) two conjugate complex scalars σ, σ which are functions on R4 with values

in the complexification g
def
= uC.

This is one of three possible holonomy twists of T ′. Before KW work it was neglected as
it does not produce invariants of 4 manifolds. The other two twists give the Donaldson
theory and its relatives.

1.3.4. Topological twists give a P1-family of topological Field Theories in 4d. We have a
QFT T ′′ with two fermionic symmetries which we call QL, QR (certain basis of invariants

S = SSpin(4)′

− ). We will chose 0 6= Q = uQL + vQR ∈ S and we will pass from fields
to their Q-cohomology. This gives a theory T ′′

Q which will turn out to be topological,
i.e., independent of the metric on a 4-manifold M . The symmetry Q will then be called
the topological symmetry. The theory, i.e., the cohomology, depends only on the C-
line through Q. We denote the parameter for these lines by t = u

v
. Then the two

supersymmetries of the super gauge theory T ′′ give a P1
t-family of topological twists T ′′

t ,
i.e., a P1

t-family of topological gauge theories in 4d. (Here P1 means CP1.)

Now the key question is to identify the fields of each of these theories T ′′
t . So, we need

to identify (i) the fields which are killed by Q (called supersymmetric fields or topological

fields), and (ii) the effect of killing the Q-exact fields. Since Q is a vector field supersym-
metric fields are solutions of a system of PDEs. So the nature of these theories is studied
through

1.3.5. Study of supersymmetry PDEs. These PDE’s originally make sense in 10d as the
supersymmetries in 4d come from 10d and one takes the point of view of reducing them
to 4d, and later further to 3d or 2d.(7)

A. PDEs. The dimensional reduction of equations means that we fix values of some
components of the field in a higher dimensional equation and then consider consistency

equations in these fixed components. These equations are the necessary equations for the
higher dimensional system to have a solution in the remaining components of the field.
Often these will be special kinds of a solution in which the remaining components behave
in some simple way.

(1) These consistency equations in bosonic fields (A, φ, σ) take form of (here D = ∇
and D∗ def

= ?D?)
• Bosonic equations:

(?) [F − [φ, φ] ± t∓1 (Dφ)]± = 0 and D∗φ = 0,

7The relevant moduli of solutions in 2d will be the Hitchin moduli of Higgs fields (moduli of solutions
of Hitchin equations), and in and 3d the moduli will give t’Hooft operators, a new expression for Hecke
operators (moduli of solutions of extended Bogomolny equation).
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where for a 2-form Ω one denotes by Ω± the (anti)self-dual parts of Ω.
• Fermionic equations.

Dσ ± t±1[φ, σ] = 0 and [σ, σ] = 0.

So, A appears only through curvature F and there are three bosonic equations
(a) [F − [φ, φ] + t (Dφ)]+ = 0,
(b) [F − [φ, φ]− t−1(Dφ)]− = 0
(c) D∗φ = 0;

and three fermionic equations
(a) Dσ + t[φ, σ] = 0,
(b) Dσ − t−1[φ, σ] = 0
(c) [σ, σ] = 0.

(2) Fermionic equations imply that when the solution has a finite automorphism group
(these we call “irreducible solutions”), then σ = 0. This is really the case we are
interested in. When we pass to d = 2 this condition will mean that we are away
from singularities of the Hitchin moduli.

B. Analogies with 2d sigma models. Roughly, the result is that the theories behave
somewhat like 2-dimensional sigma models.(8)

• When t 6∈ R the moduli of solutions is LSUC
(C).

• This is most straightforward at t = ±i, here bosonic equations amount to flatness

of the complexified connection A def
= A + iφ. The analogy with the B-model with

target LSUC
(C) : in B-model the supersymmetric fields are constant maps.

• For t ∈ R equations are elliptic. This is analogous to A-model which counts
solutions of elliptic equations.
• For generic t, the analogy is with the 2d sigma model based on a generalized

complex geometry.

C. Vanishing theorems for solutions of SUSY PDEs. Besides the information
on the nature of the theories, PDEs give another relevant family of results, the vanishing

theorems. PDE’s derived from SUSY often have unusual vanishing properties. On a closed
4 manifold M the solutions of the consistency equations depend on the first Pontryagin
class p:

Theorem. (a) If p 6= 0 there is a solution at just one point of CP
1, either 0 or∞ depending

on the sign of p.

(b) If p = 0 then any solution (A, φ) for some t is also a solution for all t’s, and can be
viewed as a flat connection A = A + iφ with values in GC.

D. Reduction of consistency equations to 2d and 3d. Later we will find out that
we are also interested in reduction of SUSY PDEs to 2d and 3d.

8When we reduce theories to 2d, we will in fact get 2d sigma models.
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(1) Reduction of consistency equations to 2d are the Hitchin equations. Here the four
manifold is a product M = R2×Σ for a 2d surface Σ and R2-invariant solutions of
consistency equations on M are pull-backs of fields on Σ. This reduces equations
to Σ and there we get Hitchin’s equations for Higgs fields.

(2) Reduction to 3d gives an extended (“complexified”) version of the Bogomolny
equation for monopoles. These equations appear to be new and they provide
another incarnation of Hecke operators.

