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The main source. This is the text [BDM] :

• Deligne, Pierre; Morgan, John W. Notes on supersymmetry
(following Joseph Bernstein).
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1. Linear algebra

The super math is the mathematics that obeys certain sign rule. One can introduce
super versions of standard objects by writing formulas enriched with some signs and then
claiming that these formulas work well. A more systematic approach is the description of
the sign rule as an additional structure – a braiding – on the tensor category of Z2-graded
vector spaces. A braiding on a tensor category T provides a notion of commutative algebras
in the setting of T , as a consequence one obtains notions of T -versions of geometric
objects, Lie groups etc., i.e., the standard bag of mathematical ideas. The above braiding
(the super braiding) gives the super math. We will survey the effect of the super braiding on
linear algebra, geometry (super manifolds) and analysis (integration on super manifolds).

Some unusual aspects. Some concepts develop unexpected subtleties. For instance on
super manifolds there are three objects that generalize various aspects of differential
forms: (super) differential forms, densities, integral forms.

The odd part contributes in the direction opposite from what one expects. This is familiar
in the case of super dimension which is just the Euler characteristic: even−odd. However
as this principle propagates through more complicated objects it gets more surprising.
We will see this when we study integration on super manifolds.

Applications.

(1) Some non-commutative situations are commutative from the super point of view.
(2) Some standard constructions have a more “set-theoretic” interpretation in the

super setting :
(a) The differential forms on a manifoldM can be viewed as functions on a super

manifold which is the moduli of maps from the super point A0|1 to M .
(b) The differential forms on the loop space Λ(M) are functions on the super

manifold which is the moduli of maps from the super circle S1|1 to M . This
explains the non-trivial structure of a vertex algebra on these differential
forms, for instance the vector fields on S1|1 give the (a priori sophisticated)
structure of N = 2 topological vertex algebra.
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(c) Complexes in homological algebra are representations of a certain super group
with the underlying manifold S1|1.

(3) Supersymmetry: this is a symmetry of a mathematical object which mixes even
and odd components. These are more difficult to spot without the super point
of view. For instance integrals with supersymmetry of will be easier to calculate.
(Our example will be the baby case of Witten’s approach to Morse theory.)

(4) Fermions: elementary particles break into bosons and fermions depending on
whether they obey usual mathematics or require super-mathematics.

Development. The underlying structure of this theory is the category sVectk of super
vector spaces over a basic field(1) (or ring) k, with a structure of a tensor category with
a super braiding. The next level is the linear algebra in sVectk, it has two notions of
liner operators: (i) the inner Hom, i.e., Hom(U, V ) is a super vector space, it consists of
all k-liner operators, (i) the categorical Hom, i.e., Hom(U, V ) = HomsVectk(U, V ) is an
ordinary vector space, it consists of all k-liner operators that preserve parity,

1.1. Super-math as the math in the braided tensor category of super vector
spaces. A super vector space is simply a vector space graded by Z2 = {0, 1}: V =
V0⊕V1, i.e., a representation of the group(2) {±1}. Therefore, µ2 acts on any category of
super objects.3

1.1.1. Parity. We will say that vectors v ∈ Vp are homogeneous of parity p and we will
denote the parity of v by pv or v. Another way to keep track of parity is the “fermionic
sign” (−1)F . On each super vector space this is the linear operator which is +1 on V0 and
−1 on V1. Here, “F” for fermionic, will sometimes be used to indicate the super versions
of standard constructions.

1.1.2. Sign Rule and super braiding. The meaning of “super” is that all calculations with
super vector spaces have to obey the

“Sign Rule: when a passes b, the sign (−1)papb appears.

More precisely (and more formally) the calculations are done in the tensor category Vectsk
of super vector spaces over k, enriched by a certain structure called “braiding”. The
braiding on a tensor category is a (consistent) prescription of what we mean by a natural
identification of V⊗W and W⊗V , i.e., a commutativity isomorphism (“commutativity
constraint) cVW : V⊗W→ W⊗V , functorial in V and W .

1Here k is even, i.e., there is no parity grading in “numbers”.
2To cover the case of the arbitrary ground ring k, the correct group is the group scheme µ2 of second

roots of unity, defined over integers. The difference matters only when 2 is not invertible in k.
3Moreover, µ2 acts identically on objects, so it lies in the center of that category.
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The braiding in the “ordinary” math is cV,W (v⊗w) = w⊗v on V V ectk. The super math
is based on the braiding in (Vectsk,⊗

k
) given by the sign rule

cVW : V⊗W→ W⊗V, v⊗w 7→ (−1)pvpww⊗v,
which is the formalization of the above Sign Rule.

1.1.3. Braiding gives geometry. While one can define associative algebras in any tensor
category, in order to have a notion of commutative algebras the tensor category needs
a braiding. In this way, each braiding gives one version of the notion of commutative
algebras, hence one version of standard mathematics.

1.1.4. General arguments and calculations in coordinates. While the calculations in a
braided tensor category Vectsk are “natural”, and of a general nature (arguments valid for
any braiding), working in coordinates will involve applications of this specific commuta-
tivity constraint and also careful sign conventions.

1.1.5. Unordered tensor products in braided tensor categories. (i) In any tensor category

a tensor product of a finite ordered family ⊗n1 Vik
def
= Vi1⊗· · ·⊗Vin is defined canonically,

and the associativity constraint can be viewed as identity.

(ii) In a braided tensor category, the tensor product is also defined for unordered families,
here ⊗i∈I Vi is defined as the projective limit of all tensor products given by a choice
of order (the consistency property of commutativity constraints ensures that this is a
projective system).

1.1.6. Special property of the super braiding. The super braiding is very special – it is
self-inverse, i.e., cVW = cWV

−1. In particular, c2V V = 1.

1.2. The effect of the sign rule on linear algebra over the base ring k. Some
mathematical constructions extend to any tensor category, for instance the notion of an
algebra. In our case it gives the following notion: a super k-algebra is a k-algebra A with
a compatible super structure, i.e., Ap·Aq⊆ Ap+q.

1.2.1. Commutativity. Mathematical constructions related to commutativity require the
tensor category to have a braiding.

The commutator in an algebra A in a braided category is obtained by applying the mul-
tiplication to a⊗b− cA,A(b⊗a). So, the (super)commutator in a super-algebra A is

[a, b]F
def
= ab− (−1)papb ba.

So we say that elements a and b of a super-algebra A super-commute if

ab = (−1)papb ba.
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An abstract reason for usefulness of the notion of super-commutativity is that it allows
one to think of some non-commutative situations as if they were commutative, and this in
particular gives notions of a super-commutative algebra A, i.e., of a super-space X with
the super-commutative algebra of functions O(X) = A.

1.2.2. Functors between vector spaces, super vector spaces and graded vector spaces.

• Inclusion Vectk⊆Vectsk. This is an inclusion of a full braided tensor subcategory.

• Forgetful functor Vectsk
F−→ Vectk. It forgets the super structure, i.e., the Z2-

grading. It is a functor between tensor categories but not the braided tensor
categories.

• Projection to the even part Vectsk
−0−→ Vectk. This is an exact functor but it does

not preserve the tensor category structure.

• Forgetful functors Vect•k
s−→Vectsk

F−→ Vectk Let Vect•k be the graded vector spaces,
i.e., vector spaces V with a Z-decomposition V = ⊕n∈Z Vn. Any graded vector
space V = ⊕n∈Z V n defines a super vector space

s(V )
def
= V with the decomposition V = V0⊕V1 for V0

def
= ⊕n even V

n and

V1
def
= ⊕n odd V

n.

The standard braiding on Vect•k is the super grading!

We denote by 1 the unit object k in Vectsk.

1.2.3. Some notions in a braided tensor category. In a braided tensor category we auto-
matically have the notions of

• standard classes of algebras: (associative, commutative, unital, Lie),
• standard operations on algebras (tensor product of algebras, opposite algebra),
• modules over algebras,
• linear algebra of such modules,
• symmetric and exterior algebras of modules over commutative algebras
• etc.

1.2.4. Parity change of super vector spaces. Operation Π : Vectsk→ Vectsk is defined by

(ΠV )p
def
= V1−p. So, Π(V ) can be canonically identified with V as a vector space but the

parities have changed.

We will also denote by Π the one dimensional odd vector space kπ with a chosen basis π,
then the functor Π is canonically identified with the left tensoring functor

ΠV ∼= Π⊗V.
Observe that we have made a choice of tensoring with Π on the left.
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1.2.5. The inner Hom and duality in super vector spaces. There are two related and easily
confused concepts.

(1) Hom for the category of super vector spaces. For two super vector spaces V and
W ,

Homk(V,W )
def
= Homsuper k−modules(V, V )

denotes all maps of super vector spaces, i.e., k-linear maps which preserve the
super structure (i.e., the parity). So this is an ordinaryvector space, i.e., an even
vector space.

(2) Inner Hom in the category of super vector spaces. The vector space of all k-linear
maps Homk[F(V ),F(W )] has a canonical structure of a super vector space which
we denote Homk(V,W ).

The relation is given by composing with the projection to the even part: Hom = −0◦Hom,
i.e., the even part of the inner Hom consists of maps that preserve parity

Homk(V,W )0 = Homk[V,W ],

and the odd part is the maps that reverse the parity.

The dual super vector space is defined in terms of inner Hom

V̌
def
= Homk(V, k).

1.2.6. Some canonical maps. The convention we use is that linear operators act on the
left , i.e.,

there is a canonical evaluation map of super vector spaces
Hom(U, V )⊗U −→V, A⊗u 7→ Au.

(1) The pairing with linear functionals. Applying this to linear functionals yields for
each super vector space V , its evaluation map (or its canonical pairing), which is
a map of super vector spaces

evV : V̌⊗V→ 1, 〈ω, v〉 def
= evV (ω⊗v) def

= ω(v).

(2) The map (V⊗V̌ )⊗V = V⊗(V̌⊗V ) −→V⊗1 ∼= V gives a map

V̌⊗V −→End(V ).

(3) The map V⊗V̌
cV,V̌−−→ V̌⊗V evV−−→ V⊗1 ∼= V gives the biduality map for V

ι : V→ ˇ̌V , 〈ιv, ω〉 def
= 〈v, ω〉 = (−1)pωpv 〈ω, v〉, v ∈ V, ω ∈ V̌ .

Remarks. (1) If V⊗V̌→ Homk(V, V ) is an isomorphism the coevaluation map can be
interpreted as a diagonal δV : 1→ V⊗V̌ .
(2) We can define the canonical wrong way maps such as V̌⊗kV→ Homk(V, V ), by insert-
ing braiding in appropriate places.
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1.2.7. The trace and the dimension. We will see in 1.6.1 that the super-trace of a linear
operator T : V→V can be calculated defined using its block decomposition

strF (T ) = tr(T00)− tr(T11).

In particular, the super-dimension (fermionic dimension) is s dimF (V ) = dim(V0) −
dim(V1).

1.2.8. Tensor category of graded super vector spaces. A graded super vector space is a
graded vector space V = ⊕Z Vp with a super structure on each Vp. There seem to be two
(equivalent) ways to choose the braiding on the tensor category of super graded vector
spaces.

• Bernstein’s convention uses the sign given by the total parity deg(v) + pv

cVW (v⊗w) = (−1)(deg(v)+pv)(deg(w)+pw)w⊗v.
Then, taking the total parity (deg(v) + pv is a functor s into the tensor category
of super-vector spaces.
• Deligne‘s convention is that commutativity constraint given by the sign which is
the product of the signs for the degree and for the parity

cVW (v⊗w) def
= (−1)deg(v)deg(w)·(−1)pvpw w⊗v = (−1)deg(v)deg(w)+pvpw w⊗v,

this means that we combine (multiply) the commutativity constraints due to the
Z-grading and the Z2-grading.

Remark. The above two choices of braidings on the same tensor category are equivalent
by an involution ι on the tensor category of graded super vector spaces. ι is given by
changing the Z2-degree by adding the Z-degree. (The tensoring constraint for ι is ιV,W =

(−1)deg(v)·pq : ι(V⊗W )
∼=−→ ι(V )⊗ι(W ).)

1.2.9. Symmetric and exterior algebras S(V ) and ∧∗V . For a super vector space V , S(V )
is defined as the super commutative algebra freely generated by V .

