1. (17 points) Let θ be an angle, such that $\sin (\theta) \neq 0$, and let $A:=\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right)$ be the matrix of the rotation of \mathbb{R}^{2} about the origin by angle θ counterclockwise.
(a) The characteristic polynomial of A is $h(x)=x^{2}-2 \cos (\theta)+1$.
(b) The minimal polynomial $m(x)$ of A is equal to its characteristic polynomial $x^{2}-2 \cos (\theta)+1$. Two ways to see it are: If we work over the complex numbers, then the equality $h(x)=m(x)$ follows, since the two roots $\cos (\theta)+\sin (\theta) i$ and $\cos (\theta)-\sin (\theta) i$ of $h(x)$ are distinct, and $m(x)$ and $h(x)$ have the same set of roots, and $m(x)$ divides $h(x)$, by the Cayley Hamilton Theorem. Over the real numbers the equality $m(x)=h(x)$ follows, since $h(x)$ is a prime polynomial, $m(x)$ has positive degree, and $m(x)$ divides $h(x)$.
(c) A is similar to a diagonal matrix in $M_{2}(\mathbb{C})$, since the minimal polynomial factors as a product of linear terms with distinct roots $m(x)=(x-[\cos (\theta)+\sin (\theta) i])(x-[\cos (\theta)-\sin (\theta) i])$.
(d) A is not similar to a diagonal matrix in $M_{2}(\mathbb{R})$, since its minimal polynomial is prime in $\mathbb{R}[x]$.
2. (17 points) Set $A:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.
(a) The characteristic polynomial of A is $x^{2}+1$. Its two eigenvalues are i and $-i$.
(b) A basis of \mathbb{C}^{2} consisting of eigenvectors of A. We find first a basis for the i-eigenspace $\operatorname{null}(A-i I)$, then for the $-i$ eigenspace $\operatorname{null}(A+i I)$, and take their union as a basis for \mathbb{C}^{2}. $A-i I=\left(\begin{array}{cc}-i & -1 \\ 1 & -i\end{array}\right) \sim\left(\begin{array}{cc}1 & -i \\ 0 & 0\end{array}\right)$.
Thus, $\operatorname{null}(A-i I)$ is spanned by $v_{1}:=\binom{i}{1}$.
$A+i I=\left(\begin{array}{cc}i & -1 \\ 1 & i\end{array}\right) \sim\left(\begin{array}{cc}1 & i \\ 0 & 0\end{array}\right)$.
Thus, $\operatorname{null}(A+i I)$ is spanned by $v_{2}:=\binom{-i}{1}$.
(c) Find an invertible matrix P and a diagonal matrix D, both in $M_{2}(\mathbb{C})$, such that $P^{-1} A P=D$.
Answer: Take $P:=\left(v_{1} v_{2}\right)=\left(\begin{array}{cc}i & -i \\ 1 & 1\end{array}\right)$. Then $D=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$.
3. (17 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by multiplication by $A=\left(\begin{array}{cc}-2 & 9 \\ -1 & 4\end{array}\right)$.
(a) The characteristic polynomial of T is $h(x)=(x-1)^{2}$.
(b) The minimal polynomial $m(x)$ of T divides $h(x)$. If $m(x)=x-1$, then $A=I$, which is false. Hence, $m(x)=(x-1)^{2}$.
(c) T is not diagonalizable, since its minimal polynomial is a product of linear terms with repeated roots.
(d) The unique eigenvalue of T is the scalar 1 .
(e) As a basis for the 1-eigenspace of T we can take $\binom{3}{1}$.
(f) Find an upper triangular matrix B and an invertible matrix P, such that $B=P^{-1} A P$. Carefully explain, in complete sentences, your method for finding P. Credit will not be given for an answer obtained by trial and error.