E. Topological action and the canonical parameter Ψ. To complete the passage
to topological theories on arbitrary 4d Riemann manifolds M , we need to find the corre-
sponding action, i.e., the topological Lagrangian. It should satisfy two properties:

• (i) when the spacetime M is flat the new Lagrangian should be the same as the
old one, i.e., the one for N = 4 super Young-Mills .
• (ii) For each M , new Lagrangian should be invariant under each of the topological

supersymmetries Qt corresponding to t ∈ P1
t.

The solution is a Lagrangian I = IA,φ + Iσ + Itop where

IA,φ =
−1

e2

∫

M

d4x
√

g Tr[
1

2
|F|2 + (D∗φ)2]

Iσ =
21

e2

∫

M

d4x
√

g Tr[
1

2
[σ, σ]2 −DµσDµσ − [φµ, σ][φµ, σ]]

I top = i
θ

8π2

∫

M

Tr[F∧F ].

This structure of the action leads to the following seemingly remarkable coincidence be-
tween the action and the SUSY equations:

Lemma. (a) The action is minimized iff

F = 0 = D∗φ and Dσ = 0, [σ, σ] = 0, [φ, σ] = 0.

This is equivalent to requiring that the field satisfies SUSY equations for all t ∈ P1
t.

(b) For each t ∈ P1
t the action I can be written as a sum of a Qt-exact term (QtV (t) for

some expression V (t)), and a topological term (the first Pontryagin class) :

I = QtV (t) +
iΨ

4π

∫

M

Tr(F∧F )

for the so called canonical parameter

Ψ
def
= Re(τ) + i Im(τ)· t− t−1

t + t−1
=

θ

2π
+ e2·t− t−1

t + t−1
.

This form implies that I is killed by each of the supersymmetries Qt.

Proof. (a) follows from the above formula – apart from the topological term the action is
a sum of squares of the above supersymmetry equations.
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Remark. We see that the parameters τ and t combine into one relevant parameter Ψ. So
we end up with a family of topological theories parameterized by Π ∈ P1

Ψ.

1.3.6. Compactification of 4d topological Quantum Field Theories to 2d sigma models.

In this step, we pass from our P1-family of 4d topological Quantum Field Theories to a
P1-family of sigma models on a surface Σ, with target the Hitchin moduli for C. For this
we consider a product M = Σ×C of Riemann surfaces Σ, C with C compact, and we
rescale the metric on C (this does not affect the complex structure!), so that C is much
smaller then Σ.

The limiting process makes action large for fields that change much along C. According
to the stationary phase principle. the path integral localizes to fields which minimize the
action in the C-direction and change freely in the Σ-direction. However, the lemma in
1.3.5.E says that the minimum of action appears for fields which satisfy SUSY equations
for all t ∈ P1

t, i.e.,

F = 0 = D∗φ and Dσ = 0, [σ, σ] = 0, [φ, σ] = 0.

This relation between the action and supersymmetry equations now gives

A. The limit of a 4d theory when C gets small is a 2d sigma model. The logic
is approximately the following.

(1) The simplest solutions are those (E, A, φ, σ) which are pull-backs from C and have
σ = 0.

(2) So these are the solutions (E, A, φ) on C of Hitchin equations

F = 0 = D∗φ.

(3) The Hitchin moduli H = HU
C is the moduli of solutions (E, A, φ) of Hitchin’s

equations on C. In terms of the real fields A, φ the equations are

F = φ∧φ and Dφ = 0 = D∗φ.

Here moduli means modulo gauge transforms, i.e., automorphisms of E.
(4) The general solutions vary freely in Σ but the restriction to each copy q×C, q ∈ Σ,

of C, is a minimizer. So, the fields in the effective theory on Σ are maps from Σ
to H.

B. Singularities of H and a partial translation between fields on M and Σ,
when C is much smaller then Σ. This translation is a low energy transition in the
sends that it works the best on the shell, i.e., for fields of minimal energy, and also for
the nearby fields of “almost minimal energy”.

(1) The moduli of solutions H has singularities at reducible solutions. A solution is
said to be reducible if it has a continuous symmetry group, i.e., its stabilizer in
the group of gauge transformations is infinite. We will assume that g > 1, then
the generic solutions are irreducible.
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(2) The above partial translation breaks down at reducible solutions or equivalently
at the maps Σ→H which visit the singularities of H.(9)

(3) We will consider only the case of a semisimple group U . If G = U(1) then all
solutions are reducible since they have U(1) symmetry. This causes the above low
energy description of the theory to have besides a sigma model a factor which is
a supersymmetric gauge theory.

(4) KW stay away from singularities of H. (In particular G is semisimple and g > 1.)
This should suffice for Langlands correspondence for irreducible local systems.

(5) A precise form of the translation is

Lemma. (a) The singularity avoiding fields with zero action (energy) are precisely
the constant maps into Hreg, i.e., elements of Hreg.

(b) We say that a map Σ → H varies slowly if The value changes significantly
only
over the distances in Σ which are
>> size of C. Then the slowly varying maps Σ → H are the same as the gauge
theory fields of almost zero action.

Question. Can one repair the above inadequacies (by considering H as a stack ...) and
“localize” the whole 4d gauge theory on the Hitchin moduli?