• If V is even we are imposing the ordinary commutativity uv = vu and S(V ) =
k[v1, ..., vn] for any basis of V .
• If V is odd, we are imposing the anti-commutativity uv = −vu and therefore

F [S(V )] = •∧F(V ), i.e., if we forget parity this is an ordinary exterior algebra. A
more precise formulation in the odd case is

S(V ) = s[
•∧F(V )].

∧∗(V ) is defined as the algebra generated by V and by the anticommutativity relations
for elements of V . On the level of ordinary algebras

F [∧∗(V )] ∼= F [S∗(ΠV )].



9

1.3. Super algebras. Let A be a super algebra. The constructions bellow are not ad
hoc, there is no smart choice. On one hand these are special case of definitions in gen-
eral braided categories, and on the other hand they are also forced on us by desire of
compatibility of super vector spaces with ordinary vector spaces (see 1.7).

1.3.1. The opposite algebra Ao. Ao is given by the following multiplication structure on
the super vector spaces A

a ·
Ao
b

def
= (−1)papb b·a, a, b ∈ Ao = A.

There is an equivalence of categories M 7→Mo of left A-modules and right Ao-modules by
M0 = m as a super vector space and

m·a def
= (−1)papm a·m.

A is super commutative iff Ao = A. In particular, for super-commutative A left and
right modules are the same in the sense that one has an equivalence as above ml(A) ∋
M 7→Mo ∈ mr(Ao) = mr(A).

1.3.2. Tensor product of algebras. The algebra structure on A⊗B is

(a′⊗b)(a′′⊗b′′)def= (−1)pb′pa′′ a′a′′⊗b′b′′.
Algebra structure on a tensor product of algebra requires braiding so that multiplication
can be defined by

(A⊗B)⊗(A⊗B) = A⊗B⊗A⊗B 1⊗cB,A⊗1−−−−−→
∼=

A⊗A⊗B⊗B mA⊗mB−−−−−→
∼=

A⊗B.

1.3.3. Derivatives. A linear map ∂ : A→A is said to be a (left) derivative of A of parity
p if

∂(ab) = (∂a)b + (−1)p·pa a(∂b).
There is also an (equivalent) notion of right derivatives, but we follow the convention that
operators act on the left of vectors.

A consequence of this convention, we will (later) write the pairing of a vector field ξ and a
1-form ω (a differential), in the form 〈ξ, ω〉, so that it agrees with the left action of vector
fields on functions: 〈ξ, df〉 = ξ(f).

1.3.4. Parity change on modules for a super algebra A. For a left A-module M , super
vector space ΠM has a canonical A-action

a ·
ΠM

m = (−1)pa am.

For a right A-module M , the actions on M and ΠM are the same. The reason seems to
be that the parity change is viewed as a left tensoring Π(M) = Π⊗

k
M .
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1.4. Lie algebras and their enveloping algebras.

1.4.1. Lie algebras.

Remark. Non-triviality of [x, x] = 0 In a super Lie algebra g let us specialize the relation
[x, y] + (−1)pxpy [y, x] = 0 to x = y. If x is even, it says that [x, x] = 0, however if x is odd
it does not say anything. So, condition [x, x] = 0 (i.e., k·x is an abelian subalgebra), is
non-trivial for odd x.

1.4.2. Enveloping algebras of Lie algebras.

Theorem. [Poincare-Birkhoff-Witt]

Proof. The Poincare-Birkhoff-Witt theorem is proved in any tensor category with a Q-
structure, by constructing explicitly the enveloping algebra multiplication ∗ on the sym-
metric algebra S•(g) of a Lie algebra g. Its relation to the standard product in S•(g)
is

x1· · ·xn =

∫

Sn

dσ xσ1 ∗ · · · ∗ xσn =
1

|Sn|
∑

σ∈Sn

xσ1 ∗ · · · ∗ xσn.

One defines multiplication ∗ inductively, for xi, yj ∈ g

(x1· · ·xp) ∗ (y1· · ·yq)def= x1 ∗ (x2 ∗ (· · ·(xp ∗ (y1· · ·yq))· · ·)

and

x ∗ (y1· · ·yq)def= xy1· · ·yq +
∫

Sq+1

q∑

i=1

(q − i+ 1) yσ1 ∗ · · · ∗ [x, yσi] ∗ · ∗ yσq.

1.5. Linear algebra on free modules over super-algebras (inner Hom, free mod-
ules and matrices). Here A is a super-algebra. The subtle parts are only done when A
is super-commutative.

1.5.1. The inner Hom for A-modules. Let F denote forgetting the super structure. For A-
modules M,N , the vector space of F(A)-linear maps HomF(A)[FM,FN ] has a canonical
super-structure HomA(M,N), such that the even part HomA(M,N)0 is the space of maps
of A-modules HomA(M,N) (i.e., the even maps in HomA(M,N) are those that preserve
the super structure). In particular, one has the duality operation on A-modules

M̌
def
= HomA(M,A) hence F(M̌) = HomF(A)[FM,FA].
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1.5.2. Free modules. By a basis of a module over a super-algebra A one means a homo-
geneous basis. Then a free module M over a super-algebra A means a module that has a
basis. The standard free left A-modules are

Ap|q
def
= ⊕p+q1 Aei,

with ei even precisely for i ≤ p.

One has Ap|q ∼= Ap⊕Π(Aq), etc.

1.5.3. Linear operators. We will be only interested in supercommutative A, but we take
a moment for the general case. In the general case we view A as a right A-module so that

Ap|q
def
= ⊕p+q1 Aei is a right A-module (and therefore a left Ao-module). This is convenient

because the inner Hom super algebra EndA(A
p|q), acts on Ap|q on the left.

If A happens to be super-commutative, then the above left action of Ao on Ap|q can be
viewed as a n action of A = Ao, and this is the original action of A on Ap|q viewed as a
left A-module. So, the above convention using right action gives in this case the standard
construction of EndA(A

p|q) for commutative algebras A.

1.5.4. Coordinatization and matrices. In general the Coordinatization of vectors in Ap|q

is by

x = xiei with xi ∈ Ao.
If A is super commutative this is the ordinary A-Coordinatization.

The Coordinatization of operators uses the right A-action

Tej = eiT
i
j , T ij ∈ A.

Bloc form of matrices. Since each row and column in a matrix has a parity, the positions
in a matrix come with a pair of signs(4)

(T ij ) =

(
T++ T+−

T−+ T−−

)
.

1.6. Berezinian (super determinant) of free modules and automorphisms of
free modules. Let A be a super-commutative algebra. We consider the notions of trace
and its nonlinear analogue, the determinant.

Super trace The notion of trace in the super setting is given by general principles (the
braiding of the tensor structure). It applies to the inner endomorphisms of a free A-
module M of finite rank, and yields an even map of A-modules

Tr : HomA(M,M) −→A.

4This should not be confused with parity of matrix coefficients – all of them can be arbitrary elements
of A.
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In particular it applies to endomorphisms HomA(M,M) = HomA(M,M)0 and gives a
map of A0-modules

HomA(M,M) = HomA(M,M)0 −→A0.

Super determinant General principles also determine what the notion of super determi-
nant (called Berezinian) should be. One requires that

• (⋆1) det(eT ) = eTr(T ) when eT makes sense,
• (⋆2) det is in some sense algebraic (map of algebraic groups).

We will construct super determinant using its linear algebra characterization as the action
of the operator on the top exterior power. The requisite notion of the “super top exterior
power” will be constructed in a somewhat ad hoc way. Among all formulas that yield the
top exterior power in classical mathematics we observe that one of these produces a rank
one module even in the super case.(5)

One should notice that super-determinant is defined in a very restrictive situation – on
automorphisms of free modules. So, there are two step restrictions (i) to HomA(M,M)
(= HomA(M,M) rather then all of HomA(M,M), and (ii) to only the invertible part
AutA(M,M) of HomA(M,M). For instance if A is even then a matrix of T ∈ AutA(M,M)
has T+− = 0 = T−+ while T++, T−− are some ordinary matrices with coefficients in A.
Then the Berezian is given by

Ber(T ) = det(T++)· det(T−−)
−1.

Here, M will be a free A-module, hence isomorphic to one of Ap|q.

1.6.1. Super trace. If M̌⊗
A
M→ HomA(M,M) is an isomorphism, one has a categorical

notion of the trace

Tr
def
= [HomA(M,M)

∼=←−M̌⊗
A
M

evM−−→ 1 = A].

Lemma. (a) In terms of dual bases ei, e
i of M and M̌ , this reduces to

Tr(T ) = (−1)pi 〈ei, T ei〉.

(b) In terms of the matrix (T ij )

?
def
= 〈ei, T ei〉 that we defined above using the right action of

A, this is
Tr(T ) = (−1)piT ii = Tr(T++)− Tr(T−−).

(c) The trace of a commutator is still zero: Tr[A,B] = 0, i.e., Tr(AB) =
(−1)pApB Tr(BA).

Proof. (a) and (b) follow from

Tr[evM,M(mω̌)] = (−1)ω·m·〈ω,m〉.
5In the end we get a computable formula and we can check the characterizing property (⋆).
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For this one recalls that the map M̌⊗M −→ EndA(M) is a composition M̌⊗M
cM̌,M−−−→

M⊗M̌ evM,M−−−→ EndA(M) (remark 1.2.6). So, the operator corresponding to ω⊗m ∈ M̌⊗M
is evM,M [cM̌,M ω⊗m] = (−1)ω·m·evM,M(ω⊗m), and according to the above definition, its
trace is 〈ω,m〉.

1.6.2. Berezinian of a free module (= “top exterior power”). Classically, the determinant
of a linear operator is its action on the top exterior power. However, for an odd line

L = kθ, exterior algebra
•∧L = ⊕∞

0 kθn has no top power. Instead we will use another
classical formula for the top exterior power of a free A-module L. Let V be a vector space
over k, then(6)

(0→֒V )!OV def
= Ext•O(V )[O0, O(V )] =

top
∧V [− dim(V )].

LHS is In the super setting this will be the definition of the RHS. So the LHS is the correct
super analogue of the top exterior power, that gives the super version of the determinant.

Lemma. Let A be a commutative super-algebra and let L = Ap|q be a free A-module.

(a) The graded object

Ber(L)
def
= Ext•S•

A(Ľ)[A, S
•
A(Ľ)] = Ext•O(L)[O(0), O(L)]

is concentrated in the degree p where it is a free A-module of rank 1, and of parity the
same as q.

(b) Berezian is canonically isomorphic to a line bundle

Ber(L) ∼= ΛtopL0 ⊗ Stop(L1)
∗.

(c) To any ordered basis e1, ..., en one canonically associates a basis [e1, ..., en] of Ber(L).
(7)

Proof. (a) (0) Any ordered decomposition L = L1⊕L2 induces S(L∗
1)⊗AS(L∗

2)
∼=−→S(L∗),

and then Ber(L1)
L
⊗ABer(L2)

∼=−→Ber(L).

6From the point of view of algebraic geometry, Berezian is by definition the “relative dualizing sheaf” for

0→֒V . Its computation above is essentially the computation of the dualizing sheaf on V since ωV
def
= (V −→

pt)!k has form ωV = OV⊗kΩ and k = ω0 = (0→֒V )!ωV = (0→֒V )!(OV⊗kΩ) = Ω⊗k

top

∧ V [− dim(V )]

gives Ω =
top

∧ V ∗ [dim(V )].
7The coming calculation of the Berezian determinant can be bi viewed as a description of the functo-

riality of [e1, ..., en] in e1, ..., en. Roughly, even ones are covariant and odd ones contravariant, so we may
write [e1, ..., ep; ep+1, ..., ep+q]
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(1) The case p|q = 1|0. If L = Ae then the S•
A(Ľ)-module A (via the augmentation),

has a free Koszul resolution(8) SA(Ľ)⊗
A
L∗ s⊗e∗ 7→ se∗−−−−−−→ SA(Ľ) −→A→0, hence

Ext•S•
A(Ľ)[A, S

•
A(Ľ)] = H• Hom[SA(Ľ)⊗

A
Ae∗

s⊗e∗ 7→ se∗−−−−−−→ SA(Ľ), SA(Ľ)]

= H•[ S•
A(Ľ)

s 7→ se∗⊗e−−−−−→ S•
A(Ľ)⊗

A
Ae] = Ae [−1] =

top
∧
A
L [−1].