Answer: The proof of the Triangular Form Theorem dictates, that we should choose a basis $\left\{v_{1}, v_{2}\right\}$ for $\mathbb{R}^{2}=\operatorname{null}\left((A-I)^{2}\right)$, so that $(A-I) v_{1}=0$. Take $v_{1}=$ $\binom{3}{1}$ and $v_{2}=\binom{1}{0}$. The change of basis matrix is $P=\left(v_{1} v_{2}\right)=\left(\begin{array}{ll}3 & 1 \\ 1 & 0\end{array}\right)$, and $P^{-1} A P=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$ is upper triangular.
4. (17 points)
(a) Let V be a finite dimensional vector space, T, D, and N, three linear transformations in $L(V, V)$, such that $T=D+N$. State the three properties that D and N need to satisfy, in order for the above to be the Jordan decomposition of T.
Answer: i) D is diagonalizable, ii) N is nilpotent, iii) $D N=N D$.
(b) Let $A=\left(\begin{array}{cc}0 & 4 \\ -1 & 4\end{array}\right), B=\left(\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right)$, and $P=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Note, that $P^{-1} A P=B$.
i. The Jordan decomposition of B is $B=D^{\prime}+N^{\prime}$, where $D^{\prime}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ and $N^{\prime}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
ii. The Jordan decomposition $A=D+N$ of A is:

$$
A=P B P^{-1}=P\left(D^{\prime}+N^{\prime}\right) P^{-1}=P D^{\prime} P^{-1}+P N^{\prime} P^{-1}
$$

We see that $D=P D^{\prime} P^{-1}=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ and $N=P N^{\prime} P^{-1}=\left(\begin{array}{cc}-2 & 4 \\ -1 & 2\end{array}\right)$.
iii. We verify that the matrices D and N in part 4(b)ii satisfy the properties in part 4a, by a direct calculation.
iv. Using Jordan decomposition of A we calculate:
$A^{k}=(D+N)^{k}=D^{k}+k D^{k-1} N+\ldots$, where the other terms involve powers N^{i}, $i \geq 2$, which vanish. Hence,

$$
A^{k}=\left(\begin{array}{cc}
2^{k} & 0 \\
0 & 2^{k}
\end{array}\right)+k\left(\begin{array}{cc}
2^{k-1} & 0 \\
0 & 2^{k-1}
\end{array}\right)\left(\begin{array}{cc}
-2 & 4 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
(1-k) 2^{k} & k 2^{k+1} \\
-k 2^{k-1} & (k+1) 2^{k}
\end{array}\right)
$$

5. (17 points) Let V be an n-dimensional vector space over \mathbb{R} with an inner product and u a unit vector in V. Recall, that the reflection R of V, with respect to the subspace u^{\perp} orthogonal to u, is given by $R(v)=v-2(v, u) u$.
(a) $R^{2}(v)=R(R(v))=R(v-2(v, u) u)=[v-2(v, u) u]-2([v-2(v, u) u], u) u=$ $[v-2(v, u) u]+2(v, u) u=v$. Hence, $R^{2}=1$.
(b) The minimal polynomial $m(x)$ of R divides $x^{2}-1=(x-1)(x+1)$, since $R^{2}-1=0$. If $m(x)=x-1$, then $R=1$, which it is clearly not, by part 5 d. If $m(x)=x+1$, then $R=-1$, and the -1 eigenspace is the whole of V. This is the case, precisely if V is one dimensional, by part 5 d . Hence, if $n=1$, then $m(x)=x+1$, and if $n \geq 2$, then $m(x)=x^{2}-1$.
(c) R is diagonalizable, since its minimal polynomial is a product of linear terms with distinct roots.
(d) We compute the -1 eigenspace of R by solving the equation $R(v)=-v$, which is equivalent to $v-2(v, u) u=-v$. Solving for v in terms of u, we get that v is in the -1 eigenspace, if and only is $v=(v, u) u$, i.e., if and only if v is a scalar multiple of u.
(e) The characteristic polynomial of R is $h(x)=(x-1)^{d_{+}}(x+1)^{d_{-}}$, where d_{+}is the dimension of the +1 eigenspace $\operatorname{null}(R-1)$ and d_{-}is the dimension of the -1 eigenspace $\operatorname{null}(R+1)$, since R is diagonalizable. Now $d_{-}=1$, by part 5 d , and $d_{+}+d_{-}=n$, since the characteristic polynomial has degree n. Hence, $d_{+}=n-1$ (We also saw in class several times, that the +1 eigenspace is u^{\perp}, which is $n-1$ dimensional). We conclude, that $h(x)=(x-1)^{n-1}(x+1)$.
(f) The trace $\operatorname{tr}(R)$ is the sum of the eigenvalues, repeated according to their multiplicity in the characteristic polynomial. Hence, $\operatorname{tr}(R)=-1+(n-1) 1=$ $n-2$.
6. (17 points) Let V be a finite dimensional vector space over a field F, and $T: V \rightarrow V$ a linear transformation.
(a) Let $v \in V$ be an eigenvector of T with eigenvalue λ, and $g(x)=c_{n} x^{n}+\cdots+c_{0}$ a polynomial in $F[x]$. Show that v is an eigenvector of $g(T)$ and find its eigenvalue.
Answer: $T^{n}(v)=\lambda^{n} v$. Hence,
$g(T) v=c_{n} T^{n}(v)+\cdots+c_{0} v=\left(c_{n} \lambda^{n}+\cdots+c_{0}\right) v=g(\lambda) v$. The eigenvalue is thus $g(\lambda)$.
(b) Use part 6a to show, that every root of the characteristic polynomial $h(x)$ of T is also a root of the minimal polynomial $m(x)$ of T (without using the Cayley-Hamilton Theorem).