1.4. Appendix. 10d super Young-Mills as an “octonic theory”. These are some
general comments by Witten. The upshot is a “justification” of the existence of a maxi-
mally supersymmetric gauge theory in 10d.

A. Extra dimensions in physics. When physics and geometry look at the same
problem, physics has at least one extra direction. If we interpret the meaning of physics
treating geometric problems as the method of sigma models, the extra dimensions are
given by the dimension of the source manifold, i.e., the dimensions that are used to
probe the target manifold. In particular, the number of extra directions is here the
dimension of the QFT.

For instance in Quantum Mechanics there is one extra dimension and as Geometric Lang-
lands is related to 2d sigma models, here physics has two extra dimensions.

B. Super Quantum Mechanics on a manifold M . Quantum Mechanics is the 1-
dimensional QFT. In the Lagrangian approach, Quantum Mechanics on a manifold M
consists of studying the maps from an interval I into M (the possible time evolutions in
a configuration space M). So it is a sigma model of dimension one. The most obvious
observables are the evaluations at t ∈ I of functions on M . In the standard Super
Quantum Mechanics on a manifold M the super ingredient is the extension from functions

9A solution in 4d may contain more information then a map in 2d. The additional degrees of freedom
at singularities include (i) non-vanishing of the component σ, (ii) solution need not be a pull-back from
C. This loss of information should be compensated by refining the map (say by going to a resolution),
so that it reflects the extra information in the solution.
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on M to differential forms. There is one supersymmetry- the De Rham differential acting
on forms. From the Hamiltonian point of view, QM is a synonym for quantization of
a Poisson structure. In the Hamiltonian approach to super QM on a manifold M , the
cohomology H∗(M, R) is a Hilbert space of states that the theory produces (more precisely
this is the chiral ring of the theory).

C. Lifting to a higher dimension. This is the idea that one may be able to trade
extra symmetry for for extra dimensions.

• First, any problem T ′ should involve time (i.e., quantization), so to start with our
problem is on R1,0, hence in dimension one.
• Next, for a problem T ′ with extra symmetry one may look for a related problem T

in a higher dimension, i.e., on R1,n−1, such that when we restrict to fields constant
in the direction of the factor Rn−1, then we get the 1d problem T ′. Then the part
of the natural symmetry in higher dimension that survives the reduction to 1d,
may provide an “explanation” for the extra symmetry in the original problem.

This is a standard unification method for differential equations of Mathematical Physics
as reductions of simpler equations in higher dimension (equations for monopoles, Hitchin
equations,...).

C. 10d super Young-Mills as an “octonic theory”. Now we want to apply the
idea of trading symmetry and dimensions to explain why is there a gauge theory in 4d
which has supersymmetry N = 4, i.e., a maximally supersymmetric gauge theory in 4d,
and why do we encounter it in GL? The partial (intuitive) answer is that it comes from
an octonic theory – the super Young-Mills on R1,9. Being an octonic theory it is very
exceptional in that it posses the largest supersymmetry.

The conjectural relation to octonions can be motivated through the analogy with Hodge
theory. The claim is that for each of the division algebras D = R, C, H, O, there exist

(1) a maximally supersymmetric geometry G based on D (D acts on tangent spaces),
and

(2) a QFT T on a Minkowski space of dimension (1, d + 1) where d is the dimension
of the algebra D,

which are related by:

• The reduction T ′ of T to dimension one (i.e,, to a Quantum Mechanics theory),
gives rise to a geometry G – the data on M needed to construct the theory T ′

on M amounts precisely to to a G-manifolds structure. So, the reduced theory T ′

“is” the QM view on the geometry G.

This claim has an interesting and well known consequence.
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Notice that the theory T on R1,d+1 being “natural”, has a Spin(1, d+1) symmetry. When
we reduce to 1d, we use a factorization R1,d+1 ∼= R1,d×R0,1 and this reduces the symmetry,
so T ′carries symmetry group Spin(1, d)×Spin(0, 1) = Spin(1, d).

Now consider the Hamiltonian view on T ′. Because T ′ is a super QM theory on a G-
manifold M , the Hilbert space of states for T ′ is something like the cohomology H∗(M)
of the manifold M . So we get a well known

Theorem. The cohomology of any compact G-manifold carries an action of Spin(1, d).

The meaning of this for division algebras D = R, C, H, O is :

(1) Kaḧler geometry is the maximally symmetric geometry based on D = C. Accord-
ing to the above scheme it should be a reduction of a QFT T on R1,dim(C)+1 = R1,3,
and this explains why for a compact Kaḧler manifold M there is an action of
Spin(1, dim(C)) = Spin(1, 2) ∼= SL2(R) on H∗(M, R) (“Weak Lefschetz”).

(2) hyperkähler geometry is the maximally symmetric geometry based on D = H and
should be a reduction of a theory T on R1,dim(H)+1 = R1,5. This explains the
action of Spin(1, dim(H)) = Spin(1, 4) ∼= Sp2(R) on H∗(M, R) for a compact
hyperkähler manifold M .