(2) The case p|q = 0|q. If L = A0|q = ⊕q1Aθi for odd θi’s, then S•
A(Ľ) = A[θ∗1, ..., θ

∗
q ]

is a Frobenius algebra, hence it is an injective module over itself. So,

Ext•S•
A
(Ľ)[A, S

•
A(Ľ)] = HomS•

A(Ľ)[A, S
•
A(Ľ)] = HomA[θ∗1 ,...,θ

∗
q ](A, A[θ

∗
1, ..., θ

∗
q ])

= ∩ Ker(θ∗i : A[θ∗1, ..., θ∗q ] −→A[θ∗1, ..., θ
∗
q ]) = Aθ∗1· · ·θ∗q .

�

Now (b) and (c) follow. Let L = ⊕ Aei⊕ ⊕Aθj with ei even and θj odd. The factorization
from (0),

Ber(L) ∼= ⊗i Ber(Aei) ⊗ Ber(⊕ Aθj)

is canonical since Aei’s are even. According to (1) and (2) it provides a basis of Ber(L)
of the form e1⊗· · ·⊗ep⊗θ1· · ·θ∗q which depends on the choice of order of ei and θj ’s.

More precisely, it is a tensor product of basis e1∧· · ·∧ep of Λ
top

L0 (if one calculates
Ber(L0) in one step, using the Koszul resolution of the SA(L

∗
0)-module A), and θ∗1· · ·θ∗q

of Aθ1· · ·θ∗q⊆ S
top
(Aθ∗1⊕· · ·⊕Aθ∗q ).

1.6.3. Remarks. (1) A basis e1, ..., ep, θ1, ..., θq of L gives a basis [e1· · ·epθ∗1· · ·θ∗q ] of Ber(L).
This gives a more elementary approach to Berezinians – a free module with a basis
[e1· · ·epθ∗1· · ·θ∗q ], with a given rule on how this basis element transforms under a change
of basis of L.

(2) We will remember that Ber(L) is in degree p, i.e., we will consider it as an object of
the category of graded A-modules.

Corollary. A short exact sequence of free modules 0→ L′→ L→ L′′→ 0, gives a canonical
isomorphism

Ber(L) ∼= Ber(L′)⊗Ber(L′′).

8More generally, in the case p|q = p|0, the resolution is

S•

A(Ľ)⊗
A

p

∧
A
Ľ → S•

A(Ľ)⊗
A

p−1

∧
A
Ľ → · · · → S•

A(Ľ)⊗
A

1∧
A
Ľ → A→ 0.
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1.6.4. Berezinian of a map (= “determinant”). For an isomorphism T : L −→M of free
A-modules,

Ber(T ) ∈ Hom[Ber(L), Ber(M)]
def
= the induced isomorphism of Berezinians.

In particular, for an automorphism T of a free A-module L,

Ber(T ) ∈ (A0)
∗ is the action of T on Ber(L).

Observe that in order for T : L→ L to act on Ber(L) = Ext•S•
A
(Ľ)[A, S

•
A(Ľ)],

• T needs to be even and
• T needs to be invertible.

Lemma. (a) (Berezinian in matrix terms.) If T : L → M is invertible, then so are the

diagonal componentsT++ and T−− of T =
(
T++ T+−

T−+ T−−

)
. Then

T =

(
T++ T+−

T−+ T−−

)
=

(
1 T+−T−−

−1

0 1

)
·
(
T++ − T+−·(T−−)

−1·T−+ 0
T−+ T−−

)
,

and
Ber(T ) = det(T++ − T+−·(T−−)

−1)· det(T−−)
−1.

(b) (Berezinian in terms of algebraic super groups.) Berezinian is characterized as a map
of groups GL(p|q, A)→ GL(1|0, A) which satisfies

Ber(1 + εT ) = 1 + εT

when ε is even of square zero.

Remarks. (0) Clearly the appearance of inversion in Ber
(
T++ 0
0 T−−

)
=

det(T++)· det(T−−)
−1 corresponds to subtraction in the trace formula.

(1) If A = k is even then the automorphism group of kp|q is GLp(k)×GLq(k), and Ber =
detp/detq : Aut(k

p|q) −→k∗.

(2) As usual, one important application of super determinants (over non-trivial super
commutative algebras) comes from (local) isomorphisms of super manifolds F :M → N .
Then dF : TM −→ F∗TN is an isomorphism of locally free OM -modules, hence one has
Ber(dF ) : Ber(TM) −→F ∗Ber(TN). We will use this for change of variables in integrals.

1.7. The automatic extension of algebraic concepts to the super setting (“Even
rules”). This is Bernstein’s? idea to reduce the sign calculations to super-commutative
algebras. A super vector space V defines a functor from super-commutative algebras to

ordinary vector spaces, B 7→ V (B)
def
= (VB)0 for VB

def
= B⊗V .

For instance, a super Lie algebra structure on V is the same as an ordinary Lie algebra
structure on the functor B 7→V (B). What this means is that for any super commutative
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algebra B, on V (B) one is given a Lie algebra structure over B0, which is functorial
(natural) in B. This principle allows one to calculate the defining relations for super Lie
algebras (instead of inventing the signs in these relations).

The same works if we replace the Lie algebra by any other algebraic structure.
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2. Manifolds

2.0.1. Definition of super manifolds as ringed spaces. By definition a super manifold is a
topological space |M | with the sheafOM of supercommutative algebras which is locally the
same as some (Rp,q, C∞

Rp⊗∧∗Rq). This is analogous to one of characterizations of smooth
manifolds N as a topological space |N | with the sheaf ON of commutative algebras which
is locally the same as some (Rp, C∞

Rp). A way to make this less abstract is provided by

2.0.2. The set theoretical view on a supermanifoldM as the functor Hom(−,M) of points
of M . In differential geometry we visualize a manifold N as a set of points and we would
like to do the same in super geometry. The categorical way of thinking of a set of points
of N is Hommanifolds(R

0, N). The same construction in super manifolds does not notice
enough information as Homsuper manifolds(R

0,M) = |M | is the same as the set of points of
the underlying ordinary manifold. The problem is that it is not at all sufficient to probe a
super manifold with an even object R0. It works better if one probes with all super points,
the collection of sets Homsuper manifolds(R

0|q,M), q ≥ 0, contains more information. In
the end, as emphasized by Grothendieck, to restore the set theoretic point of view on M
one should look not at a single set but at the functor

Hom(−,M) : SuperManifoldso −→Sets.

One says that Hom(X.M) is the set of X-points of M .

2.0.3. Example. As an example, the super manifold GL(p|q) has underlying ordinary
manifold GLp×GLq, and the two are the same on the level of ordinary points. However
for a super manifold X with a supercommutative algebra of functions A = O(X), the set
of X-points of GL(p|q) is more interesting – this is the set of automorphisms of the free
A-module Ap|q.

2.1. Super manifolds – definitions. A super manifold M is a ringed topological space
(|M |,OM) locally isomorphic to some

Rp|qdef= (Rp, C∞Rp[ψ1, ..., ψq]),

where

C∞Rp [ψ1, ..., ψq]
def
= ⊕I={I1<·<Ik} C∞Rp ·ψI1 · · ·ψIk

is a super-commutative algebra freely generated over the smooth functions C∞Rp , by odd
generators ψ1, ..., ψq.

So, the functions on Rp|q are C∞Rp⊗
k
S(W ) for a q-dimensional odd vector space W .

2.1.1. Maps. Amap of ringed spaces f : (|M |,OM ) −→(|N |,ON) is by definition a pair of a
map |f | : |M | −→|N | of topological spaces and a map of sheaves of rings f ! : |f |∗ON −→OM .
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Remarks. (1) Intuitively, f ! is the pull-back of functions under the map f . The compati-
bility of f ! and |f | is contained in the fact that f ! is defined on |f |∗ON .
(2) In a “more set theoretic” situation like that of ordinary smooth manifolds we find that
this compatibility implies that |f | is a C∞ map and that f ! is the pull back under |f |. In
other words maps of

Example. For instance a map f : Rp|q −→ Rr|s consists of a continuous map |f | =
(f1, ..., fr) : Rp −→ Rr with component functions fi : Rp −→ R, and a map of sheaves
of rings

(|f |∗(C∞Rr))[φ1, ..., φs]) = |f |∗(C∞Rr [φ1, ..., φs])
f !−→ C∞Rp [ψ1, ..., ψq].

Now, if xi and yk are coordinates on Rp and Rr, then F ∗yk ∈ C∞Rp [ψ1, ..., ψq] can be written
as

∑
I f

k
I ψ

I with fkI ∈ C∞(Rp).

In particular, fk = fk∅ ∈ C∞Rp is obtaine quite naturally by using the quotient map

C∞Rp [ψ1, ..., ψq]։ C∞Rp [ψ1, ..., ψq]/
∑

ψi·C∞Rp[ψ1, ..., ψq] = C∞Rp

which kills the idea generated by all odd functions.

Now one checks that

(1) The collection of all f !yk and f !φl, determines f !.(9)

(2) |f | = (f 1, ..., fk), so in particular f : Rp −→Rr is smooth.

So, all together

• A map f is freely determined by a collection of r even functions f !yk and s odd
functions f !φl.
• The reduction of f !yk’s are the component functions of the corresponding smooth
map |f | : Rp −→Rr.

2.1.2. The associated ordinary manifold Mred. The reduced manifold of M is the ringed

space Mred
def
= (|M |,OM/JM) where JM is the ideal generated by odd functions. This is a

C∞-manifold since R
p|q
red is clearly Rp. Notice that

The reduced version Mred is a submanifold of M .(10)

(1) OM։OMred
corresponds to the canonical closed inclusion of super manifolds

Mred→֒M .
(2) M is not a fiber bundle over Mred since there is no canonical map M → Mred.

9fk’s do not determine all fkI ’s, i.e., f !yk. For instance a mapM → R is the same as an even function
on M .

10It is also a quotient but non-canonically, see 2.1.5.
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Let me mention another (less useful) passage to ordinary world – where one simply keeps

the even functions. This gives a (usually nonreduced) scheme Meven
def
= Spec(OM,0), which

fits into

OMeven = (OM)0 ⊆ OM ։ OM/JM , hence MevenևM←֓Mred.

The composition Mred −→Meven makes Meven into an infinitesimal extension of Mred.

2.1.3. The value of a function f ∈ OM at a point x ∈ |M |. One can define the value
f(x) as the unique number c such that f − c is not invertible in any neighborhood of x.

A more global way to think about it is that f gets restricted to a smooth function on the
smooth manifold Mred which on the level of a topological space is just is the same as |M |,
and this restriction can be evealuated at points x of |M |.
Implicite in the above definition of f(x) is the observation that OM is a sheaf of local
rings on the topological space |M | - the maximal ideal in the stalk at x is mx = {f ∈
OM,x; f(x) = 0}, and the residue field is R.

2.1.4. Coordinates. On Rp|q one has xµ’s and ψi’s.

A map M→Rp|q is the same as p even and q odd functions on M .

2.1.5. Classification of super manifolds. On the level of isomorphism classes, for any man-
ifold N , supermanifolds M with Mred

∼= M are the same as vector bundles over N .
However, the morphisms in two categories are quite different.

2.1.6. Lemma. (a) Any super manifold M is locally a product of the corresponding even
manifold Mred and a super point R0|q.

(b) All super manifolds are of the form OM = s(
•∧V∗) for a vector bundle V over a smooth

manifold N (=Mred), however non-canonically.

(c) For any manifold N , V7→ Spec[s(
•∧V∗)], is a bijection pf isomorphism classes of vector

bundles over N and supermanifolds M with Mred
∼= N .

Proof. (a) is just the definition of super-manifolds. (b) Part (a) shows that locally

OM = s(
•∧V) for a trivial vector bundle V = |M |×Rq of rank q.

2.1.7. Remarks. (a) Operation V7→ Spec[s(
•∧V∗)] will later be called the parity change of

a vector bundle V and denoted Π(V).
(b) For a super manifoldM , the choice V is an additional rigidification ofM , observe that
it lifts a super-manifold M to a graded manifold. The functor from “manifolds with a

vector bundle” to super manifolds: (N,V) 7→ Spec[s(
•∧V∗)] = ΠV, is surjective on objects

but not an equivalence.
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2.1.8. Remark. Super Cr-manifolds do not make sense.

2.2. Versions: ∞ dimensional super manifolds and super-schemes.

2.2.1. ∞ dimensional super manifolds. Douady noticed that in ∞ dimension one needs
local charts – the approach through the sheaf of functions is not enough to define mani-
folds.

