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An Interest in Thermostats

Thermostat: A modification of the Newtonian MD scheme with the
purpose of generating a statistical ensemble at a constant temperature.

Match experimental conditions

Manipulate temperatures in algorithms such as simulated annealing

Avoid energy drifts caused by accumulation of numerical errors.
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Statistical Ensembles

Ensemble: a large collection of microscopically defined states of a
system, with certain constant macroscopic properties

Microcanonical (NVE)

◮ Arises in Newtonian MD simulation
◮ Conserves total energy

Canonical (NVT)

◮ Implement thermostats to sample from here
◮ Relevant to real behavior in experiment
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Microcanonical Ensemble

Consider an isolated system

Microstate: complete description of a state of the system,
microscopically

The probabilities of being in a certain microstate for the
microcanonical ensemble are uniform over all possible states
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Canonical Ensemble

Follows a Gibbs distribution for probability pj of being in a given
microstate j with energy Ej

pj =
e−βEj

Zβ
, Zβ =

∑

j

e−βEj

β =
1

kBT

Derivation follows from maximizing entropy
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Ergodic Hypothesis

The ergodic hypothesis says the long time average of an observable f

coincides with an ensemble average of the observable 〈f 〉.

f = lim
t→∞

1

t

∫ t

0
f (x(s)) ds

〈f 〉 =
∫

Γ
f (x) dµ(x)

where µ is the ensemble measure and Γ is the phase space of the
observable.
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Molecular Dynamics Simulation

Phase space is collection of positions q and momenta p of particles in
system

The Hamiltonian Form
{

dqt = ∇pH(qt , pt) dt

dpt = −∇qH(qt , pt) dt

H(q, p) = Ekin(p) + V (q), Ekin(p) =
1

2
pTM−1p
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Sampling from Ensembles

A canonical ensemble (constant average energy) is a distribution of
microcanonical ensembles (constant energy)

To sample from the canonical ensemble, the following thermostats
modulate the energy entering and leaving the boundaries of the
system
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Velocity Rescaling

Velocities are described by Maxwell-Boltzmann distribution

P(vi ,α) =

(

m

2πkBT

)
1
2

e
−

mv2i,α
2kBT

Adjust instantaneous temperature by scaling all velocities

Average Ekin per degree of freedom related to T via the equipartition
theorem

〈

mv2i ,α

2

〉

=
1

2
kBT
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Velocity Rescaling

Ensemble average → average over velocities of all particles: define
instantaneous temperature Tc for a finite system

kBTc =
1

Nf

∑

i ,α

mv2i ,α

Tc 6= T until rescaling

v ′i ,α =

√

T

Tc
vi ,α
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Velocity Rescaling

Disadvantages

◮ Results do not correspond to any ensemble

⋆ Does not allow the proper temperature fluctuations

◮ Localized correlation not removed

◮ Not time reversible

Advantages

◮ Straightforward to implement

◮ Good for use in warmup / initialization phase
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Nosé-Hoover

Based on extended Lagrangian formalism

◮ Deterministic trajectory

◮ Simulated system contains virtual variables related to real variables

⋆ Coordinates q′

i = qi

⋆ Momenta p
′

i = pi/s

⋆ Time t
′ =

∫ t

0
dt
s

⋆ s: additional degree of freedom, acts as external system
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Nosé-Hoover

Hamiltonian given by

H =

N
∑

i=1

p
2
i

2mi s2
+ V (q) +

Qṡ2

2
+ (3N + 1)kBT ln s

Logarithmic term required for proper time scaling: canonical ensemble

Effective mass Q associated with s
◮ Determines thermostat strength
◮ Q too small: system not canonical
◮ Q too large: temperature control inefficient

Microcanonical dynamics on extended system give canonical
properties
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Nosé-Hoover

Disadvantages

◮ Extended system not guaranteed to be ergodic

Advantages

◮ Easy to implement and use

⋆ Implement as a chain

⋆ Each link: apply thermostatting to the previous thermostat variable

◮ Increasing Q lengthens decay time of response to instantaneous
temperature jump

◮ Deterministic and time reversible
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Langevin

Consider the motion of large particles through a continuum of smaller
particles

dqi
dt

=
pi

mi

dpi
dt

= −δV (q)

δqi
− γpi + σGi

◮ Viscous drag force proportional to velocity −γpi
◮ Smaller particles give random pushes to large particle

Fluctuation-dissipation relation

σ2 = 2γmikBT
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Langevin

Disadvantages

◮ Difficult to implement drag for non-spherical particles: γ related to
particle radius

◮ Momentum transfer lost: cannot compute diffusion coefficients

Advantages

◮ Damping + random force 7→ correct canonical ensemble

◮ Ergodic

◮ Can use larger time step
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Andersen

Couple a system to a heat bath to impose desired temperature

Equations of motion are Hamiltonian with stochastic collision term

Strength of coupling specified by ν, the stochastic collision frequency

When particle has collision, new velocity is sampled from N (0,
√
T )
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Andersen

Disadvantages

◮ Newtonian dynamics + stochastic collisions → Markov chain

◮ Algorithm randomly decorrelates velocity: dynamics are not physical

Advantages

◮ Allows sampling from canonical ensemble
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Thermostats Summary

Thermostat Description Canonical? Stochastic?

Velocity Rescaling KE fixed to match T no no

Nosé-Hoover extra degree of freedom
acts as thermal reser-
voir

yes no

Langevin noise and drag balance
to give correct T

yes yes

Andersen momenta occasionally
re-randomized

yes yes
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Applied Math Masters Project

Molecular Dynamics Simulation

◮ Implemented in MATLAB and C++

◮ Simulations in 2 and 3 dimensions

◮ Periodic and walled boundary conditions

◮ External fields such as gravity

◮ Optimization
⋆ OpenMP

⋆ CUDA
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Lennard-Jones Potential
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Numeric Integration

Verlet Algorithm

pn+1/2 = pn − ∆t

2
∇V (qn)

qn+1 = qn +∆tM−1pn+1/2

pn+1 = pn+1/2 − ∆t

2
∇V (qn+1)

◮ Preserves modified Hamiltonian
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Thermostat Implementation

Velocity Rescaling

◮ pi →
√

T
Tc
pi

Anderson
◮ ν = 1%, 0.1%, 0.05%
◮ Velocities are sampled from N (0,

√
T )

Langevin
◮ BBK algorithm

pn+1/2 = pn − ∆t
2 ∇V (qn)− ∆t

2 γ(qn)M−1pn +
√

∆t
2 σ(qn)G n

qn+1 = qn +∆tM−1pn+1/2

pn+1 = pn+1/2−∆t

2
∇V (qn+1)−∆t

2
γ(qn+1)M−1pn+1+

√

∆t

2
σ(qn+1)G n+1

◮ γ chosen to be constant
◮ σ =

√
2γMkBT

◮ G sampled from a standard normal distribution
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Velocity Rescaling - Instantaneous Temperature
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Anderson - Instantaneous Temperature
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Anderson - Histogram of Velocity Distribution
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Langevin Instantaneous Temperature
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Langevin - Histogram of Velocity Distribution
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