(3) The theorem does not give anything for D = R since Spin(1, 1) = R∗.
(4) If there would exist “octonic geometry”, i.e., a maximally symmetric geometry

based on D = O, it should be a reduction of a QFT T on R1,dim(O)+1 = R1,9. Then
Spin(1, dim(O)) = Spin(1, 8) ∼= ? would act on cohomology of compact octonic
manifolds.

While there are real, Kaḧler and hyperkähler manifolds, we do not know of octonic mani-
folds. If there were such manifolds they would give a QM theory with symmetry Spin(1, 8).
However, for each compact U there does exist a Quantum Mechanical Problem with a
Spin(1, 8) symmetry – the reduced to dimension one of the super Young-Mills theory on
R(1,9). So one can regard this QM theory as nature’s substitute for octonic manifolds.

Remark. On the quantum level, “octonic geometry” in 10d involves incorporating (su-
per)strings.

1.5. Construction of relevant Quantum Field Theories via 2d sigma models.
So far, we have constructed a P1

Ψ of 2d sigma models with target the Hitchin moduli HU
C .

The existence of these theories is based on the hyperkähler structure onH.(10) We will see

10One way to see this is to count the supersymmetries. Recall from 1.3.3 that the theory T ′′ (the
GL-twist) on a flat 4d manifold M has a (4, 4) supersymmetry (4 “left movers” and 4 “right movers”.)
Actually this is true for all manifolds of the form Σ×C, Then the (4, 4)-symmetry is inherited by the
passage to 2d. However it is known that 2d sigma models with 4 + 4 SUSY have hyperkähler targets
(“hypermultiplets parameterize a hyperkähler manifold”).

Question. The analogous hyperkähler structure on the cotangent bundle to a flag variety belongs to a
family of “similar” hyperkähler structures. Is this true for H, and if so is this useful at all?
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that the hyperkähler structure actually gives a larger family of P1×P1 supersymmetric
sigma models through the mechanism of generalized Kaḧler structures.

1.5.1. Hyperkähler structure on the Hitchin moduli HU
C . Hyperkähler manifolds. Re-

call that on any hyperkähler manifold X each element u of the two sphere S = {u ∈
H; u2 = −1} defines a Kaḧler structure X(u) on X, it consists of a complex structure
given by u and a symplectic structure ωu. We parameterize S = {u ∈ H; u2 = −1} by
P1

w by

Iw
def
=

1− ww

1 + ww
I + i

w − w

1 + ww
J +

w + w

1 + ww
K.

Say, I±i = ∓J, I±1 = ±K while I0 = I and I∞ = −I. One has X(−1/w) ∼= X(w).

A geometric way to think of a hyperkähler manifold X is as a complex manifold X̃ that
fibers over P

1
w and the fiber at w is X(Iw) (so this twistor map has a smooth trivialization).

The fibers carry a holomorphic symplectic structure which is actually twisted by a line
bundle on P1

w but we can untwist it at I, J, K, then the holomorphic symplectic form
takes form ΩI = ωJ + ωK (plus cyclic permutations of this).

B. Quaternionic vector space W. One way to see the hyperkähler structure on H is
to reconstruct H as a hyperkähler quotient of a very simple hyperkähler manifold – a
quaternionic vector space. Let us fix a U -bundle E over C, and consider the vector space

W of smooth one-forms on C with values in u

C
=E g, i.e., W def

= Hom[T (CR), EuC] =
Γ[C, Ω1

CR
⊗Eg], where CR means that we consider C as a real manifold. As above, we

denote the real and imaginary part of A ∈ W by A = Re(A) and φ = Im(A).

One can combine the complex structures on C and on uC = g in a certain way, to give
W a structure of a hyperkähler manifold – a quaternionic vector space with an invariant

metric ds2 def
=

∫
C

Tr[A∧A + φ∧φ]. The actions of I, J, K ∈ H on W are chosen so that
the action of J does not depend on the complex structure on C. ωI , ωK, ΩJ do not depend
on the complex structure of C.

C. Hyperkähler quotient construction of H. The hyperkähler reduction of a
hyperkähler manifold X with respect to a group K of symmetries is the hyperkähler
manifold (µK

−10)/K where µK is the hyperkähler moment map. It has three components
µI , µJ , µK : X → k∗ which are moment maps for the action of K on X(I), X(J), X(K),
i.e., they are defined using the symplectic structures (ωI, ωJ , ωK) on X. We can combine

two of these into νI
def
= µJ + iµK a complex moment map into k∗

C
.

Now, a hyperkähler structure on H is a consequence of(11)

11This seems to be a general construction of hyperkähler structure on a target. In a 2d
super Young-Mills with (4, 4) symmetry and a gauge transform group G:

• (i) Hypermultiplets parameterize a hyperkähler manifold W ,
• If G acts freely on W then the low energy physics is a sigma model with target the hyperkähler

reduction of W by K. Actually, this logic is the historical origin of hyperkähler reduction.
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Theorem. The hyperkähler reduction ofW with respect to the action of the gauge group
G = Aut(E) = Γ(C, EU) is isomorphic to H.