∞-dimensional super manifolds appear as various spaces of fields F in QFT, for instance
the map spaces such as Map(S1|1,M). Deligne-Freed treat such spaces only as functors.
So they do not spell the structure of a super manifold on F , but only the functor of points
Map(−,F) defined on finite dimensional super manifolds.

2.2.2. Super-schemes. A super spaceM = (|M |,OM ) is a ringed space (topological space
|M | with a sheaf of super-rings OM), such that

• the structure sheaf OM is super-commutative and
• the stalks are local rings.

A super scheme is a super spaceM such that the even partM0
def
= (|M |,OM,0) is a scheme,

and that the odd part OM,1 is a coherent module for the even part OM,0. Some examples:

(1) The algebraic versions of Rp|q’s are affine (super) schemes An|m over a ground
ring k, given by the super-commutative algebras of polynomial functions on these
spaces

O(An|m) = k[x1, ..., xn, ψ1, ..., ψm] = S•(kx1⊕· · ·⊕Rxn) ⊗ ∗∧ F(kψ1⊕· · ·⊕kψm),
with xµ’s even and ψk’s odd. It is a product of the affine space An = An|0 and a
super point A0|m. The functions on a super point O(A0|m) have a finite basis of

monomials ψi1<···<ikdef=ψi1 · · ·ψik .
(2) A vector bundle V over an ordinary scheme X . defines a super scheme

Π(V)def= (|X|, •∧OX
V∗). The first infinitesimal neighborhood of X in Π(V) is

N def
= (|X|,OX⊕V∗), given by imposing V∗∧V∗ = 0. If X is smooth so is Π(V),

but N is not smooth.

2.3. Super-manifold as a functor. When one wants to think of a super manifold M
in set theoretic terms, one associates to each super manifold S the set of S-points of M

M(S)
def
= Map(S,M)

def
= HomSuperManifolds(S,M).

One can think of this as all ways to probe M with S. In this way we consider a super-
manifold M as a functor S 7→ M(S) from super manifolds to sets. For instance,

• (0) M(R0|0)
def
= Map(R0|0,M) = |M |.
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• (1)M(R0|1)
def
= Map(R0|1,M) is the moduli of pairs of a point x ∈ M and an odd

derivation of the local ring at x, i.e., these are the odd tangent vectors.

• (2) R1|0(S)
def
= Map(S,R1|0) = OS(S)0 and Map(S,R0|1) = OS(S)1.

More generally,

Rp|q(S)
def
= Map(S,Rp|q) = OS(S)0⊕p⊕OS(S)1⊕q.

• We say that the universal point of M is the M-point M
1M−→ M in M(M) =

Hom(M,M) (it does have a universal property).

The idea is that A0|1 has only one k-point so in this respect it looks like A0|0; however,
S-points of A0|1 are numerous – the same as odd functions on S.

2.3.1. The analogy with non-reduced schemes. Odd functions on a super manifold M are
nilpotent, so in some respect it will behave like non-reduced schemes, and one can think
of M as |M | (i.e., Mred), plus “fuzz”, a little cloud around Mred. On the other hand we
will have interesting and unusual analysis on M , in analogy with smooth manifolds.

2.3.2. Fiber products. Fiber products S ′×
S
M exist for maps S ′→S that are locally pro-

jections of the form S ′ = Rp|q×S→ S.

2.3.3. The use of a base S. A super space M/S (also called an S-super space M , or a
super space M with a base S), means simply a map of super spaces M −→S. The basic
idea is that one studies such relative super spaceM/S using all super spaces T/ with base

S – one studies the the set of T/S-points ofM/S, defined by (M/S)(T/S)
def
=HomS(T,M).

In order to be able to construct maps M
φ−→ N in terms of the corresponding maps of

functors, one has to systematically use families of manifolds M→S (?). In particular, it
means that one should with each family M→S also consider all families obtained by the
base changes M ′ = M×

S
S ′ (under projection-like maps S ′→S).

2.3.4. “Functions are determined by their values on S-points”. A function f on M gives
for any S-point S

σ−→M a function fσ on S, which we can think of as the value of f on

the S-point σ. So,tautologically, f is the same as its value on the M-point M
id−→ M .

2.4. The functor of maps between two super spaces. For two super spaces M,N
there are as usual two notions of maps from M to N (see the special case ). The
categorical one is clear, this is the set HomSuperManifolds(M,N) = Map(M,N).

The other notion is suppossed to be an inner Hom in super spaces :

Hom(M,N)
def
= moduli of all maps from M to N.
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Here all means that we allow all maps of ringed topological spaces, without requiring
that the map preserves parity. Then Hom(M,N) itself should be a super space and
Hom(M,N) should be the underlying even space Hom(M,N)red.

The problem is of course in how to organize the totality of all maps into a super manifold
(usually infinite dimensional!) (or even, whether it can be done). We avoid this question
by only defining a functor Hom(M,N) on super manifolds, it is defined by

Hom(M,N) (S)
def
= MapS(M×S,N×S) = Map(M×S,N),

i.e., the S-points of this functor are simply the S-families of maps form M to N .

We leave out the question of what kind of a space would represent this functor (in nice
cases it is given by a super manifold, possibly infinite dimensional).

2.5. Lie groups and algebraic groups.

2.5.1. Super Lie groups. Rp|q is a group (contrary to the intuition from commutative
schemes where: group ⇒ smooth ⇒ reduced).

2.6. Sheaves. The sheaves on M are by definition sheaves on the topological space |M |
(this is the only topological space around). The sheaves on |M | that are related to its
structure of a super manifold are the sheaves of OM -modules. Two notions of Hom give
two relevant notions of global sections of an OM -module A:

• The inner notion Γ gives a super module Γ(A) over the super-commutative algebra
Γ(OM), by

Γ(M,A)def= HomOM
(OM ,A) = Γ(|M |,A) = Γ(|M |,A0)⊕ Γ(|M |,A1) .

• The notion given by the category of OM -modules is Γ(A) def
= HomOM

(OM ,A),
Γ(M,A)def= HomOM

(OM ,A) = Γ(|M |,A0).

So, Γ(A) = [Γ(A)]0 = Γ(|M |,A0) and one can recover the odd part of the functor Γ
from the even part by

Γ(M,A)1 = Γ(|M |,A1) = Π Γ(M,ΠA).
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3. Differential Geometry

As usual, on a super manifoldM one can identify vector bundles with locally free sheaves.
However, the operation of change of parity which is obvious for locally free sheaves, is
quite unexpected for vector bundles.

3.1. Vector bundles. We consider two kinds of objects over a super-manifold M

• Vector bundles over M . A vector bundle V over M of rank p|q, is a fiber bundle
V→M which is (i) locally Ap|q×M→ M , (ii) has a structure group GL(p|q) (i.e.,
the transition functions lie in that group).
• Locally free OM -modules V.

3.1.1. Super-vector space V in the category of super-manifolds, are the same as super-
vector spaces. This is the way we have obtained our basic manifolds Ap|q.

Lemma. Proof. A super vector space V gives a super manifold V with |V | = V0 and
OV = C∞(V0)⊗ S•(V ∗

1 ). (In algebraic geometry O(V ) = S•(V ∗).) The structure of a
“super-vector space in the category of super-manifolds” is clear.

In the opposite direction, a “super-vector space in the category of super-manifolds” V ,
defines a super-vector space V = [Olinear(V )]∗, the dual of linear functions. In the infin-
itesimal language, V = T0(V ). Similarly, V = Map(A0|1,V ) with V0 = Map(A0|0,V )
(the maps that factor thru the point A0|0) and V1 = Map[(A0|1, 0), (V , 0)] (maps that

send the point A0|0 = A
0|1
red⊆A0|1 to 0 ∈ V ).

3.1.2. Sheaf of sections. For the equivalence of the two notions, a vector bundle V gives
a a sheaf

Vdef
= O∗

V,lin = HomOM
(OV,lin, OM ) = MapM(M×A0|1, V ) = TV→M .

The last interpretation is as vertical vector fields, the one with A0|1 is the closest to the
idea of a “sheaf of sections”.

3.1.3. The underlying vector bundle. In the opposite direction, V defines a functor

S 7→ {(f, v), f : S→M is an S-point of M and v ∈ Γ(S, [f ∗V]0) is an even section of V over f },

which is represented by V
def
= Spec[S•

OM
(V∗)].
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3.1.4. The underlying topological space |V |. The restriction of V to Mred, V|Mred =
OMred

⊗
OM

V = V/JM ·V, is a super vector bundle over the even manifold Mred. Say, if

V = Op|qM = ⊕i OMei⊕⊕j OMθj , then V|Mred = Op|qMred
= ⊕i OMred

ei⊕⊕j OMred
θj .

The underlying topological space |V | is the vector bundle |V |→|M |, corresponding to the

sheaf (V|Mred)0. For instance if V = M× Ap|q, then |V | = |M |× Ap , while V = Op|qM
gives (V|Mred)0 = ⊕i OMred

ei = OpMred
.

3.1.5. Change of parity of a vector bundle. It is defined on locally free sheaves, hence
also on vector bundles. From the point of view of locally free sheaves the change seems
simple and formal, but on vector bundles it is drastic. Locally, V ∼= M×Ap|q and
Π(V ) ∼= M×Π(Ap|q) ∼= M×Aq|p. Observe, that the parity change on vector bundles
changes the underlying topological space: while locally |V | ∼= |M |× Ap corresponds
to the sheaf (V|Mred)0 ∼= ⊕i OMred

ei = OpMred
, |Π(V )| ∼= |M |× Aq corresponds to

(V|Mred)1 ∼= ⊕i OMred
πθi ∼= OqMred

.

However, this operation is still elementary. For instance, suppose that V is an ordinary
vector bundle over an ordinary manifold M . One can describe the super manifold Π(V )
as a pair (M,OΠ(V )), i.e., the underlying manifold is the base M of the vector bundle V

and the algebra of functions is OΠ(V ))
def
=

∗

∧ V∗.

3.2. (Co)tangent bundles. A vector field means a derivative of the algebra of functions,
so the vector fields on An|m are all ξ = ξµ ∂

∂xµ
+ ξk ∂

∂ψk , where
∂
∂ψk has the usual properties

that it kills xµ’s and ∂
∂ψk p

j = δjk, but

∂

∂ψk
(fg) = (

∂

∂ψk
f) g + (−1)pf f( ∂

∂ψk
g).

A possible confusion regarding the Z2-grading: one could say that T (0)
M = ⊕ OM∂xµ

are “even” vector fields and T (1)
M = ⊕ OM∂ψi are “odd”, while the correct parity is

(TM)0 = ⊕ OM,0∂xµ ⊕ ⊕ ⊕ OM,1∂ψi .

The differential df = ∂f
∂xµ

dxµ+ ∂f
∂ψk dψ

k is of parity 0, so it satisfies d(fg) = df ·g+ f ·dg.

3.2.1. Differential forms. Define Ω1
M as the dual of TM and Ω•

M
def
=

•∧ Ω1
M . Then Ω•

M is a
graded object in the category of (sheaves of) super vector spaces, the associated super
vector space sΩ•

M combines the parity of the grading and the parity of Ω1
M . Say, if M

were even then Ω1
M would be even, but (sΩ•

M)1 would be odd.

Observe that if M is not even, there are no highest degree forms: Ωn
Ap|q =

⊕r+s=n ΩrAp⊗
s∧(⊕ kψi).
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Lemma. (a) Differential d : OM→ Ω1
M extends to the De Rham differential on Ω•

M .

(b) (Poincare lemma) (Ω•
M , d) is a resolution of R|M |.

(c) H•(Ω•
M , d) = H•(|M |,R).

Proof. (b) reduces to the local setting M = Rp|q× Rp× R0|q and then to factors Rp

(standard Poincare lemma) and R0|q, or even R0|1 (Koszul complex).

3.3. Parity change of the tangent bundle. The most natural appearance of super
commutative algebras are the algebras of differential forms Ω∗

M on an ordinary manifold
M . This is the algebra of functions on a super manifold which has two natural interpre-
tations as either (1) the moduli of maps of the super point A0|1 into M , or (2) the super
manifold obtained from the tangent vector bundle TM by parity change.

3.3.1. Lemma. (a) Spec(sΩ•
M ) = Π(TM).

(b) Π(TM) represents the functor Hom(A0|1,M) defined by

Hom(A0|1,M) (S)
def
= MapS(A

0|1× S, M× S) = Map(A0|1× S, M),

i.e., S-points are “S-families of odd tangent vectors on M”.