Answer: Let λ be a root of the characteristic polynomial of T. Then there exists a non-zero eigenvector v with eigenvalue λ. Then $m(T) v=m(\lambda) v$, by the previous part. On the other hand, $m(T)=0$, so $m(T) v=0$. Hence, $m(\lambda) v=0$, and thus $m(\lambda)=0$.
7. (17 points) Let V be a four dimensional vector space over \mathbb{C}. Assume that the characteristic polynomial of T is $h(x)=\left(x-\lambda_{1}\right)^{2}\left(x-\lambda_{2}\right)^{2}$, and $\lambda_{1} \neq \lambda_{2}$.
(a) The four possible minimal polynomials $m(x)$ of T (with leading coefficient 1) are: $\left(x-\lambda_{1}\right)^{e_{1}}\left(x-\lambda_{2}\right)^{e_{2}}$, where $1 \leq e_{1} \leq 2$, and $1 \leq e_{2} \leq 2$, since $m(x)$ divides $h(x)$ and $m(x)$ and $h(x)$ have the same set of roots.
(b) Assume that the minimal polynomial of T is $m(x)=\left(x-\lambda_{1}\right)^{e_{1}}\left(x-\lambda_{2}\right)^{e_{2}}$, set $V_{i}:=\operatorname{null}\left[\left(T-\lambda_{i} \mathbf{1}\right)^{e_{i}}\right]$, where $\mathbf{1}$ is the identity transformation, and let $T_{i} \in L\left(V_{i}, V_{i}\right)$ be the restriction of T to V_{i}. Use the Primary Decomposition Theorem to show, that the minimal polynomial of T_{i} is $\left(x-\lambda_{i}\right)^{e_{i}}$. Hint: Show first that the minimal polynomial $m_{i}(x)$ of T_{i} divides $m(x)$ and the product $g(x):=m_{1}(x) m_{2}(x)$ satisfies $g(T)=0$.
Answer: Step $1\left(m_{i}(x)\right.$ divides $\left.m(x)\right)$: Let v be a vector in V_{i}. Then $T_{i}(v)=$ $T(v)$, by $\overline{\text { definition of } T_{i} \text {. So } m\left(T_{i}\right) v}=m(T) v=0$. Thus the minimal polynomial $m_{i}(x)$ of T_{i} divides $m(x)$.
Step $2(g(T)=0)$: Let $\left\{v_{1}, \ldots, v_{n_{1}}\right\}$ be a basis of V_{1}, and $\left\{w_{1}, \ldots, w_{n_{2}}\right\}$ a basis of V_{2}. Their union is a basis of V, so it suffices to show, that $g(T) v_{i}=$ $0=g(T) w_{j}$. Now $g(T) v_{i}=m_{2}(T)\left(m_{1}(T) v_{i}\right)=m_{2}(T)(0)=0$. Similarly, $g(T) w_{j}=m_{1}(T)\left(m_{2}(T) w_{j}\right)=m_{1}(T)(0)=0$.
Step 3: $m(x)$ divides $m_{1}(x) m_{2}(x)$, since $m_{1}(T) m_{2}(T)=0$, by Step 2. The product $m_{1}(x) m_{2}(x)$ divides $m(x)$, since each factor does, by Step 1 , and the two factors are relatively prime (they do not have a common factor). Hence, $m(x)=m_{1}(x) m_{2}(x)$, since both sides have leading coeficient 1.
(c) Assuming that the minimal polynomial of T is $\left(x-\lambda_{1}\right)^{2}\left(x-\lambda_{2}\right)$, the dimensions of the null spaces of $T-\lambda_{1} \mathbf{1},\left(T-\lambda_{1} \mathbf{1}\right)^{2}, T-\lambda_{2} \mathbf{1}$, and $\left(T-\lambda_{2} \mathbf{1}\right)^{2}$ are: $\operatorname{dim} \operatorname{null}\left(T-\lambda_{1} \mathbf{1}\right)=1, \operatorname{dim} \operatorname{null}\left[\left(T-\lambda_{1} \mathbf{1}\right)^{2}\right]=2, \operatorname{dim} \operatorname{null}\left(T-\lambda_{2} \mathbf{1}\right)=2$, and $\operatorname{dim} \operatorname{null}\left[\left(T-\lambda_{2} \mathbf{1}\right)^{2}\right]=2$.