Remark. The twistor space W̃ has a symmetry group C∗
w which acts on P1

w and permutes

the fibers of W̃ by λ(Iw) = Iλ−1w. In particular it acts holomorphically on the fiber at
0. Its compact part U(1)w is a symmetry of the hyperkähler structure on W. C∗

w acts
on the component φ and uses the complex structure on C.(12) All of this descends to
H. So the hyperkähler structure on H is particularly simple – it has a C∗

w-symmetry
so there are only three different complex structures H(J0) = H(I), H(J1) = H(J) and

H(J∞) = H(−I) = H(I).

D. Comparison of metrics and B-fields from gauge theory and sigma models.
We are really comparing the actions for 2d sigma models and our topological theories in
4d. The B-field in a sigma model is a closed 2-form B on the target. The B-field term in
2d action is

∫
Σ

Φ∗B for a map Φ on Σ. The kinetic energy term
∫
Σ
|dΦ|2 depends on the

metric on the target, which is here a part of the hyperkähler structure on H

Lemma. (a) The two metrics on H, metric ds2
gau given by the 4d gauge theory and the

metric ds2
hk = ds2 given by the hyperkähler structure, are related by:

ds2
gau = Im(τ) ds2

hk =
4π

e2
ds2

hk.

(b) The B-field of the sigma model is proportional to the theta angle coupling of gauge
theory:

B = −Re(τ) ωI = − θ

2π
ωI.

Proof. (a) The kinetic energy term for a gauge field in 4d is Ikin =
− 1

2e2

∫
M=Σ×C

|d2y| |d2z| |F |2. As Ω1
M is the sum of pull-backs of Ω1

Σ and Ω1
C ,

we can write our gauge field as A = AΣ + AC and decompose |F |2 according to
(Σ, C)-types. (1, 1)-summand gives the kinetic energy of the corresponding map Φ in
the sigma model. (The (2, 0) and (0, 2) summands are the kinetic and potential energy
of AΣ.) Comparison of kinetic energy formulas from 4d and 2d gives the relation of two
metrics on H.

(b) From the point of view of gauge theory the B-field comes from the topological term
iθ

8π2

∫
Σ×C

Tr(F∧F ).

1.5.2. P1
w of complex structures on H. We now consider H as a complex manifold with

one of the complex structures I, J, K. The understanding of H in a complex structure Iw

is based on the “coincidence” of the hyperkähler-reduction of W (the quotient of µ−10

12U(1)w acts on the physical theory in 4d but does not preserve the P1
Ψ-family of topological twists.
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by U -gauge transforms) and the I-holomorphic reduction of W (for I = I this is the
quotient of the subspace ν0

−10 by a larger group of UC-gauge transforms).(13)

Lemma. A. The I-holomorphic reduction H(I) ofW is the moduli of Higgs bundles, i.e.,
pairs (E , ϕ) of a holomorphic G-bundle E on C and a holomorphic section of ωC⊗ Eg.(14)

Notice that this is the cotangent bundle to the moduli BunG(C) =MG
C of G-bundles on

C.

B. The J-holomorphic reduction of W is the moduli of all GC-local systems on C.(15)

Proof. B. comes from the observation above that Hitchin equations impose flatness on
A. Part A. is based on

Sublemma. (a) Any connection ∇ = d + A on a U -bundle E over a complex curve C
defines a complexification EC which is a a holomorphic GC-bundle.

(b) If the holomorphic moment map vanishes at (E, A, φ) then the (1, 0)-part ϕ of φ =
ϕ+ϕ is holomorphic (as a section of ad(EC)⊗ωC), for the complex structure given by the
connection A.

Proof. (a) One defines ∂-operator on EC by dz
def
= dz∇∂̄C

.

Remarks. (0) Recall that these are all interesting complex structures – for instance for
w 6= 0,∞, complex manifold H(Iw) is independent of w, so it is isomorphic to H(J) =
LSǦ(C).

(1) C∗
w acts on on H(I) by λ·(E , ϕ)

def
= (E , λϕ), the natural action on T ∗BunG(C). So on

(A, φ) the action involves only φ and can be reconstructed from φ = ϕ + ϕ.

1.5.3. Hitchin fibration: H as a completely integrable system. This has been covered
above.

1.6. Parameterization of theories. We are interested in

13The results are generally close, with some “high codimension” differences that appear as differences
in stability notions. The holomorphic reduction is easier to understand and gives an approximation of H
in a complex structure I.

14I will ignore the questions of stability as these are not germane for GL. For instance, with stabilities
switched on H(I) is only the moduli of semistable Higgs bundles. Smooth points of H(I) are stable
points, and the remaining stable points are orbifold singularities. The strictly semistable points give
singularities worse then orbifolds. If genus is > 1 then the Higgs bundle moduli differs from H(I) in high
codimension.

15[Corlette, Donaldson] H is the moduli of semistable maps π1q(C) → GC, i.e., it consists of stable
local systems and equivalence classes of semistable local systems.
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1.6.1. Parameters for 4d theories. The physical theory in 4d depends on the choice of
coupling constants. A topologically twisted theory then depends on both the coupling
and the choice of a topological twist Very roughly one may try to imagine the choice of
the twist as the choice of a “nature” of the theory, and the choice of a coupling as a
choice of the strength in the theory. However, the parameters of the family of topological
theories that we get, is not quite a product of coupling and topological parameters but a
quotient of this product since the two ingredients interact.