Proof. In (a)

OΠ TM/M = S•
OM

([Π⊗ TM ]∗) = S•
OM

(Π⊗ T ∗M) = ⊕k Π⊗k⊗ k∧
OM

( Ω1
M ) = s(Ω•

M ).

In (b), let S be the spectrum of a commutative super algebra A. Then

Hom(A0|1,M) (S) = Map(A0|1× S, M) = Homk−alg[O(M), (k⊕ψk)⊗
k
A] = Homk−alg(O(M), A⊕ ψA)

An element is a map φ = α + ψβ : O(M)→ A⊕ ψA with

α(fg)+ψβ(fg) = (α(f)+ψβ(f))·(α(g)+ψβ(g)) = α(f)α(g)+ ψβ(f)α(g)+ α(f)ψβ(g)) =

α(f)α(g) + ψ[β(f)α(g) + (−1)pfα(f)β(g))].
So α : O(M)→A is a morphism of algebras and β : O(M)→A is an odd α-derivative.
So φ consists of a map α : S→M and β ∈ Γ[S, (α∗TM)]1.

On the other hand, an element φ of Hom(S,Π⊗ TM) = Homk−alg[O(Π⊗ TM), A] =
Homk−alg[s(S

•
O(M)Ω

1
M), A], consists of a map of algebras α : O(M)→A (the restriction of

φ to O(M)), and a map of O(M)-modules β : [s(S•
O(M)Ω

1
M)]1→ A, i.e., β : Π⊗ Ω1

M→ A.

Now, a map of O(M)-modules Ω1
M→ O(M) is the same as a section of (TM)0 (an even

vector field on M), a map of O(M)-modules Ω1
M→ O(S) is a section of (α∗TM)0, and so

β : Π⊗ Ω1
M→ A is a section of (α∗TM)1.
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Remarks. (1) The underlying topological space |Π(TM)| is just |M |. If M and S were
even then Hom(A0|1,M)(S) are just the maps from S to M .

(2) The statement (b) is just the odd version of the standard description of TM as the
moduli of all maps from a “double point” (or a “point with a tangent vector”) to M ,
i.e., description of TM as the space that represents the functor Hom(Spec(D),M) for the
algebra of dual numbers D = k[ε]/ε2.

4. Integration on super affine spaces

Integrals of functions on super manifolds will be (ordinary) numbers. Integrals on affine
spaces will be defined “by hand”. In general the objects one can integrate are called
densities, the correct replacements of top differential forms.

Our basic example of an integral is the fermionic Gaussian integral. We motivate Gaussian
integrals as the simplest case of path integrals. Gaussian integral on a super point R0|q

turns out to be the Pffafian of the quadratic form on an odd vector space (if q is even,
otherwise it is zero).

4.0.2. SUSY (supersymmetry). Supersymmetry of a function f on a super manifold is a
vector field δ that kills it (i.e., f is constant on the flow lines). The interesting case is
when δ is odd, i.e., so it mixes even and odd stuff. If such δ can be interpreted as one of
the coordinate vector fields then the integral of f is zero. If this can be done generically
– say everywhere except on some submanifolds Ci of |M | – then the integral will be given
by contributions from submanifolds Ci.

Example. Our example will be the integral
∫
R
Dx P ′(x)e−

1
2
P (x)2 which has a super inter-

pretation ∫

R1|2

Dx dψ2 dψ1 e−
1
2
P (x)2+P ′(x)ψ1ψ2

.

It has a super-symmetry δ which is a part of a coordinate system as long as one stays
away from zeros of P . So the integral is a sum of contributions from zeros b of P (x). The
contributions are sign(P ′(b)), and then the integral is the degree of P as a map from S1

to itself. Actually this integral can be easily calculated by a substitution – what we got
from the super picture is a localization of the integral around few critical points.

4.1. Integration on affine spaces.

4.1.1. Integration on super points. Integration of functions on a super point A0|m is defined
by using successively the formula

∫
dψ a + bψ

def
= b.
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So, in general the integral just takes the highest degree coefficient (with a correct sign)
∫

dψn· · ·dψ1
∑

I= {i1<···<ik}

cI ·ψIdef= c12···m.

We also denote it ∫
dψn· · ·dψ1 f

def
= [f : ψ1· · ·ψm].

4.1.2. Covariance. (1) Formula
∫
dψ a0+a1ψ = a1 is somewhat reminiscent of integrals

of holomorphic functions over a circle. There,
∫
S1

∑
n bnz

n dz = b−1 is the coefficient of
z−1 in the Laurent series expansion.

(2) However, only one of these formulas can work: a change z = cu does not affect∫
S1 z−1 dz, but ψ = cφ seems to give nonsense:

∫
dψ ψ = c2·

∫
dφ φ. The reason is

that dψ is really contravariant

d(cψ) = c−1 dψ.

We will deal with this in the next section when we tackle change of variable.(11)

4.1.3. Integration on super affine spaces. Integrals on An|m are evaluated so that one first
integrates over the fermionic variables and then we are left with an ordinary integral. For
example if S[x, ψ1, ψ2] = U(x) + V (x)ψ1ψ2 then

∫

A1|2

dx dψ2 dψ1 e−S[x,ψ
1,ψ2] =

∫

A1|2

dx dψ2 dψ1 e−U(x)
∑

k

(−1)k
k!

V (x)k(ψ1ψ2)k

= −
∫

A1|0

dx e−U(x)

∫

A0|2

dψ2 dψ1 V (x)ψ1ψ2 = −
∫

A1|0

dx V (x)e−U(x).

4.2. Gaussian integrals.

4.2.1. Even Gaussian integrals. On an ordinary real vector space M we consider a qua-
dratic form S[x] and a choice of coordinates xi.

We normalize the Lebesgue measure on M with respect to coordinates xi

Dx
def
=

∏ dxi√
2π
,

and we consider the Gaussian integral
∫

M

Dx e−
1
2
S(x).

11We will denote dψ = (dψ)−1, where quantity with dψ is covariant.
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Lemma. When we write S in terms of the coordinates S(x) = xiAijx
j , the integral is

∫

M

Dx e−
1
2
(xiAijx

j) = (detA)−
1
2 .

4.2.2. σ-model interpretation. Consider a Σ-model, i.e., the moduli of maps from Σ toM .
In the simplest case when Σ is just a point (hence a 0-dimensional manifold), the moduli
of maps from Σ to M is just M . A positive definite quadratic form S(x) on M gives a
path integral which is the above Gaussian integral.

4.2.3. Fermionic Gaussian integrals give Pffafian. Now let M be a super point (0, m).
Quadratic functions onM are function of the form S[x] = ψiBijψ

j for an anti-symmetric
B (so 1

2
S[x] =

∑
i<j ψ

iBijψ
j). A fermionic Gaussian integral is

∫

M

dψm· · ·dψ1 e
1
2
S[x] =

∫

M

dψm· · ·dψ1 e
∑

i<j ψiBijψj

.

4.2.4. Odd Feynman amplitudes. Let P(m) be the set of all pairings of the set {1, ..., m},
i.e., all partitions γ of A into 2-element subsets. To a pairing γ one assigns the sign σγ
as the sign of any permutation i1, j1, ..., iq, jq that one obtains by choosing an ordering
{i1 < j1}, ..., {iq < jq} on γ.
The γ-amplitude of a quadratic form B(x) = ψiBijψ

j is

Fγ(B)
def
= σγ ·

∏

{i<j}∈γ

Bij.

Notice that the difference from the even case is that there is a sign σγ attached to a
Feynman graph γ.

4.2.5. Fermionic Gaussian integrals give Pffafian.

Lemma. The odd Gaussian integral on R0|m is a sum over all pairings
∫

M

dψm· · ·dψ1 e
1
2

∑
ψiBijψ

j

=
∑

γ∈P({1,...,m}

σγ
∏

{i<j}∈γ

Bij =
∑

γ∈P({m}

Fγ(B).

Proof. The exponential power series is a finite sum
∫

M

dψm· · ·dψ1
∑

k

1

k!
(
∑

i<j

Bijψ
iψj)k.

Since we get only the even degree terms, this is zero if m is odd. If m = 2q is even, this is
∫

M

dψm· · ·dψ1 1

q!
(
∑

i<j

Bijψ
iψj)q,
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and we get a contribution 1
q!
σi1j1...iqjqBi1j1· · ·Biqjq , whenever i1, j1, ..., iq, jq is a permuta-

tion of 1, ..., m, such that ik < jk. Therefore, the fermionic Gaussian integral is a sum
over all such permutations

∫

M

dψm· · ·dψ1 e−
1
2
ψiBijψ

j

=
1

q!

∑

(i1j1...injn)∈ Sm, ik<jk

σi1j1...injn ·Bi1j1· · ·Binjn.

However, σi1j1...injn and Bi1j1 · · ·Binjn only depend on the associated pairing γ = {{i1 <
j1}, ..., {iq < jq}}. Moreover, all permutations (i1, j1, ..., in, jn) over one pairing γ form a
Sq-torsor. so the RHS simplifies to the claim of the lemma.

Remarks. (0) The sum
∑

γ∈P({1,...,m} σγ
∏

{i<j}∈γ Bij is called the Pffafian Pf(B) of the

anti-symmetric matrix B.(12)

(1) The integral is a Feynman sum. So, Pffafian may be the first appearance of Feynman
sums.(13)

(2) The Pffafian of an antisymmetric matrix of even size is a square root of its determinant:

Pf(B)2 = det(B).

This square root is normalized by Pf = 1 on ( 0 1
−1 0 ) (and on block diagonal matrices with

such blocks on the diagonal).

(3) Again we find that the odd part gives a contribution in the opposite direction since

(det(A)−
1
2 is replaced by (det(B)

1
2 = Pf(B).

4.2.6. Question. Use integrals to prove (i) Pf 2 = det and (ii) Pf(ABA−1) = Pf(B) for
orthogonal A.

A linear operator A on an ordinary vector space V gives a symmetric bilinear form A on
the odd vector space T ∗(ΠV ) = Π[V⊕V ∗] by

A(u⊕λ, v⊕µ) def
= .

Notice that the space T ∗(ΠV ) = Π[V⊕V ∗] comes with a canonical volume element (5.1.1).

Corollary. The determinant of a linear operator A on an even vector space V can be
calculated as the Gaussian integral for the form A (using the canonical volume element).

4.3. Wick’s theorem.

12Here Pf(B) is attached to a symmetric formB on an odd vector spaceM and a system of coordinates
ψ1, ..., ψm on M , i.e., precisely to the associated matrix (Bij). However, one needs less – a volume form
dv = dψ1· · ·dψm on M rather then a system of coordinates.

13This raises a question of whether the even Gaussian (det(A)−
1

2 is a Feynman sum in some way. This
could be interesting for infinite dimensional spaces.
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5. Integration on supermanifolds

5.1. Integration on superdomains.

5.1.1. Volume elements dv of a super vector space. Recall that the Berezian Ber(V ) of a
(finite dimensional) super vector space V = V0⊕V1 is the line(14)

Ber(V )
def
= ΛtopV0 ⊗ Stop(V1)

∗.

By a volume element dv of V , we mean any basis of Ber(V )∗.

To an oredered system of coordinates xi, ψj on V one attaches volume elements on V0

dv0 = dx1· · ·dxp def
= x1∧· · ·∧xp ∈ Λtop V ∗

0 = Ber(V ∗
0 )

and on V1

dv1 = dψ1· · ·dψq def
= (ψ1)∗· · ·(ψq)∗ ∈ Stop V1 = Ber(V1),

hence also a volume element dv = dv0⊗dv1 on V .

Notice that this notation is counterintuitive in the odd direction, so we also denote

dψj
def
= ψj = (dψj)−1 for odd coordinates ψ, and(15)

dv1
def
= dψ1· · ·dψq def

= ψ1· · ·ψq = (dv1)
−1,

so that dv = dv0/dv1 =
dx1···dxp

dψ1···dψq .

5.1.2. Super domains. To a super vector space V one attaches a supermanifold A = AV

with

O(AV )
def
= S∗(V ∗) ∼= S(V ∗

0 )⊗∧∗(FV ∗
1 ).

A super domain in AV is the restriction of the manifold structure to an open U⊆V , we
denote it U×V1 = U ; so

O(U×V1 def
= C∞(U)⊗∧∗(FV ∗

1 ).