Reason: Let $V_{1}:=\operatorname{null}\left[\left(T-\lambda_{1} \mathbf{1}\right)^{2}\right]$ and $V_{2}:=\operatorname{null}\left(T-\lambda_{2} \mathbf{1}\right)$. Then $V=V_{1} \oplus V_{2}$, by the Primary Decomposition Theorem, and $\operatorname{dim}\left(V_{i}\right)=2$, for both $i=1,2$, by the Triangular Form Theorem, since the multiplicity of the corresponding eigenvalue, as a root of the characteristic polynomial, is 2 . This explains two of the above four equalities.
The equality $\operatorname{dim} \operatorname{null}\left(T-\lambda_{1} \mathbf{1}\right)=1$: We know that $\operatorname{null}\left(T-\lambda_{1} \mathbf{1}\right)$ is non-zero, since λ_{1} is an eigenvalue, and $\operatorname{null}\left(T-\lambda_{1} \mathbf{1}\right)$ is contained in $\operatorname{null}\left[\left(T-\lambda_{1} \mathbf{1}\right)^{2}\right]$, which is two dimensional. Hence, $1 \leq \operatorname{dim} \operatorname{null}\left(T-\lambda_{1} \mathbf{1}\right) \leq 2$. If $\operatorname{dim} \operatorname{null}\left(T-\lambda_{1} \mathbf{1}\right)=2$, then we would have had a basis of V consisting of eigenvectors of T, T would have been diagonalizable, and the minimal polynomial would have been $\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)$, which it is not.

The equality $\operatorname{dim} \operatorname{null}\left[\left(T-\lambda_{2} 1\right)^{2}\right]=2$: This part was not needed for full credit. $\operatorname{dim} \operatorname{null}\left[\left(T-\lambda_{2} \mathbf{1}\right)^{2}\right] \geq \operatorname{dim} \operatorname{null}\left(T-\lambda_{2} \mathbf{1}\right)=2$. If strict inequality held, then there would have been a vector v in null $\left[\left(T-\lambda_{2} 1\right)^{2}\right]$, which did not belong to $\operatorname{null}\left(T-\lambda_{2} \mathbf{1}\right)$. Then the order $m_{v}(x)$ of v would have been $\left(x-\lambda_{2}\right)^{2}$. This is impossible, since the order $m_{v}(x)$ divides the minimal polynomial.