(1) Coupling parameter τ ∈ H.
The action (Lagrangian) of any gauge theory contains two basic summands –

the kinetic energy term and the topological term. Each come with a choice of a
coupling (i.e., a coefficient), and this gives two coupling parameters, the kinetic
parameter g and the theta-angle θ(16) It turns out that the symmetries of the the
dependence of the theory on the coupling are most obvious when one combines
g, θ into one complex coupling parameter τ .

(2) Topological twisting parameter t.
We will denote the parameter in the P1 of supersymmetry lines by t. So, the

topologically twisted gauge theories in 4d are parameterized by P1
t.

(3) Topological theories parameter (“canonical parameter”) Ψ
It turns out that the topological theory depends on τ, t only through their

combination Ψ. So, topologically twisted theories are parameterized by P1
Ψ.

1.6.2. Parameterization of relevant geometries on a hyperkähler manifold. The
standard point of view on a hyperkähler manifold is that they have a P1 family of
Kaḧler geometries, however there is a larger relevant class of geometries – the P1×P1

family of Generalized Kaḧler geometries.

(1) Kaḧler parameter w.
The natural hyperkähler structure on the Hitchin moduli gives a family of

Kaḧler structures on the Hitchin moduli, parameterized by the set S of square
roots of −1 in H. Topologically S ∼= S2 ∼= P1 and we call this projective line P1

w.
• I ∈ S, i.e., w = 0 gives Kaḧler structure of Higgs fields, i.e., T ∗BunG(C).

• J ∈ S, i.e., w = −i gives Kaḧler structure of local systems, i.e.,
LSGC

(C)G(C).

• For w 6= 0,∞ (including K ∈ S corresponding to w = 1), all Kaḧler struc-
tures are identified through a certain Gm-action, in particular they are all
isomorphic to LSGC

(C)G(C).

(2) Generalized Kaḧler parameter (w+, w−).

However, the P1
w of Kaḧler structures is a part of a larger family of

Generalized Kaḧler structures associated to the hyperkähler structure. These

16One calls the coefficients of the topological term the theta angle because integrality of the topological
term implies that quantum mechanically the parameter is only relevant modulo 2π.
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are parameterized by P
1
w×P

1
w and Kaḧler structures appear as the diagonal

P1
w. We denote the parameters (w+, w−).

1.6.3. Parametrization of (2, 2)-supersymmetric sigma models with a hyperkähler target.

(1) Each of these Kaḧler structures produces two supersymmetric sigma models called

A and B, that use only half of the Kaḧler structure – the symplectic and the
complex structure.

(2) Actually, each of the above Generalized Kaḧler structures produces one super-
symmetric sigma model. So we get a P1

w+
×P1

w−
of sigma models. It contains

the P1 of complex sigma models (i.e., type B) as the diagonal ∆P1
w

and the P1 of
symplectic sigma models (i.e., type A) as the antidiagonal ∆−

P1
w
.

(3) Moduli of sigma models parameter q.
Different geometries may give equivalent theories and here the repetitions are

counted by the diagonal action of Gm,w on P1
w+
×P1

w−
. Therefore, the moduli of

theories is parameterized by P1
q for

q
def
=

w+

w−

.

(This is actually just a geometric invariant theory quotient so there may exist a
finer moduli?)

1.6.4. The relation between two families of theories.

(1) The topological twist determines the Generalized Kaḧler structure by

P
1
t 3 t 7→ (−t, t−1) ∈ P

1
w+
×P

1
w−

.

(2) Therefore, the topological twist determines the equivalence class of theories by

q
def
=

w+

w−

=
−t

t−1
= −t2.

So, the theories for ±t are equivalent.
(3) The role of the canonical parameter Ψ is that

• When Ψ 6= ∞, i.e., t 6= ±i, we get a theory which is (equivalent to) an
A-model and
• Ψ determines its complexified Kaḧler class

[B + iω] = −Ψ · [ωI ].

1.7. Langlands correspondence.
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1.7.1. Interesting categories of branes on a hyperkähler manifold. On H we have complex
structures IJK and for each a category of A-branes and B-branes. However, they all lie
in one large category of branes for the sigma model where elementary objects are just
connections on submanifolds. The subcategories consist of branes which are fixed by the
supersymmetries corresponding to the complex structure and the choice of a topological
sigma model (supersymmetric branes). In particular, we can take intersections of any of
these six categories, i.e., look at branes with several supersymmetries.

1.7.2. S-duality. This is a conjectural claim that – in our case – categories of branes
on H(G, C) and H(Ǧ, C) are equivalent. Then one checks that, according to standard
properties expected from S-duality, it exchanges some complex structures and models:

Lemma. (a) S-duality exchanges

(1) IB
∼= IB

(2) IA
∼= IA

(3) JB
∼= KA

(4) JA
∼= KB

(5) KB
∼= JA

(6) KA
∼= JB

(b) The restriction of S-duality to the case (1) is(17) the Fourier-Mukai transform.(18)

(c) Restriction to (2) is its (less known) analogue for A-branes.