5.1.3. Integrals of compactly supported functions on super domains. One defines the inte-
grals of a compactly supported function f on a super domain U×V1⊆V , and with respect
to a volume element dv as∫

UV1

f(v) dv
def
=

∫

U

〈f(v), dv1−1〉 dv0, f ∈ C∞
c (UV1)

def
= C∞

c (U)⊗S∗(V1),

where

• dvi’s are volume elements of Vi such that dv = dv0·dv1, i.e., dv = dv0/dv1.

14The order does not matter since the first factor is even.
15With this notation integrals over odd vector spaces are

∫
dψ(a+ bψ) =

∫
a+bψ
dψ

= b.
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• If dv1 = dψm· · ·dψ1 (i.e., dv1 = dψm· · ·dψ1 = ψm· · ·ψ1), then

〈f(v), dv1〉 = [f(v) : dv1]

is the coefficient of dv1 = dψm· · ·dψ1 = ψm· · ·ψ1 in f .

5.1.4. dv-unimodular coordinates systems on V . A coordinate system consisting of xi ∈
V ∗
0 and ψj ∈ V ∗

1 , is said to be dv unimodular if dv0 = dx1· · ·dxp and dv1 = dψ1· · ·dψq
satisfy dv = dv0·dv1. Then

〈f(v), dv1〉 = [f(v) : ψ1· · ·ψq] is the coefficient of ψ1· · ·ψq in f(v), and
∫

UV1

f(v) dv =

∫

U

[f(v) : ψ1· · ·ψq] dx1· · ·dxp.

5.2. Change of variable formula on superdomains.

5.2.1. The determinant of the differential. Let F : M −→N be a map of super manifolds
which is locally an isomorphism. Its differential is an isomorphism of locally free OM -
modules dF : TM −→F ∗TN , so it has a Beresian

Berd(dF ) : Ber(TM )
∼=−→ Ber(F ∗TN ) = F ∗(Ber(TN )),

i.e.,

Berd(dF ) ∈ Hom[Ber(TM), F ∗(Ber(TN))] = Γ(M,Hom[Ber(TM), F ∗(Ber(TN ))]) = Γ[M, F ∗(Ber(TN
If one has volume elements dvM and dvN then the Berezian Berd(dF ) trivializes to an
invertible function [Berd(dF ) : F ∗(dvN)⊗dvM−1] on M .

Now let F : U ′×V ′
1 −→ U ′′×V ′′

1 is an isomorphism of superdomains in AV ′ and AV ′′ . A
choice of coordinate systems xi, ξj and yp, ηq in V ′ and V ′′, gives the Jacobian matrix16

J (F )xi,ξjyp,ηq of dF with respect to cooridnates, this is a block matrix of derivatives

dF00 = (
∂(yp◦F )
∂xi

), dF01 = (
∂(yp◦F )
∂ξj

), dF10 = (
∂(ηq◦F )
∂xi

), dF11 = (
∂(ηq◦F )
∂ξj

).

If the coordinate systems are unimodular for volume elements dv′ and dv′′ then the even
function Ber(dF ) : F ∗(dv′′)⊗dv′ is denoted Ber(dF )dv′′dv′ .

5.2.2. Theorem. [Berezin] Given volume elements dv′, dv′′ on V ′ and V ′′

∫

U ′′×V ′′

g(v′′) dv′′ =

∫

U ′×V ′

g(F (v′)) · |Ber(dF )dv′′dv′ | dv′.

Here, terms containing odd factors are neglected in the definition of the absolute value
| − |.

16Sometimes called Berezian matrix.
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5.3. Integration of densities on super manifolds.

5.3.1. The sheaf DenX of densities. Let U be open in Rp so that U = U×R0|q is a
superdomain. First define compactly supported functions on U

C∞
c (U) def

= C∞(U)⊗O(R0|q.

Then define the space of densities Den(U) to consist of all linear functionals φ on C∞
c (U)

such that there exist functions φI ∈ C∞(U) with

∑

I

fIψ
I φ7→

∑

I

∫

U

dt1· · ·dtp φI ·fI .

Now, compactly supported functions form a cosheaf C∞
Rp|q,c

on Rp|q, and then densities

form a sheaf DenRp|q on Rp|q.

Now one can define a sheaf of densities DenM on any super manifold M .

5.3.2. Lemma. (a) OM -module DenM is locally free of rank one and of parity the same
as q.

(b) The above notion of the integral
∫
Rp|q on a super affine space Rp|q, gives an ORp|q -basis

of the ORp|q -module of densities.

Proof. (a) follows from (b).

(1) A density on a manifold M is given by

(a) an atlas M⊇Mi
φ−→
∼=
Ui where Ui is a super domain in some Ap|q = Rp|q,

(b) a systems s = (si)i∈I of functions si ∈ C∞
M (Mi) on open pieces Mi⊆M , such

that on intersections

sj(m) = si(m)·|Ber(d(φi◦φj−1) (φj(m))|, m ∈Mij .

(2) Two such presentations (Mi, Ui, φi, si)i∈I and (M̃j, Ũj , φ̃j, s̃j)j∈J give the same den-
sity if ...

5.3.3. Integration of compactly supported densities on manifolds. For a compactly sup-
ported density ω on M , one picks a partition of unity (Mi, fi)i ∈ I and charts φi :

Mi

∼=−→Ui⊆Ap|q to calculate
∫

M

ω
def
=

∑ ∫

Mi

fiω

with
∫
Mi

fiω calculated in Ui via identification φi.
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5.4. Summary. Integration on a smooth manifold requires a top degree differntial form
ω ∈ Ωtop

c(M) and an orientation orM .(17)

On a super manifold M one needs an orientation or|M | = orMred
of the unerlying smooth

manifold, and a some ω which lies in the correct analogue of the differential forms of top
degree. One again starts with the vector bundle (locally free sheaf) Ω1

M of 1-forms on a
super maniffold. The top exterior power of a vector bundle is however not the correct
point of view (it does not even exist for super vector bundles), the correct construction
is the Berzinian line bundle Ber(Ω1

M ). So one needs ω ∈ Γc(M,Ber(Ω1
M ) and orM ∈

Γ(|M |, Or|M |).

(1) Differential forms on a supermanifold M are defined by

Ω∗
M

def
= ∧∗OM

(Ω1
M) for Ω1

M
def
= HomOM

(Ω−1
M ,OM).

This is
(a) good for de Rham cohomology: H∗(Ω∗

M) = H∗(|M |,R),
(b) but not for integration (for instance top form exists only for even M).
(c) It is not super commutative. For example, Ap|q = Ap|0×|a0|q gives a factor-

ization Ω∗(Ap|q) = Ω∗(Ap|0)⊗Ω∗(A0|q). Here, Ω∗(Ap|0 is a super commuta-

tive algebra isomorphic to OAp|p. However, in Ω∗(A0|q
∼=−→O(A0|q) ⊗∧∗(⊕dψj)

the second factor is not super commutative though as an ordinary algebra
F [∧∗(⊕dψj)] = S∗(F [⊕dψj ]) is commutative.

(2) dxi’s and dψj ’s do not interact since they live in separate factors of Ber(V ∗ =
∧top V ∗

0 ⊗Stop V ∗
1 ). So they commute with each other, but amongst themselves

both groups anticommute in the sense that the algebras F(∧top V ∗
0 ) and F(Stop V ∗

1 )
are both exterior powers of ordinary vector spaces.

(3) Let us put together the standard and the natural notation:(18)

∫
f dx1· · ·dxn dψ1· · ·ψq =

∫
[f : dψ1· · ·dψq] dx1· · ·dxp =

∫
f
dx1· · ·dxp
dψ1· · ·dψq .

(4) Remember that d is odd:

(a) d(fg) = df ·g + (−1)ff ·dg
(b) df ·g = (−1)(f+1)·g g·df .

The first line in (4) is a definition and the second follows, since one passes from d(fg) =

df ·g + (−1)ff ·dg to d(gf) = dg·f + (−1)gg·df by multiplying with (−1)fg.

17For instance when we integrate ω = dx on [a, b]⊆R to b−a we are clearly using a preferred orientation
of R.

18It does not really matter whether we write dxi’s and dψj ’s on the same line or on different lines since
they do not interact.
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6. Super-symmetry of integrals

This material is provisional, key calculations are still incorrect.

6.1. Super-symmetry of the action. An ordinary (i.e., continuous) symmetry of a
function S on M is a flow Φ on M (i.e., an action of (R,+) on M), which preserves S:
S(Φr(x)) = S(x). An infinitesimal symmetry is a vector field ξ on M which preserves S
in the sense that ξS = 〈dS, ξ〉 vanishes. The same applies to super-spaces. In this setting
the action will be an even function on a super manifold, and we say that a symmetry is
bosonic or fermionic if the vector field is even or odd.

A super-symmetry (SUSY) is a symmetry (i.e., a vector field on a super manifold), which
mixes even and odd, i.e., xi, ∂xi , ψ

i, ∂ψi . (However, this is likely to be an odd vector field!)

6.1.1. Nondegenerate Fermionic symmetry kills integrals. For instance, if S(x, ψ1, ψ2) is
independent of ψ2 this is a fermionic symmetry – the vector field is ∂

∂ψ2 and the flow is

the motion in the direction of ψ2.

Observe that in that case the integral
∫
A1|2 dx dψ2 dψ1 e−S[x,ψ

1,ψ2] vanishes. This is the
source of simplicity in super-integrals:

Lemma. (a) If f ∈ O(M) has an odd symmetry ∂ which appears as a coordinate vector
field then ∫

M

dµ f = 0.

(b) If ∂ is an odd vector field such that for some odd function f one has ∂(f) = 1, then
locally there is a coordinate system such that f = ψ1 and ∂ = ∂ψ1 .

If ∂ =
∑

fi∂xi + sum gj∂ψj , the condition is that the “odd-odd” part
∑

gj∂ψj does
not vanish.

Proof. (a) follows from the example above.

Remarks. Actually,

• The correct object to be integrated is not a function but a “measure” (more
precisely a density), so the precise requirement is that f ·µ has ∂-symmetry. (For
instance both f and µ may be fixed by ∂.)
• As we see in (b) the condition that ∂ is a coordinate vector field, is locally a non-
degeneracy condition – the part of ∂ that differentiates odd variables should not
vanish.
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6.2. Example:
∫
R
Dx P ′(x)e−

1
2
P (x)2 via super-symmetry. For an example, we will

calculate the path integral for the action S[x, ψ1, ψ2] = U(x)+V (x)ψ1ψ2 when U = 1
2
P 2

and V = −P ′ for a polynomial P = P (x) on A1, and then we will see that the result can
be explained using a SUSY of this action.

6.2.1. Calculation by reduction to integration on A1|0 = R. We will reduce the integral
for S[x, ψ1, ψ2] = 1

2
P (x)2 − P ′(x)ψ1ψ2 to integration on the real line, hence to standard

calculus – by 4.1.3
∫

A1|2

Dx dψ2 dψ1 e−S =

∫

R

Dx P ′(x)e−
1
2
P 2

.

Now substitution u = P (x) gives a Gaussian integral
∫ P (∞)

P (−∞)

Dx e−
1
2
u2 = deg(P̃ ).

Here P̃ is P interpreted as a map from S1 to itself – this can be done since P (±∞) is

one of {±∞}. The degree of P̃ is defined as the number of times P̃ winds up the circle
onto itself in positive direction. Observe that if deg P is even then deg(P̃ ) is 0 and this

is also the value of the integral since P (−∞) = P (∞). If degP is odd then deg(P̃ ) is
the sign ε = ±1 of the highest coefficient and this is also the value of the integral since
P (±∞) = ε· ±∞.

6.2.2. SUSY. The vector field

δ = (ψ1 + ψ2)
∂

∂x
+ P (x)

∂

∂ψ1
− P (x)

∂

∂ψ2

is an odd supersymmetry of the action S and of the measure dx dψ2 dψ1. So, it is a SUSY
of the partition function.

Proof. (1) δ is clearly odd. We apply δ to the function S

δ S = (ψ1+ψ2)(P (x)P ′(x)−P ′′(x)ψ1ψ2)− P (x) P ′(x) ψ2 − (−P (x)) P ′(x)
∂

∂ψ2
ψ1ψ2 = 0.

We check the sign in the last term: ∂
∂ψ2ψ

1ψ2 = −ψ1 ∂
∂ψ2ψ

2 = −ψ1.

(2) Similarly, this is a SUSY of the measure dx dψ2 dψ1. For this recall that a vector field
acts on 1-forms by

δ(df)
def
= d(δf).