1.8. Hecke operators as singular monopoles (t’Hooft operators).

1.8.1. The content of Langlands correspondence. Recall that the traditional content of
a Langlands conjecture is that GC-local systems on a curve correspond to D-modules
on BunǦC

(C) which are eigenvectors for Hecke operators. These Hecke operators are

parameterized by Irr(Ǧ).

In the categorical formulation of Beilinson-Drinfeld, a local system is viewed as a coherent
sheaf on the moduli of local systems (the structure sheaf of a point), and then it is clearly
an eigenvector for the operation of tensoring of coherent sheaves with vector bundles. In
particular it is an eigenobject for the tautological family of vector bundles associated to
irreducible representations of Ǧ. From this point of view the content of the Langlands
conjecture becomes the matching of two families of operators and of their eigenobjects.

17In the “generic case”, i.e., where Hitchin fibers are dual tori.
18Hitchin fibrations HG → B ∼= B̌ ←− HǦ are holomorphic and (generically) dual for ye complex

structure I .
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1.8.2. L-functions. Actually the Langlands correspondence should have an additional key
property that it preserves the L-functions. However this is implicitly included in the KW-
approach, i.e., in lifting GL duality into a duality of two Quantum Field Theories. The
notion of equivalence of Quantum Field Theories means a correspondence that preserves

the correlators and this is what L-functions are. Now our difficulties in defining L-functions
may “disappear” by turning into the problem of making sense of Feynman integrals.

1.8.3. S-duality is more symmetric then Langlands duality. In the formulation of S-duality
groups G and Ǧ are in symmetric roles – one has equivalence of categories of branes on the
Hitchin moduli of U and Ǔ . The asymetry in GL is caused by specializing the category
of branes on one of the sides to branes with a certain supersymmetry, this leads to a
specialization on the other side which is no longer of the same nature.

1.8.4. Wilson and t’Hooft operators. An aspect of this symmetry is that in the theory
associated to U there are both Wilson operators parameterized by Irr(G) and
t’Hooft operators parameterized by Irr(Ǧ). Now as S-duality exchanges the theories for
G and Ǧ, it also exchanges these two kinds of operators (this is Kapustin’s formulation
of S-duality ).

When we specialize the sigma model branes to topological theories parameterized by Ψ,
for a given Ψ at most one kind of operators survives, and not all operators of this kind
either.

There are two values of Ψ that play role in GL, Ψ = 0,∞. At Ψ = 0 the branes of the
theory for U specialize to coherent sheaves in LSǦ(C). Here Wilson operators survive
and they take the form of tensoring with canonical vector bundles on LSG(C). This is
the more obvious part of the picture.

At Ψ = ∞ the theory for U specializes to Fukaya category on BunG(C) Here
t’Hooft operators survive and they get interpreted as cetain singularities of monopoles
which are given by G-bundles on P1. Conjecturally, these are microlocalizations of Hecke
operators. This is the deeper part.

1.8.5. KW-construction and operators. Here we go once again through the the KW-
construction of the Langlands correspondence and we follow what happens with oper-
ators. We concentrate on what happens to a Ǧ-local system, i.e., to a ponit of LSǦ(C),
which we view as a point brane. There is a funny feature of this brane that it has some
supersymmetry for all three of the standard Kaḧler structures I, J, K on the Hitchin
moduli – for all three Kaḧler structures this is a B-brane. As a consequence the branes
we produce from it will again have SUSY for I, J, K but for each of these the type of
SUSY may change and we indicate these changes bellow.

(1) BBB. We start with a G-local system E on C. We think of it as a point p
in LSG(C), hence in the Hitchin moduli. Then it can be viewed as a brane
(p,Op, d) (point with the trivial line bundle with a trivial connection on it), and
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it is clearly holomorphic in all complex structures, so it is of type BBB for the
complex structures IJK.

(2) BAA. Applying the S-duality to the brane (p,Op, d) we get a brane S(p,Op, d)
which we know is of type BAA. However, we know what it is since S(p,Op, d) can
be thought of as the Fourier-Mukai transform FOp of the coherent sheaf Op in
the complex structure I. If p lies above a point b in the Hitchin base B, and we
identify b with b̌ ∈ B̌, then the transform of OE is an I-holomorphic line bundle
LE on the fiber (HǦ)b̌ of the Hitchin fibration for Ǧ.

Moreover, the property of OE of being an eigenobject for tensoring with vec-
tor bundles translates in the property of the corresponding A-brane of being an
eigenobject for t’Hooft operators.

(3) ABA. Now, we pass to D-modules using observation (∗).It says that the A-brane
LE for K. is a microlocalization of a D-module L(E), the Langlands transform of
E .

Again, the property of the A-brane LE of being an eigenobject for
t’Hooft operators. translates into the property of the corresponding D-module of
being an eigenobject for Hecke operators.

Appendix A. Electro-magnetic Duality and S-duality

This is the origin and the baby case of S-duality. On the classical level electromagnetism
is decribed by Maxwell’s equations. On the quantum level, electromagnetism will be
described in terms of the U(1) gauge theory. The S-duality is then the extension of the
EM duality to the gauge theory for the general group G.

A.1. Classical theory of electromagnetism: fields and Maxwell’s equations.

A.1.1. Electro-magnetic fields.

• Electric field E is a vectorfield on R3 or R3,1.
• Magnetic field B is a 1-form on R3 or R3,1.
• Relativistically, E and B combine into a 2-form on R

3

F
def
= dt∧E + ?B,

for the Hodge star operator ? on R3.

A.1.2. Maxwell’s equations in vacuum. The equations are

dF = 0 and d(?F ) = 0.
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A.1.3. Classical duality. The original 19th century version of Electro-magnetic Duality is
the obvious symmetry of Maxwell’s equations

F 7→ ? F and ? F 7→ − F.

The signs are chosen so that the symmetry is ?-equivariant (use ?2 = −1).

A.2. Quantum mechanical setting for electromagnetism. In the QM formulation
the above obvious symmetry between F and ?F is broken:

• Equation dF = 0 is interpreted as

F is the curvature ∇2 of a connection ∇ = d + A on a line bundle L over the

spacetime M4.

This interpretations is the solution of dF = 0 and this equation now disappears
(it becomes trivial: “Bianchi identity”).
• In this geometric setting physics consists of one differential equation d(?F ) = 0, so

in the Lagrangian approach this has to be the criticality equation for a Lagrangian.

A.2.1. Kinetic action. In order to interpret Maxwell ’s second equation d(?F ) = 0 as the
criticality equation of an action, we integrate it to a “kinetic” action

Ikin
def
=

∫

M4

||F ||2 =

∫

M4

F∧ ? F.

This is analogous to harmonic maps, the difference is only that one uses the “kinetic
energy” of a connection rather then a “kinetic energy” of a map.

A.2.2. Topological action. However, in 4d there is a possibility to enrich the action with
a topological term

Itop
def
=

∫

M4

F∧F = iθ

∫

M4

c1(L)2.

Remark. The topological term does not influence the criticality equations (it is locally
constant in F !), hence it does not influence the classical solutions.

A.2.3. Total action. The total action is a combination

I
def
=

1

4e2
Ikin + i

θ

(2π)2
Itop =

1

4e2

∫

M4

F∧?F + i
θ

(2π)2

∫

M4

F∧F.

A.2.4. Couplings e, θ. Physically, e is the charge of an electron. θ is an angle variable.
We combine them into one complex coupling

τ
def
=

θ

2π
+ i

4π

e2
.
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Remark. Couplings are a purely quantum phenomena. Notice that they do not influence
the classical solutions, i.e., the criticality equations (remark A.2.1). However, they
certainly influence the action and hence the quantum theory.

A.2.5. Path integral. The partition function is an integral over the space A of connections
modulo the group G of gauge transformations

Z = 〈1〉 def
=

∫

A/G

dA e−I(A).

Notice that the integral depends on connectionns not only on curvatre – the integrand
depends only on the curvature F , however the measure does depend on A.

A.3. Quantum Electro-Magnetic Duality. The obvious symmetry of the classical
picture of EM force, i.e., symmetry of Maxwell’s equations, does not disappear in the
in the quantum mechanical setting but here it becomes a more complicated symmetry
denoted S.

(1) For one thing the new symmetry S is non-clasical since it notices the coupling. It
acts on the complex coupling by S(τ) = −1/τ .

(2) Still, S exchanges F and ?F , so can be viewed as the quantum version of the
classical EM duality.

(3) S is given by the Fourier transform in the space of all connections. The action on
τ is roughly a version of the Fourier transform formula

∫
dx√
2π

eixy e−λx2/2 = e−λ−1y2/2

which inverts λ.
(4) S exchanges F and ?F , so it can be viewed as the quantum version of the classical

EM duality.
(5) There is an additional classical synmmetry T which shifts the θ-angle θ 7→θ + 2π.

Equivalently, T (τ) = τ + 1. This affects the action but not the path integral.(19)

(6) Quantum symmetry S combines with a classical synmmetry T to generate a sym-
metry group Γ ∼= SL2(Z) called the S-duality group (or Hecke group).

A.4. S-duality. A conjectural quantum symmetry S is a generalization of the quantum
EM duality. It arises when one considers gauge theory for arbitrary compact groups U .
Then the electric charges are irreducible represntations of U and the magnetic charges
are irreducible represntations of Ǔ .(20)

19At least not when M is closed, then the integral produces an integer.
20In the case U ∼= U(1) ∼= Ǔ both kinds of charges can be thought of simply as integers, i.e., integer

multiples of one basic charge.
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Conjecture. There is a quantum symmetry S which

(1) “inverts” τ by S(τ) = −1/lUτ ,(21)

(2) exchanges U and Ǔ and therefore also the electric and magnetic charges.
(3) combines with a classical synmmetry T (shift of the θ-angle), to give a finite index

subgroup Γ of SL2(Z) – the S-duality group of U .

One can try to make this more precise by introducing two copies H and H′ of the upper
half plane, related to U and Ǔ . Then T acts the same on both by τ 7→τ +1 and τ ′ 7→τ ′ +1,
However, S exchanges the two copies by

S =

(
0 1/

√
n

−√n 0

)
, i.e., S(τ) =

−1

nτ ′
, S(τ ′) =

−1

nτ
.

If ǧ ∼= g one can pretend that H′ = H.

E-mail address : mirkovic@math.umass.edu

21lU is the lacing for both u and ǔ.