The action on Ber(Ω1
M) is then clear, so

δ (dx dψ2 dψ1) = δ(dx) dψ2 dψ1 + dx δ(dψ2) dψ1 + dx dψ2 δ(dψ1)

= d(ψ1 + ψ2) dψ2 dψ1 + dx dP (x) dψ1 + dx dψ2 d(−P (x)) = 0

since in the last two terms one has dx twice and in the first term one of dψi’s.
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6.2.3. Local arguments in A1|2. I only sketch the argument since I do not understand it
completely. For simplicity assume that P has only the simple zeros (since we are really
doing the Morse theory on a circle S1).

(1) The vanishing of the integral in A1|2 but away from the zeros of P (x). Locally in A1|2,
and as long as we stay away from the zeros of P (x), we can get the the integral to vanish.
This comes from supersymmetry.

Let a ∈ A1, if P (a) 6= 0 then the “odd-odd” component of δ(a) is non-trivial. Then one

can change the coordinates near a to x̃, ψ̃1, ψ̃2 so that δ = ∂
∂ψ̃2 and the measure does not

change: dx̃ dψ̃1 dψ̃2 = dx dψ1 dψ2 (i.e., the Jacobian is 1).

(2) The special case P = α·x. If P = α·x. the integral is the Gaussian integral
∫

R

Dx P ′(x)e−
1
2
P 2

=

∫

R

Dx αe−
1
2
α2x2 =

α√
α2

= sign(α) = sign(P ′(0)).

(3) The first step reduces the calculation to neighborhoods of zeros b of P (x). There
P (x) is approximated by a line α·(x − b). However, since P = α·(x − b) has no other
zeros, by the first step the integral near b is the global integral and gives sign(α).

So the total integral is the sum of signs of P ′(x) at zeros of P (x), i.e., we count +1 when
P crosses the x-axis upwards and −1 when P crosses the x-axis downwards. The sum of
these is the degree of the extension P̃ of P to S1.

6.2.4. Remarks. (1) One should still describe how the local contributions glue together.
For instance, over an interval I ⊆R, where P does not vanish, integral is usually not zero
in the inverse {x ∈ I} of I in A1|2, though it vanishes in the “slanted inverse” {x̃ ∈ I}.)
So the integral can be large in a “small” difference of these spaces.

Possibly, we are not calculating the integral precisely, but only up to some precision –
this would suffice if we would know that the integral is an integer. (The integral here is
one of −1, 0, 1.)
(2) Physicists would describe a vector field δ by

δx = ε(ψ1 + ψ2), δψ1 = εP (x), δψ2 = −εP (x)
where ε is an “infinitesimal real number”, i.e., ε2 = 0. They can also phrase it as an
“infinitesimal change (transformation) of coordinates”

x7→x̃ = x+ δx = x+ ε(ψ1 + ψ2), ψ1 7→δ̃ψ1 = ψ1 + εP (x), ψ2 7→δ̃ψ2 = ψ2 − εP (x).
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7. Supersymmetry in differential geometry [Verbitsky]

7.0.5. Question. If you have additional structure, can one map some specific objects like
we did with the super point?

7.1. SUSY on manifolds. The super-symmetry of a manifold M is the action of the
real super Lie algebra g? on the differential forms Ω∗

M , i.e., on the functions on the super

manifold Msdef= Map(R0|1,M).

The Lie algebra depends on the structure of M :

• de Rham Lie algebra gdR is the Lie algebra of S = Aut(A0|1). It acts for any M
(actually so does S).
• Kaehler Lie algebra gka acts on form on Kaehler manifolds.
• Hyperkaehler Lie algebra ghk acts on form on hyperkaehler manifolds.

Question. In the first case

(1) S acts on the De Rham moduli MdR =Map(A0|1,M).
(2) Rep(S/s) is the category of complexes.

(1) What are the groups corresponding to other super Lie algebras?
(2) What are the categories of representations?
(3) (Complexes with some extra structure!)?
(4) How do these groups act on MdR? (They act on O(MdR hence also on MdR.)

7.1.1. de Rham super Lie algebra gdR. This is the semi-direct product gdR
def
= k·d ⋉ k·h,

where k·d is a one-dimensional odd abelian Lie algebra, and so(1, k) = k·h is the Lie
algebra of the multiplicative group Gm which acts on k·d by weight one. (The represen-
tations of the corresponding algebraic super group are precisely the complexes of vector
spaces.)

7.1.2. Realization in differential operators and the canonical basis. On Ω∗
M = OMs one

has two vector fields: the De Rham differential d (odd) and the degree operator h given by
the grading on the differential forms. The resulting semi-direct product is the Lie algebra
gdR = k·d⋉ k·h.

7.2. de Rham complex of a manifold. The de Rham complex of a manifold M has

to do with the action of the super group G̃m = k0|1 ⋉ Gm on the super manifold Ms =
Spec(Ω∗

M/M).

Observe that the closed forms form a subalgebra Z∗
M⊆ Ω∗

M = OMs – these are the functions
invariant under the vector field d, so they should correspond to a quotient of Ms by the
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flow generated by d: Z∗
M = OMs , i.e.,

Msdef= Spec(Z∗
M).

Next, the exact forms B∗
M form an ideal in closed forms: if β is closed then dα∧β =

d(α∧β). So they define a subscheme
•

M of Ms with

•

M
def
= Spec(H∗

M), for H∗
M

def
= Z∗

M/B∗
M = O •

M
, i.e., I •

M
= B∗

M⊆ Z∗
M = O(Ms).

7.2.1. Sheaves Z∗,B∗,H∗. These are not OX -modules, however their geometric nature is
clear in characteristic p > 0. In characteristic p > 0. these are coherent OX(1)-modules.

Hodge theory seems to be precisely the description of the space X/DX = X/FNX(X
2).

The standard approach is indirect and attempts to describe the sheaves on this space
(Hodge sheaves).

7.2.2. Question. In characteristic p > 0, Cartier operator is a canonical isomorphism

C−1 : H∗[(FrX/k)∗Ω
∗
X/k]

∼=−→ Ω∗
X(1)/k.

How can one explain this? Map(k0|1, X(1)) = (X(1))s is described as a subquotient of

Xs = Map(k0|1, X).

This seems to be a case of a general statement about the relation between forms on spaces
X and Y related by a finite flat map, i.e., about the relation between spaces Xs and Y s.

Observe that in our case the map (X(1))s −→Xs factors thruX(1) −→X since the differential
of the Frobenius map- is zero.

7.3. SUSY on Riemannian manifolds. The super-symmetry of a Riemannian mani-
fold (M, g) is the action of the real super Lie algebra gR on the differential forms Ω∗

M .

7.3.1. Riemann-de Rham super Lie algebra gR. This is the semi-direct product gR
def
= hR⋉

so(1,R) of the Heisenberg Lie algebra hR
def
= Π(V ) ⊕ R·K, where the V = R2 with the

bilinear pairing xy, and so(1,R) = R·h is the special orthogonal group for this quadratic
form.

7.3.2. Realization in differential operators and the canonical basis. De Rham differential
d has an adjoint d∗ on a Riemannian manifold (M, g). Their anti-commutator [d, d∗] =
dd∗ + d∗d is the Laplace operator ∆. Moreover, the grading on the differential forms
defines the degree operator h. (Now V = R2 = Rd⊕Rd∗ and the central element K acts
on forms Ω∗(M) as the Laplace operator ∆.)
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Observe that d, d∗ and even ∆ are vector fields on the associated super manifold Ms. So,
a Riemannian structure g on M define a representation of the Riemann-de Rham super
Lie algebra gR by vector fields on the super manifold Ms.

7.4. SUSY on Kaehler manifolds. Super-symmetry of a Kaehler manifold M is the
action of a complex super Lie algebra gka on forms Ω∗

M .

7.4.1. Kaehler-de Rham super Lie algebra gka. Here gka is the semi-direct product hka⋉sl2
of the Kaehler-Heisenberg Lie algebra hka with sl2 = sl(V ) = su(1, 1;C). Here, hka =
Π(V⊕ V ∗)⊕C·K for the 2d representation V = L(1) of sl2.

So, dimC(hka) = 5 and dim(gka) = (4, 4).

7.4.2. Any representation V of a Lie algebra g defines hV = Π(V⊕V ∗)⊕C·K and

gV
def
= hV ⋉ g. Moreover, a self-dual representation W defines a smaller version h(W ) =

Π(W )⊕C·K and g(W )
def
= h(W )⋉ g.

7.4.3. Canonical basis.

7.4.4. Realization in differential operators. The central element K acts on forms Ω∗(M)
as the Laplace operator ∆. sl2 acts by the standard Lefschetz action on forms.

7.5. SUSY on hyperkaehler manifolds. Super-symmetry of a hyperkaehler manifold
M is the action of a real super Lie algebra ghk on forms Ω∗

M .

7.5.1. Hyperkaehler-de Rham super Lie algebra ghk. The hyperkaehler-de Rham super Lie
algebra ghk is the semi-direct product hhk ⋉ so(1, 4) of the hyperkaehler-Heisenberg Lie
algebra hhk with so(1, 4) = su(1, 1;H). Here,

• hhk = Π(W )⊕C·K where
• W = H⊕H has quaternionic Hermitian metric of signature (1, 1),
• and so(1, 4) appears as the unitary group su(1, 1;H) for this metric. for the 2d
representation V = L(1) of sl2.

Here. dim so(1, 4) = dim so(5) = [52 − 5]/2 = 10, while dim(hhk) = (1, 8), hence
dim(ghk) = (11, 8).
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8. Homological algebra in terms of super geometry

This section is an unfinished sketch of how the formalism of complexes arises naturally in
super geometry.(19)

Complexes in homological algebra are representations of a certain super group S – the
automorphism group of the super point. Its underlying super manifold is S1|1.

More generally, homological algebra uses representations of semi-direct products s ⋊ T
where T is a torus (even!) and s is an odd representation of T .

8.1. Search for Homological Algebra. The above explains the notion of complexes in
terms of the simplest super point A0|1. However

8.1.1. What is homological algebra? The question is

How does one make derived functors natural and clear?

The first examples may be the Ext functors because (i) they have an existence without
any homological algebra formalism, (ii) sheaf cohomology is an Ext functor Ext(kX ,−).
(So is group cohomology ...)

So one may want to fit them in the S-framework and then construct RHom and then the
derived category.

Question. What are the injectives/projectives in complexes?

8.1.2. De Rham cohomology of flat connections. One nice instance is the De Rham coho-
mology which is completely explained geometrically: manifoldM gives a moduliM(M) =
Map(A0|1,M) and S acts onM(M) hence on the space of functions onM(M).

Questions.

(1) What exactly makes this work: say, there are no C0 super manifolds, so maps into
a topological space probably do not work. (What about schemes M?).

(2) What about the geometric construction of differential forms?
(3) Can one use this as a model for explaining other (co)homology theories?
(4) What is De Rham homology? Currents?
(5) Is singular (co)homology the simplicial version of the classifying space of a (non-

commutative!) group S?
(6) What is the algebraic structure of BG if G is A⋊ B for abelian A,B ?
(7) What does one know about classifying spaces super groups?
(8) If one could answer this there would be more questions in waiting: explain K-

theory and non-abelian cohomology.

19Moreover the same happens with the chiral De Rham complex, indicating that some parts of QFT
may be relatives of homological algebra.
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8.1.3. Non-abelian cohomology. One non-abelian generalization of S is the automorphism
groups Aut(A0|n) of larger supper points. Probably, Aut(A0|n) = (A0|n)⋊GLn.

Question. Could this be related to appearances of GLn in K-theory?

8.2. The center of super linear algebra.

8.2.1. Group scheme µ2,Z. Let s be the group scheme s
def
= µ2,Z.

Lemma. (a) The Hopf algebra of functions is O(s) = Z⊕Zx = Z⊕Zy with x2 = 1
and ∆(x) = x(u)tenx, and in terms of y = x − 1 one has y(y + 2) = 0 and ∆(y) =
y⊗1 + 1⊗y + y⊗y.
(b) The group algebra (enveloping algebra) is the Z-dual Hopf algebra

U(s) = Z⊕Zζ with ζ2 = ζ and ∆ζ = ζ⊗1 + 1⊗ζ.
Here, 1, ζ is a basis dual to 1, y.

(c) U(s) is the algebra Zp⊕Zq with orthogonal idempotents q = ζ and p = 1− q, and the
Hopf structure ∆q = q⊗1 + 1⊗q and ∆p = p⊗1− 1⊗q == p⊗1 + 1⊗p− 1⊗1.
Proof. O(s) is the quotient of O(Gm,Z) = Z[x, x−1] by the relation x2 = 1. This is the
same as Z[x]/〈x2 − 1. In terms of y = x− 1 this is 0 = x2 − 1 = y2 + 2y = .

The comultiplication in Gm is ∆(x) = x(u)tenx (i.e., ∆(x)(u, v) = x(uv) = x(u)·x(v) =
(x⊗x)(u, v)),and in terms of y ∆(y) = ∆(x0 −∆(1) = x⊗x− 1⊗1 = y⊗1 + 1⊗y + y⊗y.
The Z-dual Hopf algebra U(s) has a basis 1, ζ dual to 1, y. ζ2 = ζ comes from 〈ζ2, y〉 =
〈ζ⊗ζ,∆(y)〉 = 〈ζ⊗ζ, y⊗1 + 1⊗y + y⊗y〉 = 1 = 〈ζ, y〉 and 〈ζ2, 1〉 = 0. Also, ∆ζ =
ζ⊗1 + 1⊗ζ since

〈∆ζ , y
i⊗yj〉 = 〈ζ, yi+j〉 = δi+j,1.

Since q = ζ is an idempotent, so is p = 1− ζ . One has

∆(p) = ∆(1)−∆(z) = 1⊗1− (q⊗1 + 1⊗q) = p⊗1− 1⊗q.

Corollary. Representations of s over a ring k form a tensor category of Z2-graded k-
modules.

The natural braided structure on Repk(s) is the super braiding.

8.2.2. The center of the category of super k-modules.

8.2.3. Lemma. Let k be an even ring. The center of the category of super k-modules is
the enveloping algebra Z(k)(s) of the algebraic group s = µ2,Z over the center Z(k) of k.

Say, The center of the category of super abelian groups is the enveloping algebra of the

(algebraic) group s
def
= µ2,Z.
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8.3. Super group S = Aut(A0|1) and complexes.

8.3.1. Odd additive groups G
0|q
a . For q ≥ 0 the (0, q)-dimensional super-point A0|q has a

canonical structure of a supergroup which we denote G = G
0|q
a . Its algebra of functions

is
O(G) = S∗(Ψ∗)

for an odd q-dimensional vector space Ψ∗ = ⊕q1 k·ψi. So, if we forget parity

F [O(G)] = •∧ F(Ψ∗).

G is a commutative group with

∆(ψi) = 1⊗ψi + ψi⊗1.
We can think of G as the parity change of the vector space (Ga)

q.

The Lie algebra g = g
0|q
a of G is commutative, so it is the same as the underlying vector

space (Ψ∗)∗ = Ψ. It has a basis ζi dual to ψ
i’s. The enveloping algebra is therefore the

symmetric algebra

Ug = S•Ψ and F(Ug) = •∧F(Ψ),

i.e., we get exterior algebra when we forget parity. One has duality of Hopf algebras
O(G) = [Ug]∗.

8.3.2. Group S. Let g be the super-point G
0|1
a = Spec(k⊕kψ) for ψ odd and ψ2 = 0. Let

S be the semi-direct product g⋉Gm = G
0|1
a ⋉Gm, where Gm acts on g by s •ψdef

= s−1·ψ.
In terms of Lie algebras, g1|0

def
= Lie(g) = k·ζ and gm = Lie(Gm) = k·i, hence the lie

algebra S = Lie(S) is g0|1a ⋉ gm = k·ζ⊕ k·i. Here, s • ζ = s·ζ, s ∈ Gm, or equivalently,
[i, ζ = ζ ].

8.3.3. Lemma. S = Aut(A0|1). In particular, S is a based group in the sense that it comes
with a canonical map µ2,Z → S;
Proof. G

0|1
a acts on A0|1 by translations and Gm by homothety.

8.3.4. Corollary. (a) A complex of k-modules is the same as an algebraic representation
of the based super group S (i.e, a representation such that the action of µ2,Z given by

µP2,Z −→Gm is the standard action on Z2-graded k-modules (
1
= representations of µ2,Z).

(b) In particular, a dg-scheme is the same as a based action of of the super group S on a
super scheme.

8.3.5. Question. What is Aut(S) for the space S or a group S? (Seemingly, Autgroups(S)
is just Inn(S) which is Gm acting on the odd part (g,+).)
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8.3.6. Notions of complexes corresponding to super groups T def
= s⋉T . More generally, one

may be interested in representations of groups T def
= s⋉ T where T is a torus (even!) and

s ∼= G
0|1
a ) is an “odd representation” of T .

For T = S2 we get the notion of bicomplexes and the passage to the total complex is the
restriction for ∆S →֒ S2.

If T = Gm acts on s = kψ+⊕kψ− by s • ψ±
def
= s±1·ψ±, we get the notion of mixed

complexes (in the sense of Weibel).

For a subgroup T = g⋉±1⊆ S, (or just T = g⊆ S), we get the notion of a differential
super module. (The notion of a differential module is not of a super nature!)

8.4. Cohomology.

8.4.1. Subgroups of S. Some of the basic operations are now restrictions to a subgroup:

• graded vector spaces to Z2-graded ones: Gm⊇{±1}.
• complex to a differential super module: S⊇g = G

0|1
a .

• complex to a graded vector space: S⊇Gm.

• bicomplex gives the total complex: S ∆→֒ S2.

8.4.2. Cohomology. One can pass to representations of the quotient Gm of S by using
invariants C∗ 7→ Z∗(C∗) or coinvariants C∗ 7→ C∗/B∗(C∗), with respect to the subgroup
g. Finally, one can combine the two to get

H∗def= Im[Z∗ −→ id/B∗].

So one has the subcategory Rep(Gm)⊆Rep(S) and two adjoints Z∗ and B∗ for the inclu-

sion. Then H∗def= Im[Z∗ −→ id/B∗] is one modulo (the image of) the other. [Notice how
this is different from the !∗ construction which uses the image of ! −→∗.]

8.4.3. Long Exact Sequences. A “surprising fact”: –

A short exact sequence 0 −→A′ −→A −→A′′ −→0 in the abelian category Rep(S/s)
(=complexes), gives a long exact sequence of cohomologies in the abelian category

Rep(Gm):

· · · −→H(A′⊗Π−1) −→H(A⊗Π−1) −→H(A′′⊗Π−1)H(A′) −→H(A) −→H(A′′)H(A′⊗Π) −→H(A⊗Π) −→H(

Remark.

(1) Claim (1) should be a departing point for thinking of this setting. Here, Gm is a
quotient of S by s that one can think of as Π (actually, Π = Lie(s)).
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(2) (2) is really infinitely many copies of the standard long exact sequence of coho-
mologies.

8.5. dg-schemes. Recall that a dg-scheme is the same as a super scheme with a based
action of of the super group S.
We are interested in several forgetful functors from dg-schemes to schemes and super
schemes and the corresponding induction functors

For even schemes the “odd tangent cone” Map(A0|1, N) is a right adjoint of the forgetful

functor from dg-schemes to schemes (|M |,O∗
M , d) 7→ (|M |,O0

M).

I have difficulties with what seems a simpler situation: the forgetful functor from dg-
schemes to super schemes. (There are three more forgetful functors which may need
adjoints Z∗, id/B∗, H∗ ?)

8.6. De Rham moduli MdR
def
= Map(A0|1, N). This is one standard construction of

dg-schemes from schemes. Actually, this is induction IndS1 :

8.6.1. Lemma. The forgetful functor from dg-schemes to schemes (|M |,O∗
M , d) 7→ (|M |,O0

M)
has a right adjoint N 7→ Map(A0|1, N).

Proof.

Homdg−schemes[(|M |,O∗
M , d), Mapsuper schemes(A

0|1, N)]

∼= Homdg−schemes[(|M |,O∗
M , d), Mapdg−schemes(A

0|1, N)] ∼= Homdg−schemes[(|M |,O∗
M , d)× A0|1, N ]

= Homsuper−schemes[(|M |,O∗
M , d)×A0|1, N ]S = Homsuper−schemes([(|M |,O∗

M , d)× A0|1]/g, N)Gm

= Homsuper−schemes[(|M |,O∗
M), N ]Gm = Homschemes[(|M |,O0

M), N ].

8.6.2. De Rham cohomology. One can view it in two steps as

(1) Ω•(M) 7→Z•(M) 7→H•
dR(M), or

(2) Ω•(M) 7→Ω•(M)/B•(M) 7→H•
dR(M).

Geometrically this means

(1) passing from the dg-scheme MdR to a quotient dg-scheme MdR) and then to its
dg-subscheme H(M). Alternatively, one can

(2) first pass to a subscheme

Ω•
M

⊆←−−− Z•(M)y
y

Ω•
M/B•

M

⊆←−−− H•(M)

, i.e.,

MdR
։−−−→ MdR

⊆

x ⊆

x
•

MdR
և−−−→ H(M)

.
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8.6.3. Examples. For M = Rn, MdR
∼= Rn|n.

(1) M = R. Here, B∗ = Ω1[−1], hence Ω∗/B∗ = Ω0 = C∞(R), hence
•

R = R and then
H(M) = pt is its quotient.

(2) M = S1. Here, MdR
∼= S1|1 def

= S1×A0|1. One has B∗ = {ω ∈ Ω1(S1), int ω = 0},
hence Ω1/B1

∫

−→
∼=

R. So, Ω∗/B∗ = C∞(S1)⊕R, and
•

S
1

is a dg-scheme with a base S1

and “very little in the odd direction”. It is interesting to see how this “very little”
is related to the 1-hole in the circle. Then, H(M) ∼= R1|1 as a super scheme,m is

a quotient of
•

MdR in the “even direction”

8.7. Chiral De Rham complex. On the space of maps Map(A0|1, N) we have an ac-

tion of Aut(A0|1) = S. On a larger space of maps Map(S, N) we have an action of
Autsuper schemes(S). Observe that

Map(S, N) = Map(G1|1
m , N) = Spec[Ω∗

Map(Gm,N)]

is the “chiral de Rham complex”. Its symmetries come from symmetries of the space G
1|1
m .

If we interpret it as the group S we get an action of S×S by left and right translations.

Observe that S is a very simple version of a super space in terms of physics, and the
above is the usual super-space game – explaining the symmetries of a super space from
its (non-commutative) group structure!

If we think that homological algebra deals with Aut(A0|1), should we think of representa-
tions of Aut(S1|1) as a generalization of homological algebra?

8.8. Homotopy. Homotopies are morphisms of complexes which are produced from
maps of the underlying (graded) objects by some kind of “integration over g”. The mean-
ing of the integrations is just applying d (since d2 = 0 implies that d(φ) is g-invariant).

8.8.1. Homotopy category Ho[Diffm(k)] of differential k-modules. For two differential
modules M,N , Homk(M,N) is differential bimodule hence a differential module.
Here Z[Homk(M,N)] consists of maps of differential modules, and its subgroup
B[Homk(M,N)] = d Homk(M,N) consists of “special” homomorphisms called
homotopies. So, H [Homk(M,N)] is the space of morphisms in the homotopical category
of differential modules Ho[Diffm(k)].

8.8.2. Homotopy category Ho[C∗(k)] of complexes of k-modules. For two complexes
M∗, N∗ we get a bicomplex Hom(M∗, N∗) and H0[Homk(M,N)] is the space of
morphisms in the homotopical category of complexes Ho[C∗(k)].
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8.9. Spectral sequences. A filtered complex (C∗, F ) is a Gm-equivariant vector bundle
of complexes C∗ over A1. Then GrF (C

∗) is the fiber at zero, C∗|0.
The spectral sequence gives a way of calculating the central fiber of the cohomology sheaf
from the cohomology of the central fiber.

H∗(C∗)0 = GrFH
∗(C∗) from H∗(C∗0) = H∗(GrFC∗).

Is there a SUSY in this spectral sequence?

8.10. Cones.

(1) The first surprising fact about the abelian category of complexes (representations
of S), is the map (isomorphism?)

Hom(M,N)→ Ext1(M⊗Π, N)

where Π is the representation Lie(s) of S.
(2) The second is that a short exact sequence in the abelian category Rep(S) gives a

long exact sequence in the abelian category Rep(Gm).

8.11. Derived functors. ?

8.12. Complexes and simplicial abelian groups. The equality of the two may mean
a simplicial set description of BG for G = s? (or S ?).


